Monoclonal Antibodies in the Treatment of Relapsing Multiple Sclerosis: an Overview with Emphasis on Pregnancy, Vaccination, and Risk Management
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35378683
PubMed Central
PMC8978776
DOI
10.1007/s13311-022-01224-9
PII: S1878-7479(23)01101-7
Knihovny.cz E-zdroje
- Klíčová slova
- Alemtuzumab, Disease-modifying therapy, Monoclonal antibodies, Multiple sclerosis, Natalizumab, Ocrelizumab, Ofatumumab, Rituximab, Ublituximab,
- MeSH
- lidé MeSH
- monoklonální protilátky terapeutické užití MeSH
- natalizumab terapeutické užití MeSH
- protinádorové látky imunologicky aktivní * terapeutické užití MeSH
- řízení rizik MeSH
- roztroušená skleróza * terapie MeSH
- těhotenství MeSH
- vakcinace MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- monoklonální protilátky MeSH
- natalizumab MeSH
- protinádorové látky imunologicky aktivní * MeSH
Monoclonal antibodies have become a mainstay in the treatment of patients with relapsing multiple sclerosis (RMS) and provide some benefit to patients with primary progressive MS. They are highly precise by specifically targeting molecules displayed on cells involved in distinct immune mechanisms of MS pathophysiology. They not only differ in the target antigen they recognize but also by the mode of action that generates their therapeutic effect. Natalizumab, an [Formula: see text]4[Formula: see text]1 integrin antagonist, works via binding to cell surface receptors, blocking the interaction with their ligands and, in that way, preventing the migration of leukocytes across the blood-brain barrier. On the other hand, the anti-CD52 monoclonal antibody alemtuzumab and the anti-CD20 monoclonal antibodies rituximab, ocrelizumab, ofatumumab, and ublituximab work via eliminating selected pathogenic cell populations. However, potential adverse effects may be serious and can necessitate treatment discontinuation. Most importantly, those are the risk for (opportunistic) infections, but also secondary autoimmune diseases or malignancies. Monoclonal antibodies also carry the risk of infusion/injection-related reactions, primarily in early phases of treatment. By careful patient selection and monitoring during therapy, the occurrence of these potentially serious adverse effects can be minimized. Monoclonal antibodies are characterized by a relatively long pharmacologic half-life and pharmacodynamic effects, which provides advantages such as permitting infrequent dosing, but also creates disadvantages regarding vaccination and family planning. This review presents an overview of currently available monoclonal antibodies for the treatment of RMS, including their mechanism of action, efficacy and safety profile. Furthermore, we provide practical recommendations for risk management, vaccination, and family planning.
Brain and Mind Center University of Sydney Sydney Australia
Department of Neurology Medical University of Vienna Vienna Austria
Department of Neurology Palacky University Olomouc Olomouc Czech Republic
Zobrazit více v PubMed
Thompson AJ, Baranzini SE, Geurts J, et al. Multiple sclerosis. Lancet. 2018;391(10130):1622–1636. doi: 10.1016/S0140-6736(18)30481-1. PubMed DOI
Katz SI. Classification, diagnosis, and differential diagnosis of multiple sclerosis. Curr Opin Neurol. 2015;28(3):193–205. doi: 10.1097/WCO.0000000000000206. PubMed DOI
Hegen H, Bsteh G, Berger T. No evidence of disease activity - is it an appropriate surrogate in multiple sclerosis? Eur J Neurol. 2018;25(9):1107–e101. doi: 10.1111/ene.13669. PubMed DOI PMC
Diaz C, Zarco LA, Rivera DM. Highly active multiple sclerosis: An update. Mult Scler Relat Disord. 2019;30:215–224. doi: 10.1016/j.msard.2019.01.039. PubMed DOI
Smith SL. Ten years of Orthoclone OKT3 (muromonab-CD3): a review. J Transpl Coord. 1996;6(3):109–19; quiz 120–1. PubMed
Ober RJ, Radu CG, Ghetie V, et al. Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Int Immunol. 2001;13(12):1551–9. doi: 10.1093/intimm/13.12.1551. PubMed DOI
Orthmann-Murphy JL, Calabresi PA. Therapeutic application of monoclonal antibodies in multiple sclerosis. Clin Pharmacol Ther. 2017;101(1):52–64. doi: 10.1002/cpt.547. PubMed DOI
Bruno V, Battaglia G, Nicoletti F. The advent of monoclonal antibodies in the treatment of chronic autoimmune diseases. Neurol Sci. 2011;31(Suppl 3):283–8. doi: 10.1007/s10072-010-0382-6. PubMed DOI
Saunders KO. Conceptual approaches to modulating antibody effector functions and circulation half-life. Front Immunol. 2019;10:1296. doi: 10.3389/fimmu.2019.01296. PubMed DOI PMC
Goulet DR, Atkins WM. Considerations for the design of antibody-based therapeutics. J Pharm Sci. 2020;109(1):74–103. doi: 10.1016/j.xphs.2019.05.031. PubMed DOI PMC
Yednock TA, Cannon C, Fritz LC, et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature. 1992;356(6364):63–6. doi: 10.1038/356063a0. PubMed DOI
Frisullo G, Iorio R, Plantone D, et al. CD4+T-bet+, CD4+pSTAT3+ and CD8+T-bet+ T cells accumulate in peripheral blood during NZB treatment. Mult Scler. 2011;17(5):556–66. doi: 10.1177/1352458510392263. PubMed DOI
Khatri BO, Man S, Giovannoni G, et al. Effect of plasma exchange in accelerating natalizumab clearance and restoring leukocyte function. Neurology. 2009;72(5):402–9. doi: 10.1212/01.wnl.0000341766.59028.9d. PubMed DOI PMC
Muralidharan KK, Kuesters G, Plavina T, et al. Population pharmacokinetics and target engagement of natalizumab in patients with multiple sclerosis. J Clin Pharmacol. 2017;57(8):1017–1030. doi: 10.1002/jcph.894. PubMed DOI
Foley JF, Goelz S, Hoyt T, et al. Evaluation of natalizumab pharmacokinetics and pharmacodynamics with standard and extended interval dosing. Mult Scler Relat Disord. 2019;31:65–71. doi: 10.1016/j.msard.2019.03.017. PubMed DOI
