In Vitro Selective Antibacterial and Antiproliferative Effects of Ethanolic Extracts from Cambodian and Philippine Plants Used in Folk Medicine for Diarrhea Treatment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34899301
PubMed Central
PMC8661004
DOI
10.3389/fphar.2021.746808
PII: 746808
Knihovny.cz E-zdroje
- Klíčová slova
- Cambodia, Philippines, antibacterial, anticancer, diarrhea, medicinal plant,
- Publikační typ
- časopisecké články MeSH
Bacterial diarrhea remains a global health problem, especially in developing tropical countries. Moreover, dysbiosis caused by diarrheagenic bacteria and inappropriate antimicrobial treatment has been associated with intestinal carcinogenesis. Despite the rich tradition of the use of herbs for the treatment of gastrointestinal disorders in Cambodian and Philippine folk medicine, many of them have not yet been systematically studied for their in vitro selective inhibitory effects on intestinal bacteria and cells. In the present study, in vitro inhibitory activities of 35 ethanolic extracts derived from 32 Cambodian and Philippine medicinal plants were determined by broth microdilution method against 12 pathogenic bacteria. Furthermore, cytotoxicity against intestinal cancer cells (Caco-2 and HT-29) using thiazolyl blue tetrazolium bromide cytotoxicity assay and safety to six beneficial intestinal bacteria (bifidobacteria and lactobacilli) and intestinal normal cells (FHs 74 Int) were determined for the antimicrobially active extracts. Selectivity indices (SIs) were calculated among the averages of minimum inhibitory concentrations (MICs), half-maximal inhibitory concentrations (IC50), and 80% inhibitory concentrations of proliferation (IC80) for each type of the tested agents. The extracts of Artocarpus blancoi (Elmer) Merr. (Moraceae), Ancistrocladus tectorius (Lour.) Merr. (Ancistrocladaceae), and Pentacme siamensis (Miq.) Kurz (Dipterocarpaceae) produced significant growth-inhibitory effects (MICs = 32-512 μg/ml) against intestinal pathogenic bacteria at the concentrations nontoxic to normal intestinal cells (IC80 values >512 μg/ml; SIs = 0.11-0.2). Moreover, the extract of P. siamensis (Miq.) Kurz was relatively safe to beneficial bacteria (MICs ≥512 μg/ml; SI = 0.1), and together with A. blancoi (Elmer) Merr., they selectively inhibited intestinal cancer cells (IC50 values ≥51.98 ± 19.79 μg/ml; SIs = 0.3 and 0.6). Finally, a strong selective antiproliferative effect on cancer cells (IC50 values 37.89 ± 2.68 to 130.89 ± 13.99 μg/ml; SIs = 0.5) was exerted by Ehretia microphylla Lam. (Boraginaceae), Lagerstroemia cochinchinensis Pierre ex Gagnep. (Lythraceae), and Melastoma saigonense (Kuntze) Merr. (Melastomataceae) (leaves with flower buds). The results suggest that the above-mentioned species are promising materials for the development of new selective antibacterial and antiproliferative agents for the treatment of infectious diarrhea and associated intestinal cancer diseases. However, further research is needed regarding the isolation and identification of their active constituents.
Zobrazit více v PubMed
Abu Bakar M. F., Abdul Karim F., Perisamy E. (2015). Comparison of Phytochemicals and Antioxidant Properties of Different Fruit Parts of Selected Artocarpus Species from Sabah, Malaysia. Sains Malays 44 (3), 355–363. 10.17576/jsm-2015-4403-06 DOI
Anh N. H., Porzel A., Ripperger H., Bringmann G., Schäffer M., God R., et al. (1997). Naphthylisoquinoline Alkaloids from Ancistrocladus cochinchinensis . Phytochemistry 45 (6), 1287–1291. 10.1016/s0031-9422(97)00110-6 DOI
Ante I., Aboaba S., Siddiqui H., Choudhary M. I. (2016). Essential Oils of the Leaf, Stem-Bark, and Nut of Artocarpus camansi: Gas Chromatography-Mass Spectrometry Analysis and Activities against Multidrug-Resistant Bacteria. J. Herbs, Spices Med. Plants 22 (3), 203–210. 10.1080/10496475.2016.1159638 DOI
Batalha P. N., Vieira de Souza M. C., Peña-Cabrera E., Cruz D. C., da Costa Santos Boechat F. (2016). Quinolones in the Search for New Anticancer Agents. Curr. Pharm. Des. 22 (39), 6009–6020. 10.2174/1381612822666160715115025 PubMed DOI
Behnsen J., Deriu E., Sassone-Corsi M., Raffatellu M. (2013). Probiotics: Properties, Examples, and Specific Applications. Cold Spring Harb. Perspect. Med. 3 (3), a010074. 10.1101/cshperspect.a010074 PubMed DOI PMC
Beloy F. B., Masilungan V. A., Cruzde la. R. M., Ramos E. V. (1976). Investigation of Some Philippine Plants for Antimicrobial Substances. Philipp. J. Sci. 105, 205–213.
