• This record comes from PubMed

The influence of Holliday junction sequence and dynamics on DNA crystal self-assembly

. 2022 Jun 03 ; 13 (1) : 3112. [epub] 20220603

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S., Research Support, N.I.H., Extramural

Grant support
Howard Hughes Medical Institute - United States
P30 GM124169 NIGMS NIH HHS - United States
P41 GM111244 NIGMS NIH HHS - United States

Links

PubMed 35662248
PubMed Central PMC9166708
DOI 10.1038/s41467-022-30779-6
PII: 10.1038/s41467-022-30779-6
Knihovny.cz E-resources

The programmable synthesis of rationally engineered crystal architectures for the precise arrangement of molecular species is a foundational goal in nanotechnology, and DNA has become one of the most prominent molecules for the construction of these materials. In particular, branched DNA junctions have been used as the central building block for the assembly of 3D lattices. Here, crystallography is used to probe the effect of all 36 immobile Holliday junction sequences on self-assembling DNA crystals. Contrary to the established paradigm in the field, most junctions yield crystals, with some enhancing the resolution or resulting in unique crystal symmetries. Unexpectedly, even the sequence adjacent to the junction has a significant effect on the crystal assemblies. Six of the immobile junction sequences are completely resistant to crystallization and thus deemed "fatal," and molecular dynamics simulations reveal that these junctions invariably lack two discrete ion binding sites that are pivotal for crystal formation. The structures and dynamics detailed here could be used to inform future designs of both crystals and DNA nanostructures more broadly, and have potential implications for the molecular engineering of applied nanoelectronics, nanophotonics, and catalysis within the crystalline context.

See more in PubMed

Seeman NC. Nucleic-acid junctions and lattices. J. Theor. Biol. 1982;99:237–247. doi: 10.1016/0022-5193(82)90002-9. PubMed DOI

Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature. 1996;382:607–609. doi: 10.1038/382607a0. PubMed DOI

Alivisatos AP, et al. Organization of ‘nanocrystal molecules’ using DNA. Nature. 1996;382:609–611. doi: 10.1038/382609a0. PubMed DOI

Seeman NC, Gang O. Three-dimensional molecular and nanoparticle crystallization by DNA nanotechnology. Mrs Bull. 2017;42:904–912. doi: 10.1557/mrs.2017.280. DOI

Laramy CR, O’Brien MN, Mirkin CA. Crystal engineering with DNA. Nat. Rev. Mater. 2019;4:201–224. doi: 10.1038/s41578-019-0087-2. DOI

Park SY, et al. DNA-programmable nanoparticle crystallization. Nature. 2008;451:553–556. doi: 10.1038/nature06508. PubMed DOI

Nykypanchuk D, Maye MM, van der Lelie D, Gang O. DNA-guided crystallization of colloidal nanoparticles. Nature. 2008;451:549–552. doi: 10.1038/nature06560. PubMed DOI

Laramy CR, et al. Controlled symmetry breaking in colloidal crystal engineering with DNA. ACS Nano. 2019;13:1412–1420. PubMed

Rothemund PWK. Folding DNA to create nanoscale shapes and patterns. Nature. 2006;440:297–302. doi: 10.1038/nature04586. PubMed DOI

Majewski Pawel, W. et al. Resilient three-dimensional ordered architectures assembled from nanoparticles by DNA. Sci. Adv.7, eabf0617 (2021). PubMed PMC

Tian Y, et al. Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels. Nat. Mater. 2020;19:789–796. doi: 10.1038/s41563-019-0550-x. PubMed DOI

Zhang, T. et al. 3D DNA Origami Crystals. Adv. Mater.30, 10.1002/adma.201800273 (2018). PubMed

Zheng JP, et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature. 2009;461:74–77. doi: 10.1038/nature08274. PubMed DOI PMC

Hao YD, et al. A device that operates within a self-assembled 3D DNA crystal. Nat. Chem. 2017;9:824–827. doi: 10.1038/nchem.2745. PubMed DOI

Simmons CR, et al. Construction and structure determination of a three-dimensional DNA Crystal (vol 138, pg 10047, 2016) J. Am. Chem. Soc. 2016;138:12690–12690. doi: 10.1021/jacs.6b09106. PubMed DOI

Simmons CR, et al. Tuning the cavity size and chirality of self-assembling 3D DNA crystals. J. Am. Chem. Soc. 2017;139:11254–11260. doi: 10.1021/jacs.7b06485. PubMed DOI