Zhovtis Ryerson L, Li X, Goldberg JD, et al. Pharmacodynamics of natalizumab extended interval dosing in MS. Neurol Neuroimmunol Neuroinflamm. 2020;7(2). PubMed PMC
Serra Lopez-Matencio JM, Perez Garcia Y, Meca-Lallana V, et al. Evaluation of Natalizumab Pharmacokinetics and Pharmacodynamics: Toward Individualized Doses. Front Neurol. 2021;12:716548. PubMed PMC
Polman CH, O'Connor PW, Havrdova E, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006;354(9):899–910. doi: 10.1056/NEJMoa044397. PubMed DOI
Rudick RA, Stuart WH, Calabresi PA, et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med. 2006;354(9):911–23. doi: 10.1056/NEJMoa044396. PubMed DOI
Miller DH, Soon D, Fernando KT, et al. MRI outcomes in a placebo-controlled trial of natalizumab in relapsing MS. Neurology. 2007;68(17):1390–401. doi: 10.1212/01.wnl.0000260064.77700.fd. PubMed DOI
Phillips JT, Giovannoni G, Lublin FD, et al. Sustained improvement in Expanded Disability Status Scale as a new efficacy measure of neurological change in multiple sclerosis: treatment effects with natalizumab in patients with relapsing multiple sclerosis. Mult Scler. 2011;17(8):970–9. doi: 10.1177/1352458511399611. PubMed DOI
Balcer LJ, Galetta SL, Calabresi PA, et al. Natalizumab reduces visual loss in patients with relapsing multiple sclerosis. Neurology. 2007;68(16):1299–304. doi: 10.1212/01.wnl.0000259521.14704.a8. PubMed DOI
Rudick RA, Miller D, Hass S, et al. Health-related quality of life in multiple sclerosis: effects of natalizumab. Ann Neurol. 2007;62(4):335–46. doi: 10.1002/ana.21163. PubMed DOI
Guger M, Enzinger C, Leutmezer F, et al. Long-term outcome and predictors of long-term disease activity in natalizumab-treated patients with multiple sclerosis: real life data from the Austrian MS Treatment Registry. J Neurol. 2021;268(11):4303–4310. doi: 10.1007/s00415-021-10559-w. PubMed DOI PMC
Bloomgren G, Richman S, Hotermans C, et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N Engl J Med. 2012;366(20):1870–80. doi: 10.1056/NEJMoa1107829. PubMed DOI
Ho PR, Koendgen H, Campbell N, et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: a retrospective analysis of data from four clinical studies. Lancet Neurol. 2017;16(11):925–933. doi: 10.1016/S1474-4422(17)30282-X. PubMed DOI
European Medical Agency. Tysabri summary of product characteristics. 2009.
Zhovtis Ryerson L, Frohman TC, Foley J, et al. Extended interval dosing of natalizumab in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2016;87(8):885–9. doi: 10.1136/jnnp-2015-312940. PubMed DOI
Yamout BI, Sahraian MA, Ayoubi NE, et al. Efficacy and safety of natalizumab extended interval dosing. Mult Scler Relat Disord. 2018;24:113–116. doi: 10.1016/j.msard.2018.06.015. PubMed DOI
Foley J, Defer G, Zhovtis Ryerson L, et al. Primary results of NOVA: a randomised controlled study of the efficacy of 6-week dosing of natalizumab versus continued 4-week treatment for multiple sclerosis, in ECTRIMS. 2021: Vienna.
Chang I, Muralidharan KK, Campbell N, et al. Modeling the efficacy of natalizumab in multiple sclerosis patients who switch from every-4-week dosing to extended-interval dosing. J Clin Pharmacol. 2021;61(3):339–348. doi: 10.1002/jcph.1737. PubMed DOI PMC
Clerico M, De Mercanti SF, Signori A, et al. Extending the interval of natalizumab dosing: is efficacy preserved? Neurotherapeutics. 2020;17(1):200–207. doi: 10.1007/s13311-019-00776-7. PubMed DOI PMC
Riancho J, Setien S, Sanchez de la Torre JR, et al. Does extended interval dosing natalizumab preserve effectiveness in multiple sclerosis? A 7 year-retrospective observational study. Front Immunol. 2021;12:614715. PubMed PMC
Tan IL, McArthur JC, Clifford DB, et al. Immune reconstitution inflammatory syndrome in natalizumab-associated PML. Neurology. 2011;77(11):1061–7. doi: 10.1212/WNL.0b013e31822e55e7. PubMed DOI PMC
Wehner NG, Shopp G, Oneda S, et al. Embryo/fetal development in cynomolgus monkeys exposed to natalizumab, an alpha4 integrin inhibitor. Birth Defects Res B Dev Reprod Toxicol. 2009;86(2):117–30. doi: 10.1002/bdrb.20190. PubMed DOI
Wehner NG, Skov M, Shopp G, et al. Effects of natalizumab, an alpha4 integrin inhibitor, on fertility in male and female guinea pigs. Birth Defects Res B Dev Reprod Toxicol. 2009;86(2):108–16. doi: 10.1002/bdrb.20191. PubMed DOI
Wehner NG, Shopp G, Osterburg I, et al. Postnatal development in cynomolgus monkeys following prenatal exposure to natalizumab, an alpha4 integrin inhibitor. Birth Defects Res B Dev Reprod Toxicol. 2009;86(2):144–56. doi: 10.1002/bdrb.20193. PubMed DOI
Rasenack M, Derfuss T. Disease activity return after natalizumab cessation in multiple sclerosis. Expert Rev Neurother. 2016;16(5):587–94. doi: 10.1586/14737175.2016.1168295. PubMed DOI
Confavreux C, Hutchinson M, Hours MM, et al. Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in Multiple Sclerosis Group. N Engl J Med. 1998;339(5):285–91. PubMed
Portaccio E, Ghezzi A, Hakiki B, et al. Postpartum relapses increase the risk of disability progression in multiple sclerosis: the role of disease modifying drugs. J Neurol Neurosurg Psychiatry. 2014;85(8):845–50. doi: 10.1136/jnnp-2013-306054. PubMed DOI
Vukusic S, Hutchinson M, Hours M, et al. Pregnancy and multiple sclerosis (the PRIMS study): clinical predictors of post-partum relapse. Brain. 2004;127(Pt 6):1353–60. doi: 10.1093/brain/awh152. PubMed DOI
Bsteh G, Algrang L, Hegen H, et al. Pregnancy and multiple sclerosis in the DMT era: A cohort study in Western Austria. Mult Scler. 2020;26(1):69–78. doi: 10.1177/1352458518816614. PubMed DOI
Schneider H, Miller RK. Receptor-mediated uptake and transport of macromolecules in the human placenta. Int J Dev Biol. 2010;54(2–3):367–75. doi: 10.1387/ijdb.082773hs. PubMed DOI
Morell A, Skvaril F, van Loghem E, et al. Human IgG subclasses in maternal and fetal serum. Vox Sang. 1971;21(6):481–92. doi: 10.1111/j.1423-0410.1971.tb04808.x. PubMed DOI