Bradacs G., Maes L., Heilmann J. (2009). In Vitro Cytotoxic, Antiprotozoal and Antimicrobial Activities of Medicinal Plants from Vanuatu. Phytother. Res. 24 (6), 800–809. 10.1002/ptr.2981 PubMed DOI
Bringmann G., Xu M., Seupel R., Feineis D., Wu J. (2016). Ancistrotectoquinones A and B, the First Quinoid Naphthylisoquinoline Alkaloids, from the Chinese Liana Ancistrocladus tectorius . Nat. Prod. Commun. 11 (7), 971–976. 10.1177/1934578x1601100725 PubMed DOI
Casburn-Jones A. C., Farthing M. J. (2004). Management of Infectious Diarrhoea. Gut 53 (2), 296–305. 10.1136/gut.2003.022103 PubMed DOI PMC
Chan C.-L., Gan R.-Y., Shah N. P., Corke H. (2018). Polyphenols from Selected Dietary Spices and Medicinal Herbs Differentially Affect Common Food-Borne Pathogenic Bacteria and Lactic Acid Bacteria. Food Control 92, 437–443. 10.1016/j.foodcont.2018.05.032 DOI
Chan E. W. C., Tan L. N., Wong S. K. (2014). Phytochemistry and Pharmacology of Lagerstroemia Speciosa: a Natural Remedy for Diabetes. Int. J. Herb. Med. 2 (1), 81–87.
Chassagne F., Hul S., Deharo E., Bourdy G. (2016). Natural Remedies Used by Bunong People in Mondulkiri Province (Northeast Cambodia) with Special Reference to the Treatment of 11 Most Common Ailments. J. Ethnopharmacol. 191, 41–70. 10.1016/j.jep.2016.06.003 PubMed DOI
Chea A., Jonville M. C., Bun S. S., Laget M., Elias R., Duménil G., et al. (2007). In Vitro antimicrobial Activity of Plants Used in Cambodian Traditional Medicine. Am. J. Chin. Med. 35 (05), 867–873. 10.1142/s0192415x07005338 PubMed DOI
Clinical and Laboratory Standards Institute (2021). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard-2021 Ed. CLSI Document M07-M100. Wayne: CLSI.
Cos P., Vlietinck A. J., Berghe D. V., Maes L. (2006). Anti-infective Potential of Natural Products: How to Develop a Stronger In Vitro 'proof-Of-Concept'. J. Ethnopharmacol. 106, 290–302. 10.1016/j.jep.2006.04.003 PubMed DOI
de Guzman G. Q., Dacanay A. T., Andaya B. A., Alejandro G. J. (2016). Ethnopharmacological Studies on the Uses of Euphorbia hirta in the Treatment of Dengue in Selected Indigenous Communities in Pangasinan (Philippines). J. Intercult. Ethnopharmacol. 5 (3), 239–243. 10.5455/jice.20160330124637 PubMed DOI PMC
de Padua L. S., Bunyapraphatsara N., Lemmens R. H. M. J. (1999). Plant Resources of South-East Asia (PROSEA) No 12 (1), Medicinal and Poisonous Plants 1. (Leiden: Backhuys Publishers; ).