Zhang F, Simmons CR, Gates J, Liu Y, Yan H. Self-assembly of a 3D DNA crystal structure with rationally designed six-fold symmetry. Angew. Chem.-Int. Ed. 2018;57:12504–12507. doi: 10.1002/anie.201807223. PubMed DOI

Simmons CR, et al. A self-assembled rhombohedral DNA crystal scaffold with tunable cavity sizes and high-resolution structural detail. Angew. Chem. Int. Ed. 2020;59:18619–18626. doi: 10.1002/anie.202005505. PubMed DOI

Holliday R. A mechanism for gene conversion in fungi (reprinted) Genet. Res. 2007;89:285–307. doi: 10.1017/S0016672308009476. PubMed DOI

Eichman BF, Vargason JM, Mooers BHM, Ho PS. The Holliday junction in an inverted repeat DNA sequence: sequence effects on the structure of four-way junctions. Proc. Natl Acad. Sci. USA. 2000;97:3971–3976. doi: 10.1073/pnas.97.8.3971. PubMed DOI PMC

Ho PS. Structure of the Holliday junction: applications beyond recombination. Biochem. Soc. Trans. 2017;45:1149–1158. doi: 10.1042/BST20170048. PubMed DOI

Shida T, Iwasaki H, Shinagawa H, Kyogoku Y. Characterization and comparison of synthetic immobile and mobile Holliday junctions. J. Biochem. 1996;119:653–658. doi: 10.1093/oxfordjournals.jbchem.a021292. PubMed DOI

Yadav RK, Yadava U. Molecular dynamics simulation of hydrated d(CGGGTACCCG)(4) as a four-way DNA Holliday junction and comparison with the crystallographic structure. Mol. Simul. 2016;42:25–30. doi: 10.1080/08927022.2015.1007052. DOI

Starr FW, et al. Holliday junction thermodynamics and structure: comparisons of coarse-grained simulations and experiments. Biophys. J. 2016;110:178A–178A. doi: 10.1016/j.bpj.2015.11.992. PubMed DOI PMC

McKinney SA, Declais AC, Lilley DMJ, Ha T. Structural dynamics of individual Holliday junctions. Nat. Struct. Biol. 2003;10:93–97. doi: 10.1038/nsb883. PubMed DOI

Weiss S. Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nat. Struct. Biol. 2000;7:724–729. doi: 10.1038/78941. PubMed DOI

Clegg RM, et al. Fluorescence resonance energy-transfer analysis of the structure of the 4-way DNA junction. Biochemistry. 1992;31:4846–4856. doi: 10.1021/bi00135a016. PubMed DOI

Yu J, Ha TJ, Schulten K. Conformational model of the Holliday junction transition deduced from molecular dynamics simulations. Nucleic Acids Res. 2004;32:6683–6695. doi: 10.1093/nar/gkh1006. PubMed DOI PMC

Eis PS, Millar DP. Conformational distributions of a 4-way DNA junction revealed by time-resolved fluorescence resonance energy-transfer. Biochemistry. 1993;32:13852–13860. doi: 10.1021/bi00213a014. PubMed DOI

Pinheiro AV, Han DR, Shih WM, Yan H. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 2011;6:763–772. doi: 10.1038/nnano.2011.187. PubMed DOI PMC

Hsieh, P. & Panyutin, I. G. In Nucleic Acids and Molecular Biology (eds Eckstein, F. & Lilley, D. M. J.) 42–65 (Springer Berlin Heidelberg, 1995).

Seeman NC, Kallenbach NR. DNA branched junctions. Annu. Rev. Biophys. Biomol. Struct. 1994;23:53–86. doi: 10.1146/annurev.bb.23.060194.000413. PubMed DOI

Holliday R. Molecular aspects of genetic exchange and gene conversion. Genetics. 1974;78:273–287. doi: 10.1093/genetics/78.1.273. PubMed DOI PMC

Zhang SW, Fu TJ, Seeman NC. Symmetrical immobile dna branched junctions. Biochemistry. 1993;32:8062–8067. doi: 10.1021/bi00083a002. PubMed DOI

Ma RI, Kallenbach NR, Sheardy RD, Petrillo ML, Seeman NC. Three-arm nucleic acid junctions are flexible. Nucleic Acids Res. 1986;14:9745–9753. doi: 10.1093/nar/14.24.9745. PubMed DOI PMC