Gusdon JP., Jr Fetal and maternal immunoglobulin levels during pregnancy. Am J Obstet Gynecol. 1969;103(7):895–900. doi: 10.1016/S0002-9378(16)34434-9. PubMed DOI
Yeh WZ, Widyastuti PA, Van der Walt A, et al. Natalizumab, Fingolimod and Dimethyl Fumarate Use and Pregnancy-Related Relapse and Disability in Women With Multiple Sclerosis. Neurology. 2021. PubMed PMC
Wiendl H, Gold R, Berger T, et al. Multiple Sclerosis Therapy Consensus Group (MSTCG): position statement on disease-modifying therapies for multiple sclerosis (white paper) Ther Adv Neurol Disord. 2021;14:17562864211039648. doi: 10.1177/17562864211039648. PubMed DOI PMC
Friend S, Richman S, Bloomgren G, et al. Evaluation of pregnancy outcomes from the Tysabri(R) (natalizumab) pregnancy exposure registry: a global, observational, follow-up study. BMC Neurol. 2016;16(1):150. doi: 10.1186/s12883-016-0674-4. PubMed DOI PMC
Guger M, Traxler G, Drabauer M, et al. Pregnancy Outcomes in Patients With Multiple Sclerosis Exposed to Natalizumab-A Retrospective Analysis From the Austrian Multiple Sclerosis Treatment Registry. Front Neurol. 2020;11:676. doi: 10.3389/fneur.2020.00676. PubMed DOI PMC
Haghikia A, Langer-Gould A, Rellensmann G, et al. Natalizumab use during the third trimester of pregnancy. JAMA Neurol. 2014;71(7):891–5. doi: 10.1001/jamaneurol.2014.209. PubMed DOI
Alroughani R, Altintas A, Al Jumah M, et al. Pregnancy and the use of disease-modifying therapies in patients with multiple sclerosis: benefits versus risks. Mult Scler Int. 2016;2016:1034912. PubMed PMC
Vagberg M, Kumlin U, Svenningsson A. Humoral immune response to influenza vaccine in natalizumab-treated MS patients. Neurol Res. 2012;34(7):730–3. doi: 10.1179/1743132812Y.0000000059. PubMed DOI
Olberg HK, Eide GE, Cox RJ, et al. Antibody response to seasonal influenza vaccination in patients with multiple sclerosis receiving immunomodulatory therapy. Eur J Neurol. 2018;25(3):527–534. doi: 10.1111/ene.13537. PubMed DOI
Metze C, Winkelmann A, Loebermann M, et al. Immunogenicity and predictors of response to a single dose trivalent seasonal influenza vaccine in multiple sclerosis patients receiving disease-modifying therapies. CNS Neurosci Ther. 2019;25(2):245–254. doi: 10.1111/cns.13034. PubMed DOI PMC
Kaufman M, Pardo G, Rossman H, et al. Natalizumab treatment shows no clinically meaningful effects on immunization responses in patients with relapsing-remitting multiple sclerosis. J Neurol Sci. 2014;341(1–2):22–7. doi: 10.1016/j.jns.2014.03.035. PubMed DOI
Sormani MP, Inglese M, Schiavetti I, et al. Effect of SARS-CoV-2 mRNA vaccination in MS patients treated with disease modifying therapies. EBioMedicine. 2021;72:103581. PubMed PMC
Al Jumah M, Abulaban A, Aggad H, et al. Managing multiple sclerosis in the Covid19 era: a review of the literature and consensus report from a panel of experts in Saudi Arabia. Mult Scler Relat Disord. 2021;51:102925. PubMed PMC
Bsteh G, Hegen H, Traxler G, et al. Comparing humoral immune response to SARS-CoV2 vaccines in people with multiple sclerosis and healthy controls: An Austrian prospective multicenter cohort study. Eur J Neurol. 2022. PubMed PMC
Buggins AG, Mufti GJ, Salisbury J, et al. Peripheral blood but not tissue dendritic cells express CD52 and are depleted by treatment with alemtuzumab. Blood. 2002;100(5):1715–20. doi: 10.1182/blood.V100.5.1715.h81702001715_1715_1720. PubMed DOI
Hu Y, Turner MJ, Shields J, et al. Investigation of the mechanism of action of alemtuzumab in a human CD52 transgenic mouse model. Immunology. 2009;128(2):260–70. doi: 10.1111/j.1365-2567.2009.03115.x. PubMed DOI PMC
Watanabe T, Masuyama J, Sohma Y, et al. CD52 is a novel costimulatory molecule for induction of CD4+ regulatory T cells. Clin Immunol. 2006;120(3):247–59. doi: 10.1016/j.clim.2006.05.006. PubMed DOI
Lemtrada. Summary of product characteristics: Sanofi Belgium. 2020: Diegem, Belgium.
Bindon CI, Hale G, Waldmann H. Importance of antigen specificity for complement-mediated lysis by monoclonal antibodies. Eur J Immunol. 1988;18(10):1507–14. doi: 10.1002/eji.1830181006. PubMed DOI
Hale C, Bartholomew M, Taylor V, et al. Recognition of CD52 allelic gene products by CAMPATH-1H antibodies. Immunology. 1996;88(2):183–90. doi: 10.1111/j.1365-2567.1996.tb00003.x. PubMed DOI PMC
Hale G, Rebello P, Brettman LR, et al. Blood concentrations of alemtuzumab and antiglobulin responses in patients with chronic lymphocytic leukemia following intravenous or subcutaneous routes of administration. Blood. 2004;104(4):948–55. doi: 10.1182/blood-2004-02-0593. PubMed DOI
Hill-Cawthorne GA, Button T, Tuohy O, et al. Long term lymphocyte reconstitution after alemtuzumab treatment of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2012;83(3):298–304. doi: 10.1136/jnnp-2011-300826. PubMed DOI
Baker D, Herrod SS, Alvarez-Gonzalez C, et al. Interpreting lymphocyte reconstitution data from the pivotal phase 3 trials of alemtuzumab. JAMA Neurol. 2017;74(8):961–969. doi: 10.1001/jamaneurol.2017.0676. PubMed DOI PMC
Kousin-Ezewu O, Azzopardi L, Parker RA, et al. Accelerated lymphocyte recovery after alemtuzumab does not predict multiple sclerosis activity. Neurology. 2014;82(24):2158–64. doi: 10.1212/WNL.0000000000000520. PubMed DOI PMC
Jones JL, Thompson SA, Loh P, et al. Human autoimmunity after lymphocyte depletion is caused by homeostatic T-cell proliferation. Proc Natl Acad Sci U S A. 2013;110(50):20200–5. doi: 10.1073/pnas.1313654110. PubMed DOI PMC
Zhang X, Tao Y, Chopra M, et al. Differential reconstitution of T cell subsets following immunodepleting treatment with alemtuzumab (anti-CD52 monoclonal antibody) in patients with relapsing-remitting multiple sclerosis. J Immunol. 2013;191(12):5867–74. doi: 10.4049/jimmunol.1301926. PubMed DOI