Diniz-Santos D. R., Silva L. R., Silva N. (2006). Antibiotics for the Empirical Treatment of Acute Infectious Diarrhea in Children. Braz. J. Infect. Dis. 10 (3), 217–227. 10.1590/s1413-86702006000300011 PubMed DOI
Duriyaprapan S., Tanpanich S., Khuankhamnuan C. (2005). The Plant Resources of South-East Asia (PROSEA). Acta Hortic. 675, 15–21. 10.17660/actahortic.2005.675.1 DOI
Francino M. P. (2015). Antibiotics and the Human Gut Microbiome: Dysbioses and Accumulation of Resistances. Front. Microbiol. 6, 1543. 10.3389/fmicb.2015.01543 PubMed DOI PMC
Fuente B., López-García G., Máñez V., Alegría A., Barberá R., Cilla A. (2020). Antiproliferative Effect of Bioaccessible Fractions of Four Brassicaceae Microgreens on Human Colon Cancer Cells Linked to Their Phytochemical Composition. Antioxidants (Basel) 9 (5), 368. 10.3390/antiox9050368 PubMed DOI PMC
Garrett W. S. (2019). The Gut Microbiota and Colon Cancer. Science 364 (6446), 1133–1135. 10.1126/science.aaw2367 PubMed DOI
Gavrish E., Shrestha B., Chen C., Lister I., North E. J., Yang L., et al. (2014). In Vitro and In Vivo Activities of HPi1, a Selective Antimicrobial against Helicobacter pylori . Antimicrob. Agents Chemother. 58 (6), 3255–3260. 10.1128/aac.02573-13 PubMed DOI PMC
González-Sarrías A., Gromek S., Niesen D., Seeram N. P., Henry G. E. (2011). Resveratrol Oligomers Isolated from Carex Species Inhibit Growth of Human Colon Tumorigenic Cells Mediated by Cell Cycle Arrest. J. Agric. Food Chem. 59 (16), 8632–8638. 10.1021/jf201561e PubMed DOI
Hafid A. F., Aoki-Utsubo C., Permanasari A. A., Adianti M., Tumewu L., Widyawaruyanti A., et al. (2017). Antiviral Activity of the Dichloromethane Extracts from Artocarpus heterophyllus Leaves against Hepatitis C Virus. Asian Pac. J. Trop. Biomed. 7 (7), 633–639. 10.1016/j.apjtb.2017.06.003 DOI
Han X. H., Du C. X., Zhang C. L., Zheng C. L., Wang L., Li D., et al. (2013). Clostridium difficile Infection in Hospitalized Cancer Patients in Beijing, China Is Facilitated by Receipt of Cancer Chemotherapy. Anaerobe 24, 82–84. 10.1016/j.anaerobe.2013.05.004 PubMed DOI
Hao D.-c., Xiao P.-g. (2020). Pharmaceutical Resource Discovery from Traditional Medicinal Plants: Pharmacophylogeny and Pharmacophylogenomics. Chin. Herbal Medicines 12, 104–117. 10.1016/j.chmed.2020.03.002 PubMed DOI PMC
Hecht D. W. (1999). “Antimicrobial Agents and Susceptibility Testing: Susceptibility Testing of Anaerobic Bacteria,” in Manual of Clinical Microbiology. Editors Murray P. R., Baron E. J., Pfaller M. A., Tenover F. C., Yolken R. H.. 7th ed (Washington DC: American Society for Microbiology ASM; ), 1555–1563.