Wang X, Seeman NC. Assembly and characterization of 8-arm and 12-arm DNA branched junctions. J. Am. Chem. Soc. 2007;129:8169–8176. doi: 10.1021/ja0693441. PubMed DOI PMC

Wang YL, Mueller JE, Kemper B, Seeman NC. Assembly and characterization of five-arm and six-arm DNA branched junctions. Biochemistry. 1991;30:5667–5674. doi: 10.1021/bi00237a005. PubMed DOI

Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science. 2003;301:1882–1884. doi: 10.1126/science.1089389. PubMed DOI

He Y, Tian Y, Ribbe AE, Mao CD. Highly connected two-dimensional crystals of DNA six-point-stars. J. Am. Chem. Soc. 2006;128:15978–15979. doi: 10.1021/ja0665141. PubMed DOI

Hong F, et al. Layered-crossover tiles with precisely tunable angles for 2D and 3D DNA crystal engineering. J. Am. Chem. Soc. 2018;140:14670–14676. doi: 10.1021/jacs.8b07180. PubMed DOI

He Y, Chen Y, Liu H, Ribbe AE, Mao C. Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J. Am. Chem. Soc. 2005;127:12202–12203. doi: 10.1021/ja0541938. PubMed DOI

Kallenbach NR, Ma RI, Seeman NC. An immobile nucleic-acid junction constructed from oligonucleotides. Nature. 1983;305:829–831. doi: 10.1038/305829a0. DOI

Seeman NC, Kallenbach NR. Design of immobile nucleic-acid junctions. Biophys. J. 1983;44:201–209. doi: 10.1016/S0006-3495(83)84292-1. PubMed DOI PMC

Srinivasan AR, Olson WK. Computer models of DNA four-way junctions. Biochem. (Easton) 1994;33:9389–9404. doi: 10.1021/bi00198a004. PubMed DOI

von Kitzing E, Lilley DMJ, Diekmann S. The stereochemistry of a four-way DNA junction: a theoretical study. Nucleic Acids Res. 1990;18:2671–2683. doi: 10.1093/nar/18.9.2671. PubMed DOI PMC

Wood AA, Nunn CM, Trent JO, Neidle S. Sequence-dependent crossed helix packing in the crystal structure of a B-DNA decamer yields a detailed model for the Holliday junction. J. Mol. Biol. 1997;269:827–841. doi: 10.1006/jmbi.1997.1089. PubMed DOI

Goodsell DS, Grzeskowiak K, Dickerson RE. Crystal Structure of C-T-C-T-C-G-A-G-A-G. Implications for the Structure of the Holliday junction. Biochem. (Easton) 1995;34:1022–1029. doi: 10.1021/bi00003a037. PubMed DOI

Litke, J. L., Li, Y., Nocka, L. M. & Mukerji, I. Probing the ion binding site in a DNA Holliday junction using Förster resonance energy transfer (FRET). Int. J. Mol. Sci.17, 10.3390/ijms17030366 (2016). PubMed PMC

Várnai P, Timsit Y. Differential stability of DNA crossovers in solution mediated by divalent cations. Nucleic Acids Res. 2010;38:4163–4172. doi: 10.1093/nar/gkq150. PubMed DOI PMC

Duckett DR, Murchie AI, Lilley DM. The role of metal ions in the conformation of the four-way DNA junction. EMBO J. 1990;9:583–590. doi: 10.1002/j.1460-2075.1990.tb08146.x. PubMed DOI PMC

Møllegaard NE, Murchie AI, Lilley DM, Nielsen PE. Uranyl photoprobing of a four-way DNA junction: evidence for specific metal ion binding. EMBO J. 1994;13:1508–1513. doi: 10.1002/j.1460-2075.1994.tb06412.x. PubMed DOI PMC

Lu X-J, Bussemaker HJ, Olson WK. DSSR: an integrated software tool for dissecting the spatial structure of RNA. Nucleic Acids Res. 2015;43:e142–e142. doi: 10.1093/nar/gkv541. PubMed DOI PMC

Wang W, et al. Holliday junction thermodynamics and structure: coarse-grained simulations and experiments. Sci. Rep. 2016;6:22863. doi: 10.1038/srep22863. PubMed DOI PMC

Yadav RK, Yadava U. Molecular dynamics simulation of hydrated d(CGGGTACCCG)4 as a four-way DNA Holliday junction and comparison with the crystallographic structure. Mol. Simul. 2016;42:25–30. doi: 10.1080/08927022.2015.1007052. DOI