Gross CC, Ahmetspahic D, Ruck T, et al. Alemtuzumab treatment alters circulating innate immune cells in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2016;3(6):e289. PubMed PMC
Cohen JA, Coles AJ, Arnold DL, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet. 2012;380(9856):1819–28. doi: 10.1016/S0140-6736(12)61769-3. PubMed DOI
Coles AJ, Twyman CL, Arnold DL, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012;380(9856):1829–39. doi: 10.1016/S0140-6736(12)61768-1. PubMed DOI
Arnold DL, Fisher E, Brinar VV, et al. Superior MRI outcomes with alemtuzumab compared with subcutaneous interferon beta-1a in MS. Neurology. 2016;87(14):1464–1472. doi: 10.1212/WNL.0000000000003169. PubMed DOI PMC
Coles AJ, Arnold DL, Bass AD, et al. Efficacy and safety of alemtuzumab over 6 years: final results of the 4-year CARE-MS extension trial. Ther Adv Neurol Disord. 2021;14:1756286420982134. doi: 10.1177/1756286420982134. PubMed DOI PMC
Havrdova E, Arnold DL, Cohen JA, et al. Alemtuzumab CARE-MS I 5-year follow-up: Durable efficacy in the absence of continuous MS therapy. Neurology. 2017;89(11):1107–1116. doi: 10.1212/WNL.0000000000004313. PubMed DOI PMC
Coles AJ, Cohen JA, Fox EJ, et al. Alemtuzumab CARE-MS II 5-year follow-up: efficacy and safety findings. Neurology. 2017;89(11):1117–1126. doi: 10.1212/WNL.0000000000004354. PubMed DOI PMC
Ziemssen T, Bass AD, Berkovich R, et al. Efficacy and safety of alemtuzumab through 9 years of follow-up in patients with highly active disease: post hoc analysis of CARE-MS I and II patients in the TOPAZ Extension Study. CNS Drugs. 2020;34(9):973–988. doi: 10.1007/s40263-020-00749-x. PubMed DOI PMC
Chan JK, Hernandez Martinez de Lapiscina E, Taylor C, et al. Long-term stability of neuroaxonal structure in alemtuzumab-treated relapsing-remitting multiple sclerosis patients. J Neuroophthalmol. 2020;40(1):37–43. PubMed
Vavasour IM, Tam R, Li DK, et al. A 24-month advanced magnetic resonance imaging study of multiple sclerosis patients treated with alemtuzumab. Mult Scler. 2019;25(6):811–818. doi: 10.1177/1352458518770085. PubMed DOI
Button T, Altmann D, Tozer D, et al. Magnetization transfer imaging in multiple sclerosis treated with alemtuzumab. Mult Scler. 2013;19(2):241–4. doi: 10.1177/1352458512444915. PubMed DOI
Brown JWL, Prados Carrasco F, Eshaghi A, et al. Periventricular magnetisation transfer ratio abnormalities in multiple sclerosis improve after alemtuzumab. Mult Scler. 2020;26(9):1093–1101. doi: 10.1177/1352458519852093. PubMed DOI
Guarnera C, Bramanti P, Mazzon E. Alemtuzumab: a review of efficacy and risks in the treatment of relapsing remitting multiple sclerosis. Ther Clin Risk Manag. 2017;13:871–879. doi: 10.2147/TCRM.S134398. PubMed DOI PMC
Evan JR, Bozkurt SB, Thomas NC, et al. Alemtuzumab for the treatment of multiple sclerosis. Expert Opin Biol Ther. 2018;18(3):323–334. doi: 10.1080/14712598.2018.1425388. PubMed DOI
Sega-Jazbec S, Barun B, Horvat Ledinek A, et al. Management of infusion related reactions associated with alemtuzumab in patients with multiple sclerosis. Mult Scler Relat Disord. 2017;17:151–153. doi: 10.1016/j.msard.2017.07.019. PubMed DOI
Willis MD, Harding KE, Pickersgill TP, et al. Alemtuzumab for multiple sclerosis: Long term follow-up in a multi-centre cohort. Mult Scler. 2016;22(9):1215–23. doi: 10.1177/1352458515614092. PubMed DOI
Havrdova E, Cohen JA, Horakova D, et al. Understanding the positive benefit:risk profile of alemtuzumab in relapsing multiple sclerosis: perspectives from the Alemtuzumab Clinical Development Program. Ther Clin Risk Manag. 2017;13:1423–1437. doi: 10.2147/TCRM.S143509. PubMed DOI PMC
Wray S, Havrdova E, Snydman DR, et al. Infection risk with alemtuzumab decreases over time: pooled analysis of 6-year data from the CAMMS223, CARE-MS I, and CARE-MS II studies and the CAMMS03409 extension study. Mult Scler. 2019;25(12):1605–1617. doi: 10.1177/1352458518796675. PubMed DOI PMC
Buonomo AR, Zappulo E, Viceconte G, et al. Risk of opportunistic infections in patients treated with alemtuzumab for multiple sclerosis. Expert Opin Drug Saf. 2018;17(7):709–717. doi: 10.1080/14740338.2018.1483330. PubMed DOI
de Noordhout CM, Devleesschauwer B, Angulo FJ, et al. The global burden of listeriosis: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14(11):1073–1082. doi: 10.1016/S1473-3099(14)70870-9. PubMed DOI PMC
Holmoy T, von der Lippe H, Leegaard TM. Listeria monocytogenes infection associated with alemtuzumab - - a case for better preventive strategies. BMC Neurol. 2017;17(1):65. doi: 10.1186/s12883-017-0848-8. PubMed DOI PMC
Hartung HP, Mares J, Barnett MH. Alemtuzumab: Rare serious adverse events of a high-efficacy drug. Mult Scler. 2020;26(6):737–740. doi: 10.1177/1352458520913277. PubMed DOI
Cossburn M, Pace AA, Jones J, et al. Autoimmune disease after alemtuzumab treatment for multiple sclerosis in a multicenter cohort. Neurology. 2011;77(6):573–9. doi: 10.1212/WNL.0b013e318228bec5. PubMed DOI
Jones JL, Phuah CL, Cox AL, et al. IL-21 drives secondary autoimmunity in patients with multiple sclerosis, following therapeutic lymphocyte depletion with alemtuzumab (Campath-1H) J Clin Invest. 2009;119(7):2052–61. PubMed PMC
Rotondi M, Molteni M, Leporati P, et al. Autoimmune thyroid diseases in patients treated with alemtuzumab for multiple sclerosis: an example of selective anti-TSH-receptor immune response. Front Endocrinol (Lausanne) 2017;8:254. doi: 10.3389/fendo.2017.00254. PubMed DOI PMC
Mahzari M, Arnaout A, Freedman MS. Alemtuzumab induced thyroid disease in multiple sclerosis: a review and approach to management. Can J Neurol Sci. 2015;42(5):284–91. doi: 10.1017/cjn.2015.48. PubMed DOI