Houdková M., Urbanová K., Doskočil I., Rondevaldová J., Nový P., Nguon S., et al. (2018). In Vitro Growth-Inhibitory Effect of Cambodian Essential Oils against Pneumonia Causing Bacteria in Liquid and Vapour Phase and Their Toxicity to Lung Fibroblasts. South Afr. J. Bot. 118, 85–97. 10.1016/j.sajb.2018.06.005 DOI
Jalal T. K., Ahmed I. A., Mikail M., Momand L., Draman S., Isa M. L., et al. (2015). Evaluation of Antioxidant, Total Phenol and Flavonoid Content and Antimicrobial Activities of Artocarpus altilis (Breadfruit) of Underutilized Tropical Fruit Extracts. Appl. Biochem. Biotechnol. 175 (7), 3231–3243. 10.1007/s12010-015-1499-0 PubMed DOI
Jiang C., Li Z. L., Gong P., Kang S. L., Liu M. S., Pei Y. H., et al. (2013). Five Novel Naphthylisoquinoline Alkaloids with Growth Inhibitory Activities against Human Leukemia Cells HL-60, K562 and U937 from Stems and Leaves of Ancistrocladus tectorius . Fitoterapia 91, 305–312. 10.1016/j.fitote.2013.09.010 PubMed DOI
Kamsani N. E., Zakaria Z. A., Md Nasir N. L., Mohtarrudin N., Mohamad Alitheen N. B. (2019). Safety Assessment of Methanol Extract of Melastoma malabathricum L. Leaves Following the Subacute and Subchronic Oral Consumptions in Rats and its Cytotoxic Effect against the HT29 Cancer Cell Line. Evid. Based Complement. Alternat Med. 2019, 5207958. 10.1155/2019/5207958 PubMed DOI PMC
Karakurt S., Abuşoğlu G., Arituluk Z. C. (2020). Comparison of Anticarcinogenic Properties of Viburnum opulus and its Active Compound P-Coumaric Acid on Human Colorectal Carcinoma. Turk. J. Biol. 44 (5), 252–263. 10.3906/biy-2002-30 PubMed DOI PMC
Kelber O., Steinhoff B., Nauert C., Biller A., Adler M., Abdel-Aziz H., et al. (2016). Ethanol in Herbal Medicinal Products for Children : Data from Pediatric Studies and Pharmacovigilance Programs. Wien Med. Wochenschr. 167 (7–8), 183–188. 10.1007/s10354-016-0474-x PubMed DOI PMC
Kham L. (2004). Medicinal Plants of Cambodia: Habitat, Chemical Constituents and Ethnobotanical Uses. Golden Square: Bendigo Scientific Press.
Khan M. R., Kihara M., Omoloso A. D. (2001). Antibacterial Activity of Picrasma javanica . Fitoterapia 72 (4), 406–408. 10.1016/s0367-326x(00)00274-4 PubMed DOI
Kittakoop P., Kirtikara K., Tanticharoen M., Thebtaranonth Y. (2000). Antimalarial Preracemosols A and B, Possible Biogenetic Precursors of Racemosol from Bauhinia malabarica Roxb. Phytochemistry 55 (4), 349–352. 10.1016/s0031-9422(00)00318-6 PubMed DOI
Kokoška L., Klouček P., Leuner O., Nový P. (2019). Plant-Derived Products as Antibacterial and Antifungal Agents in Human Health Care. Curr. Med. Chem. 26 (29), 5501–5541. 10.2174/0929867325666180831144344 PubMed DOI
Kudera T., Doskočil I., Salmonová H., Petrtýl M., Skřivanová E., Kokoška L. (2020). In Vitro Selective Growth-Inhibitory Activities of Phytochemicals, Synthetic Phytochemical Analogs, and Antibiotics against Diarrheagenic/Probiotic Bacteria and Cancer/Normal Intestinal Cells. Pharmaceuticals (Basel) 13 (9), 233. 10.3390/ph13090233 PubMed DOI PMC
Kuete V., Ngnintedo D., Fotso G. W., Karaosmanoğlu O., Ngadjui B. T., Keumedjio F., et al. (2018). Cytotoxicity of Seputhecarpan D, Thonningiol and 12 Other Phytochemicals from African Flora towards Human Carcinoma Cells. BMC Complement. Altern. Med. 18 (1), 36. 10.1186/s12906-018-2109-9 PubMed DOI PMC
Langenberger G., Prigge V., Martin K., Belonias B., Sauerborn J. (2008). Ethnobotanical Knowledge of Philippine Lowland Farmers and its Application in Agroforestry. Agrofor. Syst. 76 (1), 173–194. 10.1007/s10457-008-9189-3 DOI
Lemmens R. H. M. J. L., Bunyapraphatsara N. (2003). Plant Resources of South-East Asia (PROSEA) No 12 (3), Medicinal and Poisonous Plants 3. Leiden: Backhuys Publishers.
Lim T. K. (2012). Edible Medicinal and Non Medicinal Plants. Fruits. New York: Springer.