Yoo J, Aksimentiev A. In situ structure and dynamics of DNA Origami determined through molecular dynamics simulations. Proc. Natl Acad. Sci. USA. 2013;110:20099–20104. doi: 10.1073/pnas.1316521110. PubMed DOI PMC

Watson J, Hays FA, Ho PS. Definitions and analysis of DNA Holliday junction geometry. Nucleic Acids Res. 2004;32:3017–3027. doi: 10.1093/nar/gkh631. PubMed DOI PMC

Ledvina PS, Yao N, Choudhary A, Quiocho FA. Negative electrostatic surface potential of protein sites specific for anionic ligands. Proc. Natl Acad. Sci. USA. 1996;93:6786. doi: 10.1073/pnas.93.13.6786. PubMed DOI PMC

Auffinger P, Bielecki L, Westhof E. Anion binding to nucleic acids. Structure. 2004;12:379–388. doi: 10.1016/j.str.2004.02.015. PubMed DOI

Trausch JJ, Marcano-Velázquez JG, Matyjasik MM, Batey RT. Metal ion-mediated nucleobase recognition by the ZTP riboswitch. Chem. Biol. 2015;22:829–837. doi: 10.1016/j.chembiol.2015.06.007. PubMed DOI PMC

Valls N, Richter M, Subirana JA. Structure of a DNA duplex with all-AT base pairs. Acta Crystallogr. Sect. D. 2005;61:1587–1593. doi: 10.1107/S0907444905029781. PubMed DOI

Šponer J, et al. RNA structural dynamics as captured by molecular simulations: a comprehensive overview. Chem. Rev. 2018;118:4177–4338. doi: 10.1021/acs.chemrev.7b00427. PubMed DOI PMC

Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Macromol. Crystallogr., Pt A. 1997;276:307–326. doi: 10.1016/S0076-6879(97)76066-X. PubMed DOI

McCoy AJ, et al. Phaser crystallographic software. J. Appl. Crystallogr. 2007;40:658–674. doi: 10.1107/S0021889807021206. PubMed DOI PMC

Adams PD, et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. Sect. D.-Biol. Crystallogr. 2002;58:1948–1954. doi: 10.1107/S0907444902016657. PubMed DOI

Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. Sect. D.-Struct. Biol. 1997;53:240–255. doi: 10.1107/S0907444996012255. PubMed DOI

Bailey S. The CCP4 suite - programs for protein crystallography. Acta Crystallogr. Sect. D.-Biol. Crystallogr. 1994;50:760–763. doi: 10.1107/S0907444993011898. PubMed DOI

Schrödinger, L. & DeLano, W. PyMOL (2020).

Case, D. A. et al. AMBER18 (University of California, San Francisco, 2018).

Zgarbová M, et al. Refinement of the sugar–phosphate backbone torsion beta for AMBER force fields improves the description of Z- and B-DNA. J. Chem. Theory Comput. 2015;11:5723–5736. doi: 10.1021/acs.jctc.5b00716. PubMed DOI

Ivani I, et al. Parmbsc1: a refined force field for DNA simulations. Nat. Methods. 2016;13:55–58. doi: 10.1038/nmeth.3658. PubMed DOI PMC

Liebl K, Zacharias M. Tumuc1: a new accurate DNA force field consistent with high-level quantum chemistry. J. Chem. Theory Comput. 2021;17:7096–7105. doi: 10.1021/acs.jctc.1c00682. PubMed DOI

Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J. Phys. Chem. 1987;91:6269–6271. doi: 10.1021/j100308a038. DOI

Joung IS, Cheatham TE. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008;112:9020–9041. doi: 10.1021/jp8001614. PubMed DOI PMC

Le Grand S, Götz AW, Walker RC. SPFP: speed without compromise—a mixed precision model for gpu accelerated molecular dynamics simulations. Comput. Phys. Commun. 2013;184:374–380. doi: 10.1016/j.cpc.2012.09.022. DOI

Krepl M, et al. An intricate balance of hydrogen bonding, ion atmosphere and dynamics facilitates a seamless uracil to cytosine substitution in the U-turn of the neomycin-sensing riboswitch. Nucleic Acids Res. 2018;46:6528–6543. doi: 10.1093/nar/gky490. PubMed DOI PMC

Roe DR, Cheatham TE. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013;9:3084–3095. doi: 10.1021/ct400341p. PubMed DOI

Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...