Berger T, Elovaara I, Fredrikson S, et al. Alemtuzumab use in clinical practice: recommendations from European multiple sclerosis experts. CNS Drugs. 2017;31(1):33–50. doi: 10.1007/s40263-016-0394-8. PubMed DOI PMC
Meltzer E, Campbell S, Ehrenfeld B, et al. Mitigating alemtuzumab-associated autoimmunity in MS: A whack-a-mole B-cell depletion strategy. Neurol Neuroimmunol Neuroinflamm. 2020;7(6). PubMed PMC
Cuker A, Coles AJ, Sullivan H, et al. A distinctive form of immune thrombocytopenia in a phase 2 study of alemtuzumab for the treatment of relapsing-remitting multiple sclerosis. Blood. 2011;118(24):6299–305. doi: 10.1182/blood-2011-08-371138. PubMed DOI
Cuker A, Bass AD, Nadj C, et al. Immune thrombocytopenia in alemtuzumab-treated MS patients: Incidence, detection, and management. Mult Scler. 2020;26(1):48–56. doi: 10.1177/1352458518816612. PubMed DOI PMC
Hartung HP, Aktas O, Boyko AN. Alemtuzumab: a new therapy for active relapsing-remitting multiple sclerosis. Mult Scler. 2015;21(1):22–34. doi: 10.1177/1352458514549398. PubMed DOI PMC
Coles AJ, Jones JL, Vermersch P, et al. Autoimmunity and long-term safety and efficacy of alemtuzumab for multiple sclerosis: Benefit/risk following review of trial and post-marketing data. Mult Scler. 2021:13524585211061335. PubMed PMC
Muraro PA, Scolding NJ, Fox RJ. Rare side effects of alemtuzumab remind us of the need for postmarketing surveillance. Neurology. 2018;90(18):819–820. doi: 10.1212/WNL.0000000000005409. PubMed DOI
Killestein J, van Oosten B. Emerging safety issues in alemtuzumab-treated MS patients. Mult Scler. 2019;25(9):1206–1208. doi: 10.1177/1352458519851219. PubMed DOI PMC
Lenihan DJ, Alencar AJ, Yang D, et al. Cardiac toxicity of alemtuzumab in patients with mycosis fungoides/Sezary syndrome. Blood. 2004;104(3):655–8. doi: 10.1182/blood-2003-07-2345. PubMed DOI
Basquiera AL, Berretta AR, Garcia JJ, et al. Coronary ischemia related to alemtuzumab therapy. Ann Oncol. 2004;15(3):539–40. doi: 10.1093/annonc/mdh114. PubMed DOI
Coles AJ, Wing MG, Molyneux P, et al. Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann Neurol. 1999;46(3):296–304. doi: 10.1002/1531-8249(199909)46:3<296::AID-ANA4>3.0.CO;2-#. PubMed DOI
Moreau T, Coles A, Wing M, et al. Transient increase in symptoms associated with cytokine release in patients with multiple sclerosis. Brain. 1996;119(Pt 1):225–37. doi: 10.1093/brain/119.1.225. PubMed DOI
Ottaviani G, Matturri L, Rossi L, et al. Sudden death due to lymphomatous infiltration of the cardiac conduction system. Cardiovasc Pathol. 2003;12(2):77–81. doi: 10.1016/S1054-8807(02)00168-0. PubMed DOI
Haghikia A, Dendrou CA, Schneider R, et al. Severe B-cell-mediated CNS disease secondary to alemtuzumab therapy. Lancet Neurol. 2017;16(2):104–106. doi: 10.1016/S1474-4422(16)30382-9. PubMed DOI
Wehrum T, Beume LA, Stich O, et al. Activation of disease during therapy with alemtuzumab in 3 patients with multiple sclerosis. Neurology. 2018;90(7):e601–e605. doi: 10.1212/WNL.0000000000004950. PubMed DOI
Barton J, Hardy TA, Riminton S, et al. Tumefactive demyelination following treatment for relapsing multiple sclerosis with alemtuzumab. Neurology. 2017;88(10):1004–1006. doi: 10.1212/WNL.0000000000003694. PubMed DOI
Blasco MR, Ramos A, Malo CG, et al. Acute pneumonitis and pericarditis related to alemtuzumab therapy in relapsing-remitting multiple sclerosis. J Neurol. 2017;264(1):168–169. doi: 10.1007/s00415-016-8306-x. PubMed DOI
Pfeuffer S, Beuker C, Ruck T, et al. Acute cholecystitis during treatment with alemtuzumab in 3 patients with RRMS. Neurology. 2016;87(22):2380–2381. doi: 10.1212/WNL.0000000000003379. PubMed DOI
Sauer EM, Schliep S, Manger B, et al. Microscopic polyangiitis after alemtuzumab treatment in relapsing-remitting MS. Neurol Neuroimmunol Neuroinflamm. 2018;5(5):e488. PubMed PMC
Graf J, Ringelstein M, Lepka K, et al. Acute sarcoidosis in a multiple sclerosis patient after alemtuzumab treatment. Mult Scler. 2018;24(13):1776–1778. doi: 10.1177/1352458518771276. PubMed DOI
Rau D, Lang M, Harth A, et al. Listeria meningitis complicating alemtuzumab treatment in multiple sclerosis–report of two cases. Int J Mol Sci. 2015;16(7):14669–76. doi: 10.3390/ijms160714669. PubMed DOI PMC
Canham LJW, Manara A, Fawcett J, et al. Mortality from Listeria monocytogenes meningoencephalitis following escalation to alemtuzumab therapy for relapsing-remitting Multiple Sclerosis. Mult Scler Relat Disord. 2018;24:38–41. doi: 10.1016/j.msard.2018.05.014. PubMed DOI
Meunier B, Rico A, Seguier J, et al. Life-threatening autoimmune warm hemolytic anemia following treatment for multiple sclerosis with alemtuzumab. Mult Scler. 2018;24(6):811–813. doi: 10.1177/1352458517729766. PubMed DOI
Saarela M, Senthil K, Jones J, et al. Hemophagocytic lymphohistiocytosis in 2 patients with multiple sclerosis treated with alemtuzumab. Neurology. 2018;90(18):849–851. doi: 10.1212/WNL.0000000000005420. PubMed DOI
Brownlee WJ, Chataway J. Opportunistic infections after alemtuzumab: New cases of norcardial infection and cytomegalovirus syndrome. Mult Scler. 2017;23(6):876–877. doi: 10.1177/1352458517693440. PubMed DOI
Clerico M, De Mercanti S, Artusi CA, et al. Active CMV infection in two patients with multiple sclerosis treated with alemtuzumab. Mult Scler. 2017;23(6):874–876. doi: 10.1177/1352458516688350. PubMed DOI
Berker D, Isik S, Ozuguz U, et al. Prevalence of incidental thyroid cancer and its ultrasonographic features in subcentimeter thyroid nodules of patients with hyperthyroidism. Endocrine. 2011;39(1):13–20. doi: 10.1007/s12020-010-9405-6. PubMed DOI
Kaplan TB. Management of demyelinating disorders in pregnancy. Neurol Clin. 2019;37(1):17–30. doi: 10.1016/j.ncl.2018.09.007. PubMed DOI
Oh J, Achiron A, Chambers S, et al. Pregnancy outcomes in patients with RRMS who received alemtuzumab in the clinical development program. Neurology. 2016;86:S24.008.