Lin J. P., Yang J. S., Wu C. C., Lin S. S., Hsieh W. T., Lin M. L., et al. (2008). Berberine Induced Down-Regulation of Matrix Metalloproteinase-1, -2 and -9 in Human Gastric Cancer Cells (SNU-5). In Vivo 22 (2), 223–230. PubMed
Mackeen M. M., Ali A. M., El-Sharkawy S. H., Manap M. Y., Salleh K. M., Lajis N. H., et al. (1997). Antimicrobial and Cytotoxic Properties of Some Malaysian Traditional Vegetables (Ulam). Int. J. Pharmacognosy 35 (3), 174–178. 10.1076/phbi.35.3.174.13294 DOI
Maher S., McClean S. (2006). Investigation of the Cytotoxicity of Eukaryotic and Prokaryotic Antimicrobial Peptides in Intestinal Epithelial Cells In Vitro . Biochem. Pharmacol. 71 (9), 1289–1298. 10.1016/j.bcp.2006.01.012 PubMed DOI
Marandi R. R., Britto S. J., Soreng P. K. (2016). Phytochemical Profiling, Antibacterial Screening and Antioxidant Properties of the Sacred Tree (Shorea robusta Gaertn.) of Jharkhand. Int. J. Pharm. Sci. Res. 7 (7), 2874–2888. 10.13040/IJPSR.0975-8232.7(7).2874-88 DOI
Meng C. Y., Smith B. L., Bodhidatta L., Richard S. A., Vansith K., Thy B., et al. (2011). Etiology of Diarrhea in Young Children and Patterns of Antibiotic Resistance in Cambodia. Pediatr. Infect. Dis. J. 30 (4), 331–335. 10.1097/inf.0b013e3181fb6f82 PubMed DOI
Mihalyi A., Jamshidi S., Slikas J., Bugg T. D. (2014). Identification of Novel Inhibitors of Phospho-MurNAc-Pentapeptide Translocase MraY from Library Screening: Isoquinoline Alkaloid Michellamine B and Xanthene Dye Phloxine B. Bioorg. Med. Chem. 22 (17), 4566–4571. 10.1016/j.bmc.2014.07.035 PubMed DOI
Moriyama H., Moriyama M., Ninomiya K., Morikawa T., Hayakawa T. (2016). Inhibitory Effects of Oligostilbenoids from the Bark of Shorea roxburghii on Malignant Melanoma Cell Growth: Implications for Novel Topical Anticancer Candidates. Biol. Pharm. Bull. 39 (10), 1675–1682. 10.1248/bpb.b16-00420 PubMed DOI
Mosmann T. (1983). Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 65 (1–2), 55–63. 10.1016/0022-1759(83)90303-4 PubMed DOI
Neftel K. A., Hübscher U. (1987). Effects of Beta-Lactam Antibiotics on Proliferating Eucaryotic Cells. Antimicrob. Agents Chemother. 31 (11), 1657–1661. 10.1128/aac.31.11.1657 PubMed DOI PMC
Nitta T., Arai T., Takamatsu H., Inatomi Y., Murata H., Iinuma M., et al. (2002). Antibacterial Activity of Extracts Prepared from Tropical and Subtropical Plants on Methicillin-Resistant Staphylococcus aureus . J. Health Sci. 48 (3), 273–276. 10.1248/jhs.48.273 DOI
Novaková J., Vlková E., Bonušova B., Rada V., Kokoška L. (2013). In Vitro Selective Inhibitory Effect of 8-Hydroxyquinoline against Bifidobacteria and Clostridia. Anaerobe 22, 134–136. 10.1016/j.anaerobe.2013.05.008 PubMed DOI
Ong H. C., Nordiana M. (1999). Malay Ethno-Medico Botany in Machang, Kelantan, Malaysia. Fitoterapia 70 (5), 502–513. 10.1016/s0367-326x(99)00077-5 DOI
Onoda T., Ono T., Dhar D. K., Yamanoi A., Nagasue N. (2005). Tetracycline Analogues (Doxycycline and COL-3) Induce Caspase-dependent and -independent Apoptosis in Human Colon Cancer Cells. Int. J. Cancer 118 (5), 1309–1315. 10.1002/ijc.21447 PubMed DOI
Our World in Data (2011). Diarrheal Diseases. Available at: https://ourworldindata.org/diarrheal-diseases (Accessed October 19, 2020).