Oh J, Achiron A, Celius EG, et al. Pregnancy outcomes and postpartum relapse rates in women with RRMS treated with alemtuzumab in the phase 2 and 3 clinical development program over 16 years. Mult Scler Relat Disord. 2020;43:102146. PubMed
Dobson R, Dassan P, Roberts M, et al. UK consensus on pregnancy in multiple sclerosis: Association of British Neurologists guidelines. Pract Neurol. 2019;19(2):106–114. doi: 10.1136/practneurol-2018-002060. PubMed DOI
LEMTRADA (Alemtuzumab) Injection, for Intravenous Use. Full Prescribing Information. [cited 2021 October 25]; Available from: https://products.sanofi.us/Lemtrada/Lemtrada.pdf.
McCarthy CL, Tuohy O, Compston DA, et al. Immune competence after alemtuzumab treatment of multiple sclerosis. Neurology. 2013;81(10):872–6. doi: 10.1212/WNL.0b013e3182a35215. PubMed DOI PMC
Thompson SA, Jones JL, Cox AL, et al. B-cell reconstitution and BAFF after alemtuzumab (Campath-1H) treatment of multiple sclerosis. J Clin Immunol. 2010;30(1):99–105. doi: 10.1007/s10875-009-9327-3. PubMed DOI
Achiron A, Mandel M, Dreyer-Alster S, et al. Humoral immune response in multiple sclerosis patients following PfizerBNT162b2 COVID19 vaccination: up to 6 months cross-sectional study. J Neuroimmunol. 2021;361:577746. PubMed PMC
Greenfield AL, Hauser SL. B-cell therapy for multiple sclerosis: entering an era. Ann Neurol. 2018;83(1):13–26. doi: 10.1002/ana.25119. PubMed DOI PMC
Franks SE, Getahun A, Hogarth PM, et al. Targeting B cells in treatment of autoimmunity. Curr Opin Immunol. 2016;43:39–45. doi: 10.1016/j.coi.2016.09.003. PubMed DOI PMC
Etemadifar M, Salari M, Mirmosayyeb O, et al. Efficacy and safety of rituximab in neuromyelitis optica: Review of evidence. J Res Med Sci. 2017;22:18. doi: 10.4103/1735-1995.200275. PubMed DOI PMC
Salzer J, Svenningsson R, Alping P, et al. Rituximab in multiple sclerosis: a retrospective observational study on safety and efficacy. Neurology. 2016;87(20):2074–2081. doi: 10.1212/WNL.0000000000003331. PubMed DOI PMC
Tandan R, Hehir MK, 2nd, Waheed W, et al. Rituximab treatment of myasthenia gravis: A systematic review. Muscle Nerve. 2017;56(2):185–196. doi: 10.1002/mus.25597. PubMed DOI
Bar-Or A, Calabresi PA, Arnold D, et al. Rituximab in relapsing-remitting multiple sclerosis: a 72-week, open-label, phase I trial. Ann Neurol. 2008;63(3):395–400. doi: 10.1002/ana.21363. PubMed DOI
Ng CM, Bruno R, Combs D, et al. Population pharmacokinetics of rituximab (anti-CD20 monoclonal antibody) in rheumatoid arthritis patients during a phase II clinical trial. J Clin Pharmacol. 2005;45(7):792–801. doi: 10.1177/0091270005277075. PubMed DOI
Tobias Z, Esther D, Niklas S, et al. Rituximab versus mitoxantrone: comparing effectiveness and safety in advanced relapsing multiple sclerosis. Ther Adv Chronic Dis. 2021;12:20406223211024366. PubMed PMC
He A, Merkel B, Brown JWL, et al. Timing of high-efficacy therapy for multiple sclerosis: a retrospective observational cohort study. Lancet Neurol. 2020;19(4):307–316. doi: 10.1016/S1474-4422(20)30067-3. PubMed DOI
Hawker K, O'Connor P, Freedman MS, et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol. 2009;66(4):460–71. doi: 10.1002/ana.21867. PubMed DOI
Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358(7):676–88. doi: 10.1056/NEJMoa0706383. PubMed DOI
Gelfand JM, Cree BAC, Hauser SL. Ocrelizumab and Other CD20(+) B-Cell-Depleting Therapies in Multiple Sclerosis. Neurotherapeutics. 2017;14(4):835–841. doi: 10.1007/s13311-017-0557-4. PubMed DOI PMC
Gottenberg JE, Ravaud P, Bardin T, et al. Risk factors for severe infections in patients with rheumatoid arthritis treated with rituximab in the autoimmunity and rituximab registry. Arthritis Rheum. 2010;62(9):2625–32. doi: 10.1002/art.27555. PubMed DOI
Tallantyre EC, Whittam DH, Jolles S, et al. Secondary antibody deficiency: a complication of anti-CD20 therapy for neuroinflammation. J Neurol. 2018;265(5):1115–1122. doi: 10.1007/s00415-018-8812-0. PubMed DOI PMC
Rissanen E, Remes K, Airas L. Severe neutropenia after rituximab-treatment of multiple sclerosis. Mult Scler Relat Disord. 2018;20:3–5. doi: 10.1016/j.msard.2017.12.005. PubMed DOI
Oshima Y, Tanimoto T, Yuji K, et al. Drug-associated progressive multifocal leukoencephalopathy in multiple sclerosis patients. Mult Scler. 2019;25(8):1141–1149. doi: 10.1177/1352458518786075. PubMed DOI
Mok CC. Rituximab for the treatment of rheumatoid arthritis: an update. Drug Des Devel Ther. 2013;8:87–100. doi: 10.2147/DDDT.S41645. PubMed DOI PMC
Mitka M. FDA: Increased HBV reactivation risk with ofatumumab or rituximab. JAMA. 2013;310(16):1664. doi: 10.1001/jama.2013.281115. PubMed DOI
Alping P, Askling J, Burman J, et al. Cancer risk for fingolimod, natalizumab, and rituximab in multiple sclerosis patients. Ann Neurol. 2020;87(5):688–699. doi: 10.1002/ana.25701. PubMed DOI
Smalls DJ, Kiger RE, Norris LB, et al. Hepatitis B Virus Reactivation: Risk Factors and Current Management Strategies. Pharmacotherapy. 2019;39(12):1190–1203. doi: 10.1002/phar.2340. PubMed DOI PMC
Villadolid J, Laplant KD, Markham MJ, et al. Hepatitis B reactivation and rituximab in the oncology practice. Oncologist. 2010;15(10):1113–21. doi: 10.1634/theoncologist.2010-0106. PubMed DOI PMC
European Medical Agency. Mabthera summary of product characteristics. 2009.
Chakravarty EF, Murray ER, Kelman A, et al. Pregnancy outcomes after maternal exposure to rituximab. Blood. 2011;117(5):1499–506. doi: 10.1182/blood-2010-07-295444. PubMed DOI
Das G, Damotte V, Gelfand JM, et al. Rituximab before and during pregnancy: a systematic review, and a case series in MS and NMOSD. Neurol Neuroimmunol Neuroinflamm. 2018;5(3):e453. PubMed PMC
Klink DT, van Elburg RM, Schreurs MW, et al. Rituximab administration in third trimester of pregnancy suppresses neonatal B-cell development. Clin Dev Immunol. 2008;2008:271363. PubMed PMC
Bragnes Y, Boshuizen R, de Vries A, et al. Low level of Rituximab in human breast milk in a patient treated during lactation. Rheumatology (Oxford) 2017;56(6):1047–1048. doi: 10.1093/rheumatology/kex039. PubMed DOI
Vaidyanathan A, McKeever K, Anand B, et al. Developmental immunotoxicology assessment of rituximab in cynomolgus monkeys. Toxicol Sci. 2011;119(1):116–25. doi: 10.1093/toxsci/kfq316. PubMed DOI
Bingham CO, 3rd, Looney RJ, Deodhar A, et al. Immunization responses in rheumatoid arthritis patients treated with rituximab: results from a controlled clinical trial. Arthritis Rheum. 2010;62(1):64–74. doi: 10.1002/art.25034. PubMed DOI
Kornek B, Leutmezer F, Rommer PS, et al. B Cell Depletion and SARS-CoV-2 Vaccine Responses in Neuroimmunologic Patients. Ann Neurol. 2022. PubMed PMC
Achtnichts L, Jakopp B, Oberle M, et al. Humoral immune response after the third SARS-CoV-2 mRNA vaccination in CD20 depleted people with multiple sclerosis. Vaccines (Basel). 2021;9(12). PubMed PMC
Apostolidis SA, Kakara M, Painter MM, et al. Cellular and humoral immune responses following SARS-CoV-2 mRNA vaccination in patients with multiple sclerosis on anti-CD20 therapy. Nat Med. 2021. PubMed PMC
Brill L, Rechtman A, Zveik O, et al. Humoral and T-cell response to SARS-CoV-2 vaccination in patients with multiple sclerosis treated with ocrelizumab. JAMA Neurol. 2021. PubMed PMC
Moor MB, Suter-Riniker F, Horn MP, et al. Humoral and cellular responses to mRNA vaccines against SARS-CoV-2 in patients with a history of CD20 B-cell-depleting therapy (RituxiVac): an investigator-initiated, single-centre, open-label study. Lancet Rheumatol. 2021;3(11):e789–e797. doi: 10.1016/S2665-9913(21)00251-4. PubMed DOI PMC
Ocrelizumab (Ocrevus) for MS. Med Lett Drugs Ther. 2017;59(1523):98–101. PubMed
Klein C, Lammens A, Schafer W, et al. Epitope interactions of monoclonal antibodies targeting CD20 and their relationship to functional properties. MAbs. 2013;5(1):22–33. doi: 10.4161/mabs.22771. PubMed DOI PMC
Gingele S, Jacobus TL, Konen FF, et al. Ocrelizumab depletes CD20(+) T cells in multiple sclerosis patients. Cells. 2018;8(1). PubMed PMC
European Medical Agency. Ocrevus summary of product characteristics. 2018
Hauser SL, Bar-Or A, Comi G, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376(3):221–234. doi: 10.1056/NEJMoa1601277. PubMed DOI
Havrdova E, Arnold DL, Bar-Or A, et al. No evidence of disease activity (NEDA) analysis by epochs in patients with relapsing multiple sclerosis treated with ocrelizumab vs interferon beta-1a. Mult Scler J Exp Transl Clin. 2018;4(1):2055217318760642. PubMed PMC
Hartung HP; ENSEMBLE Steering Committee members and study investigators. Ocrelizumab shorter infusion: Primary results from the ENSEMBLE PLUS substudy in patients with MS. Neurol Neuroimmunol Neuroinflamm. 2020;7(5):e807. PubMed PMC
van der Kolk LE, Grillo-Lopez AJ, Baars JW, et al. Complement activation plays a key role in the side-effects of rituximab treatment. Br J Haematol. 2001;115(4):807–11. doi: 10.1046/j.1365-2141.2001.03166.x. PubMed DOI
Paul F, Cartron G. Infusion-related reactions to rituximab: frequency, mechanisms and predictors. Expert Rev Clin Immunol. 2019;15(4):383–389. doi: 10.1080/1744666X.2019.1562905. PubMed DOI
Ng HS, Rosenbult CL, Tremlett H. Safety profile of ocrelizumab for the treatment of multiple sclerosis: a systematic review. Expert Opin Drug Saf. 2020;19(9):1069–1094. doi: 10.1080/14740338.2020.1807002. PubMed DOI
Hauser SL, Kappos L, Montalban X, et al. Safety of ocrelizumab in patients with relapsing and primary progressive multiple sclerosis. Neurology. 2021;97(16):e1546–e1559. doi: 10.1212/WNL.0000000000012700. PubMed DOI PMC
Hauser S, Kappos L, Montalban X, et al. Safety of ocrelizumab in multiple sclerosis: updated analysis in patients with relapsing and primary progressive multiple sclerosis, in ECTRIMS. 2021:Vienna. PubMed PMC
Hauser SL, Kappos L, Arnold DL, et al. Five years of ocrelizumab in relapsing multiple sclerosis: OPERA studies open-label extension. Neurology. 2020;95(13):e1854–e1867. doi: 10.1212/WNL.0000000000010376. PubMed DOI PMC
Patel A, Sul J, Gordon ML, et al. Progressive Multifocal Leukoencephalopathy in a Patient With Progressive Multiple Sclerosis Treated With Ocrelizumab Monotherapy. JAMA Neurol. 2021;78(6):736–740. doi: 10.1001/jamaneurol.2021.0627. PubMed DOI PMC
Ciplea AI, Langer-Gould A, de Vries A, et al. Monoclonal antibody treatment during pregnancy and/or lactation in women with MS or neuromyelitis optica spectrum disorder. Neurol Neuroimmunol Neuroinflamm. 2020;7(4). PubMed PMC