Palombo E. A. (2006). Phytochemicals from Traditional Medicinal Plants Used in the Treatment of Diarrhoea: Modes of Action and Effects on Intestinal Function. Phytother Res. 20 (9), 717–724. 10.1002/ptr.1907 PubMed DOI
Pedro M., Ferreira M. M., Cidade H., Kijjoa A., Bronze-da-Rocha E., Nascimento M. S. (2005). Artelastin Is a Cytotoxic Prenylated Flavone that Disturbs Microtubules and Interferes with DNA Replication in MCF-7 Human Breast Cancer Cells. Life Sci. 77 (3), 293–311. 10.1016/j.lfs.2004.09.049 PubMed DOI
Rahmat A., Kumar V., Fong L. M., Endrini S., Sani H. A. (2003). Determination of Total Antioxidant Activity in Three Types of Local Vegetables Shoots and the Cytotoxic Effect of Their Ethanolic Extracts against Different Cancer Cell Lines. Asia Pac. J. Clin. Nutr. 12 (3), 292–295. PubMed
Rajković A., Jovanović J., Monteiro S., Decleer M., Andjelković M., Foubert A., et al. (2020). Detection of Toxins Involved in Foodborne Diseases Caused by Gram‐Positive Bacteria. Compr. Rev. Food Sci. Food Saf. 19 (4), 1605–1657. 10.1111/1541-4337.12571 PubMed DOI
Rajkumar R., Shivakumar M. S., Senthil Nathan S., Selvam K. (2019). Preparation and Characterization of Chitosan Nanocomposites Material Using Silver Nanoparticle Synthesized Carmona retusa (Vahl) Masam Leaf Extract for Antioxidant, Anti-Cancerous and Insecticidal Application. J. Clust. Sci. 30 (4), 1145–1155. 10.1007/s10876-019-01578-9 DOI
Ramli F., Rahmani M., Ismail I. S., Sukari M. A., Abd Rahman M., Zajmi A., et al. (2016). A New Bioactive Secondary Metabolite from Artocarpus elasticus . Nat. Prod. Commun. 11 (8), 1103–1106. 10.1177/1934578x1601100818 PubMed DOI
Rathee D., Rathee P., Rathee S., Rathee D. (2016). Phytochemical Screening and Antimicrobial Activity of Picrorrhiza kurroa, an Indian Traditional Plant Used to Treat Chronic Diarrhea. Arabian J. Chem. 9, S1307–S1313. 10.1016/j.arabjc.2012.02.009 DOI
Rawla P., Sunkara T., Barsouk A. (2019). Epidemiology of Colorectal Cancer: Incidence, Mortality, Survival, and Risk Factors. Prz. Gastroenterol. 14 (2), 89–103. 10.5114/pg.2018.81072 PubMed DOI PMC
Requena T., Monagas M., Pozo-Bayón M. A., Martín-Álvarez P. J., Bartolomé B., del Campo R., et al. (2010). Perspectives of the Potential Implications of Wine Polyphenols on Human Oral and Gut Microbiota. Trends Food Sci. Tech. 21 (7), 332–344. 10.1016/j.tifs.2010.04.004 DOI
Rogowski W., Sulżyc-Bielicka V. (2016). Optimal Duration of a First-Line Palliative Chemotherapy in Disseminated Colorectal Cancer - a Review of the Literature from a Developing Country Perspective. Contemp. Oncol. (Pozn) 20, 210–214. 10.5114/wo.2016.61561 PubMed DOI PMC
Rohaiza S. (2011). Cytotoxic Oligostilbenes from Shorea hopeifolia . Afr. J. Pharm. Pharmacol. 5 (10), 1272–1277. 10.5897/ajpp10.386 DOI
Sato M., Fujiwara S., Tsuchiya H., Fujii T., Iinuma M., Tosa H., et al. (1996). Flavones with Antibacterial Activity against Cariogenic Bacteria. J. Ethnopharmacol. 54 (2–3), 171–176. 10.1016/s0378-8741(96)01464-x PubMed DOI
Septama A. W., Panichayupakaranant P. (2015). Synergistic Effect of Artocarpin on Antibacterial Activity of Some Antibiotics against Methicillin-Resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli . Pharm. Biol. 54 (4), 686–691. 10.3109/13880209.2015.1072566 PubMed DOI
Shang X. F., Yang C. J., Morris-Natschke S. L., Li J. C., Yin X. D., Liu Y. Q., et al. (2020). Biologically Active Isoquinoline Alkaloids Covering 2014-2018. Med. Res. Rev. 40 (6), 2212–2289. 10.1002/med.21703 PubMed DOI PMC
Sibanda T., Okoh A. I. (2007). The Challenges of Overcoming Antibiotic Resistance: Plant Extracts as Potential Sources of Antimicrobial and Resistance Modifying Agents. Afr. J. Biotechnol. 6 (25), 2886–2896.
Srisawat T., Chumkaew P., Heed-Chim W., Sukpondma Y., Kanokwiroon K. (2013). Phytochemical Screening and Cytotoxicity of Crude Extracts of Vatica diospyroides Symington Type LS. Trop. J. Pharm. Res. 12 (1), 71–76. 10.4314/tjpr.v12i1.12 DOI
Stuart G. U., Jr. (2017). List of Philippine Herbal Medicinal Plants. Philippine medicinal plants. StuartXchange-SX. Available at: http://www.stuartxchange.org/CompleteList.html (Accessed February 20, 2017).
Sudto K., Saparpakorn P., Tancharoen C., Phromyothin D., Techasakul S., Khunnawutmanotham N., et al. (2019). Diptoindonesin D, a Potent Antibacterial Activity against Gram-Positive Bacteria, an Inhibitor of Penicillin-Binding Protein 2a from the Stem Bark of Shorea roxburghii G.Don. Chiang Mai J. Sci. 46 (6), 1161–1175.
Sun X., Gao Y., Wang X., Hu G., Wang Y., Feng B., et al. (2018). Escherichia coli O101-Induced Diarrhea Develops Gut Microbial Dysbiosis in Rats. Exp. Ther. Med. 17 (1), 824–834. 10.3892/etm.2018.6997 PubMed DOI PMC
Sung B., Kang Y. J., Kim D. H., Hwang S. Y., Lee Y., Kim M., et al. (2014). Corosolic Acid Induces Apoptotic Cell Death in HCT116 Human Colon Cancer Cells through a Caspase-dependent Pathway. Int. J. Mol. Med. 33 (4), 943–949. 10.3892/ijmm.2014.1639 PubMed DOI
Taddese R., Garza D. R., Ruiter L. N., de Jonge M. I., Belzer C., Aalvink S., et al. (2020). Growth Rate Alterations of Human Colorectal Cancer Cells by 157 Gut Bacteria. Gut Microbes 12 (1), 1–20. 10.1080/19490976.2020.1799733 PubMed DOI PMC
Tan M. C. S., Carranza M. S. S., Linis V. C., Malabed R. S., Oyong G. G. (2019). Antioxidant, Cytotoxicity, and Antiophidian Potential of Alstonia macrophylla Bark. ACS Omega 4 (5), 9488–9496. 10.1021/acsomega.9b00082 PubMed DOI PMC
Tan M. L. (1980). Philippine Medicinal Plants in Common Use. (Quezon City: AKAP; ).
Tang C. P., Xin Z. Q., Li X. Q., Ye Y. (2010). Two New Naphthylisoquinoline Alkaloids from Stems and Leaves of Ancistrocladus tectorius . Nat. Prod. Res. 24 (11), 989–994. 10.1080/14786410902836727 PubMed DOI
Tang C. P., Yang Y. P., Zhong Y., Zhong Q. X., Wu H. M., Ye Y. (2000). Four New Naphthylisoquinoline Alkaloids from Ancistrocladus tectorius . J. Nat. Prod. 63 (10), 1384–1387. 10.1021/np000091d PubMed DOI
Teanpaisan R., Senapong S., Puripattanavong J. (2014). In Vitro Antimicrobial and Antibiofilm Activity of Artocarpus lakoocha (Moraceae) Extract against Some Oral Pathogens. Trop. J. Pharm. Res. 13 (7), 1149. 10.4314/tjpr.v13i7.20 DOI
The Plant List (2013). Royal Botanic Gardens and Missouri Botanical Garden. Kew and St. Louis. Version 1.1. Available at: http://www.theplantlist.org/ (Accessed March 11, 2017).