Bar-Or A, Calkwood JC, Chognot C, et al. Effect of ocrelizumab on vaccine responses in patients with multiple sclerosis: The VELOCE study. Neurology. 2020;95(14):e1999–e2008. doi: 10.1212/WNL.0000000000010380. PubMed DOI PMC
Guerrieri S, Lazzarin S, Zanetta C, et al. Serological response to SARS-CoV-2 vaccination in multiple sclerosis patients treated with fingolimod or ocrelizumab: an initial real-life experience. J Neurol. 2022;269(1):39-43. PubMed PMC
Disanto G, Sacco R, Bernasconi E, et al. Association of disease-modifying treatment and anti-CD20 infusion timing with humoral response to 2 SARS-CoV-2 vaccines in patients with multiple sclerosis. JAMA Neurol. 2021. PubMed PMC
Rolfes L, Pawlitzki M, Pfeuffer S, et al. Ocrelizumab extended interval dosing in multiple sclerosis in times of COVID-19. Neurol Neuroimmunol Neuroinflamm. 2021;8(5). PubMed PMC
Pompsch M, Fisenkci N, Horn PA, et al. Evidence of extensive cellular immune response after SARS-CoV-2 vaccination in ocrelizumab-treated patients with multiple sclerosis. Neurol Res Pract. 2021;3(1):60. doi: 10.1186/s42466-021-00158-5. PubMed DOI PMC
Iannetta M, Landi D, Cola G, et al. B- and T-cell responses after SARS-CoV-2 vaccination in patients with multiple sclerosis receiving disease modifying therapies: immunological patterns and clinical implications. Front Immunol. 2021;12:796482. PubMed PMC
Novak F, Nilsson AC, Nielsen C, et al. Humoral immune response following SARS-CoV-2 mRNA vaccination concomitant to anti-CD20 therapy in multiple sclerosis. Mult Scler Relat Disord. 2021;56:103251. PubMed PMC
Samjoo IA, Worthington E, Drudge C, et al. Comparison of ofatumumab and other disease-modifying therapies for relapsing multiple sclerosis: a network meta-analysis. J Comp Eff Res. 2020;9(18):1255–1274. doi: 10.2217/cer-2020-0122. PubMed DOI
Masoud S, McAdoo SP, Bedi R, et al. Ofatumumab for B cell depletion in patients with systemic lupus erythematosus who are allergic to rituximab. Rheumatology (Oxford) 2018;57(7):1156–1161. doi: 10.1093/rheumatology/key042. PubMed DOI
Babiker HM, Glode AE, Cooke LS, et al. Ublituximab for the treatment of CD20 positive B-cell malignancies. Expert Opin Investig Drugs. 2018;27(4):407–412. doi: 10.1080/13543784.2018.1459560. PubMed DOI
European Medical Agency. Kesimpta summary of product characteristics. 2021.
Smith P, Huck C, Schmid C, et al. Ofatumumab differs from rituximab by effectively targeting lymph node B cells and achieving faster post-treatment repletion (S24.003). Neurology. 2017;88(16 Supplement):S24.003.
Hauser SL, Bar-Or A, Cohen JA, et al. Ofatumumab versus teriflunomide in multiple sclerosis. N Engl J Med. 2020;383(6):546–557. doi: 10.1056/NEJMoa1917246. PubMed DOI
Bellot M, Bagger M, Horvat C, et al. Effect of ofatumumab on pregnancy, parturition and lactation in cynomolgus monkeys (2265). Neurology. 2021;96. PubMed
Pregnancy Outcomes. 2021 [cited 2021 27 October]; Available from: https://www.ofatumumabinfo.com/en/pregnancy.
LaHue SC, Anderson A, Krysko KM, et al. Transfer of monoclonal antibodies into breastmilk in neurologic and non-neurologic diseases. Neurol Neuroimmunol Neuroinflamm. 2020;7(4). PubMed PMC
Krysko KM, LaHue SC, Anderson A, et al. Minimal breast milk transfer of rituximab, a monoclonal antibody used in neurological conditions. Neurol Neuroimmunol Neuroinflamm. 2020;7(1). PubMed PMC
Le Garff-Tavernier M, Herbi L, de Romeuf C, et al. Antibody-dependent cellular cytotoxicity of the optimized anti-CD20 monoclonal antibody ublituximab on chronic lymphocytic leukemia cells with the 17p deletion. Leukemia. 2014;28(1):230–3. doi: 10.1038/leu.2013.240. PubMed DOI
Sharman JP, Farber CM, Mahadevan D, et al. Ublituximab (TG-1101), a novel glycoengineered anti-CD20 antibody, in combination with ibrutinib is safe and highly active in patients with relapsed and/or refractory chronic lymphocytic leukaemia: results of a phase 2 trial. Br J Haematol. 2017;176(3):412–420. doi: 10.1111/bjh.14447. PubMed DOI PMC
Sawas A, Farber CM, Schreeder MT, et al. A phase 1/2 trial of ublituximab, a novel anti-CD20 monoclonal antibody, in patients with B-cell non-Hodgkin lymphoma or chronic lymphocytic leukaemia previously exposed to rituximab. Br J Haematol. 2017;177(2):243–253. doi: 10.1111/bjh.14534. PubMed DOI PMC
Fox E, Lovett-Racke AE, Gormley M, et al. A phase 2 multicenter study of ublituximab, a novel glycoengineered anti-CD20 monoclonal antibody, in patients with relapsing forms of multiple sclerosis. Mult Scler. 2021;27(3):420–429. doi: 10.1177/1352458520918375. PubMed DOI PMC
Steinman L, Fox E, Hartung HP, et al. Phase 3 results of the ULTIMATE I & II global studies: ublituximab versus teriflunomide in relapsing multiple sclerosis, in ECTRIMS. 2021: Vienna.
Steinman L, Alvarez E, Fox E, et al. Ublituximab is associated with significant improvement in the multiple sclerosis functional composite (MSFC): results from the Phase 3 ULTIMATE I & II studies, in ECTRIMS. 2021: Vienna.