Tian X., Guo S., Zhang S., Li P., Wang T., Ho C. T., et al. (2019). Chemical Characterization of Main Bioactive Constituents in Paeonia ostii Seed Meal and GC-MS Analysis of Seed Oil. J. Food Biochem. 44 (1), e13088. 10.1111/jfbc.13088 PubMed DOI
Tsai P.-W., De Castro-Cruz K. A., Shen C.-C., Chiou C.-T., Ragasa C. Y. (2013). Chemical Constituents of Artocarpus camansi . Pharmacognosy J. 5 (2), 80–82. 10.1016/j.phcgj.2012.06.001 DOI
van Duong N. (1993). Medicinal Plants of Vietnam. (Cambodia and Laos: Nguyen Van Duong; ).
van Valkenburg J. L. C. H., Bunyapraphatsara N. (2001). Plant Resources of South-East Asia (PROSEA) No 12 (2), Medicinal and Poisonous Plants 2. Leiden: Backhuys Publishers.
Wiart C., Mogana S., Khalifah S., Mahan M., Ismail S., Buckle M., et al. (2004). Antimicrobial Screening of Plants Used for Traditional Medicine in the State of Perak, Peninsular Malaysia. Fitoterapia 75 (1), 68–73. 10.1016/j.fitote.2003.07.013 PubMed DOI
Win N. N., Ito T., Ismail, Kodama T., Kodama Y. Y., Tanaka M., et al. (2015). Picrajavanicins A-G, Quassinoids from Picrasma javanica Collected in Myanmar. J. Nat. Prod. 78 (12), 3024–3030. 10.1021/acs.jnatprod.5b00824 PubMed DOI
Woo K. W., Cha J. M., Choi S. U., Lee K. R. (2016). A New Triterpene Glycoside from the Stems of Lagerstroemia indica . Arch. Pharm. Res. 39 (5), 631–635. 10.1007/s12272-016-0746-4 PubMed DOI
World Health Organization (2020b). Antimicrobial Resistance. Available at: https://www.who.int/en/news-room/fact-sheets/detail/antimicrobial-resistance (Accessed September 13, 2021).
World Health Organization (2020a). The Top 10 Causes of Death. Available at: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (Accessed September 13, 2021).
Wu X., Alam M. Z., Feng L., Tsutsumi L. S., Sun D., Hurdle J. G. (2013). Prospects for Flavonoid and Related Phytochemicals as Nature-Inspired Treatments for Clostridium difficile Infection. J. Appl. Microbiol. 116 (1), 23–31. 10.1111/jam.12344 PubMed DOI PMC
Xu K., Jiang B. (2017). Analysis of Mucosa-Associated Microbiota in Colorectal Cancer. Med. Sci. Monit. 23, 4422–4430. 10.12659/msm.904220 PubMed DOI PMC
Yang G. X., Zhang R. Z., Lou B., Cheng K. J., Xiong J., Hu J. F. (2014). Chemical Constituents from Melastoma dodecandrum and Their Inhibitory Activity on Interleukin-8 Production in HT-29 Cells. Nat. Prod. Res. 28 (17), 1383–1387. 10.1080/14786419.2014.903480 PubMed DOI
Zawawi N. K., Ahmat N., Mazatulikhma M. Z., Shafiq R. M., Wahid N. H., Sufian A. S. (2012). Bioactive Oligostilbenoids from Shorea maxwelliana King and Their Chemotaxonomic Significance. Nat. Prod. Res. 27 (17), 1589–1593. 10.1080/14786419.2012.730047 PubMed DOI
Zeng X. H., Li Y. H., Wu S. S., Hao R. L., Li H., Ni H., et al. (2013). New and Highly Efficient Column Chromatographic Extraction and Simple Purification of Camptothecin from Camptotheca acuminata and Nothapodytes pittosporoides . Phytochem. Anal. 24 (6), 623–630. 10.1002/pca.2441 PubMed DOI