The influence of Holliday junction sequence and dynamics on DNA crystal self-assembly
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S., Research Support, N.I.H., Extramural
Grant support
Howard Hughes Medical Institute - United States
P30 GM124169
NIGMS NIH HHS - United States
P41 GM111244
NIGMS NIH HHS - United States
PubMed
35662248
PubMed Central
PMC9166708
DOI
10.1038/s41467-022-30779-6
PII: 10.1038/s41467-022-30779-6
Knihovny.cz E-resources
- MeSH
- DNA chemistry MeSH
- Nucleic Acid Conformation MeSH
- DNA, Cruciform * genetics MeSH
- Crystallization MeSH
- Nanostructures * chemistry MeSH
- Nanotechnology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- DNA MeSH
- DNA, Cruciform * MeSH
The programmable synthesis of rationally engineered crystal architectures for the precise arrangement of molecular species is a foundational goal in nanotechnology, and DNA has become one of the most prominent molecules for the construction of these materials. In particular, branched DNA junctions have been used as the central building block for the assembly of 3D lattices. Here, crystallography is used to probe the effect of all 36 immobile Holliday junction sequences on self-assembling DNA crystals. Contrary to the established paradigm in the field, most junctions yield crystals, with some enhancing the resolution or resulting in unique crystal symmetries. Unexpectedly, even the sequence adjacent to the junction has a significant effect on the crystal assemblies. Six of the immobile junction sequences are completely resistant to crystallization and thus deemed "fatal," and molecular dynamics simulations reveal that these junctions invariably lack two discrete ion binding sites that are pivotal for crystal formation. The structures and dynamics detailed here could be used to inform future designs of both crystals and DNA nanostructures more broadly, and have potential implications for the molecular engineering of applied nanoelectronics, nanophotonics, and catalysis within the crystalline context.
See more in PubMed
Seeman NC. Nucleic-acid junctions and lattices. J. Theor. Biol. 1982;99:237–247. doi: 10.1016/0022-5193(82)90002-9. PubMed DOI
Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature. 1996;382:607–609. doi: 10.1038/382607a0. PubMed DOI
Alivisatos AP, et al. Organization of ‘nanocrystal molecules’ using DNA. Nature. 1996;382:609–611. doi: 10.1038/382609a0. PubMed DOI
Seeman NC, Gang O. Three-dimensional molecular and nanoparticle crystallization by DNA nanotechnology. Mrs Bull. 2017;42:904–912. doi: 10.1557/mrs.2017.280. DOI
Laramy CR, O’Brien MN, Mirkin CA. Crystal engineering with DNA. Nat. Rev. Mater. 2019;4:201–224. doi: 10.1038/s41578-019-0087-2. DOI
Park SY, et al. DNA-programmable nanoparticle crystallization. Nature. 2008;451:553–556. doi: 10.1038/nature06508. PubMed DOI
Nykypanchuk D, Maye MM, van der Lelie D, Gang O. DNA-guided crystallization of colloidal nanoparticles. Nature. 2008;451:549–552. doi: 10.1038/nature06560. PubMed DOI
Laramy CR, et al. Controlled symmetry breaking in colloidal crystal engineering with DNA. ACS Nano. 2019;13:1412–1420. PubMed
Rothemund PWK. Folding DNA to create nanoscale shapes and patterns. Nature. 2006;440:297–302. doi: 10.1038/nature04586. PubMed DOI
Majewski Pawel, W. et al. Resilient three-dimensional ordered architectures assembled from nanoparticles by DNA. Sci. Adv.7, eabf0617 (2021). PubMed PMC
Tian Y, et al. Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels. Nat. Mater. 2020;19:789–796. doi: 10.1038/s41563-019-0550-x. PubMed DOI
Zhang, T. et al. 3D DNA Origami Crystals. Adv. Mater.30, 10.1002/adma.201800273 (2018). PubMed
Zheng JP, et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature. 2009;461:74–77. doi: 10.1038/nature08274. PubMed DOI PMC
Hao YD, et al. A device that operates within a self-assembled 3D DNA crystal. Nat. Chem. 2017;9:824–827. doi: 10.1038/nchem.2745. PubMed DOI
Simmons CR, et al. Construction and structure determination of a three-dimensional DNA Crystal (vol 138, pg 10047, 2016) J. Am. Chem. Soc. 2016;138:12690–12690. doi: 10.1021/jacs.6b09106. PubMed DOI
Simmons CR, et al. Tuning the cavity size and chirality of self-assembling 3D DNA crystals. J. Am. Chem. Soc. 2017;139:11254–11260. doi: 10.1021/jacs.7b06485. PubMed DOI
Zhang F, Simmons CR, Gates J, Liu Y, Yan H. Self-assembly of a 3D DNA crystal structure with rationally designed six-fold symmetry. Angew. Chem.-Int. Ed. 2018;57:12504–12507. doi: 10.1002/anie.201807223. PubMed DOI
Simmons CR, et al. A self-assembled rhombohedral DNA crystal scaffold with tunable cavity sizes and high-resolution structural detail. Angew. Chem. Int. Ed. 2020;59:18619–18626. doi: 10.1002/anie.202005505. PubMed DOI
Holliday R. A mechanism for gene conversion in fungi (reprinted) Genet. Res. 2007;89:285–307. doi: 10.1017/S0016672308009476. PubMed DOI
Eichman BF, Vargason JM, Mooers BHM, Ho PS. The Holliday junction in an inverted repeat DNA sequence: sequence effects on the structure of four-way junctions. Proc. Natl Acad. Sci. USA. 2000;97:3971–3976. doi: 10.1073/pnas.97.8.3971. PubMed DOI PMC
Ho PS. Structure of the Holliday junction: applications beyond recombination. Biochem. Soc. Trans. 2017;45:1149–1158. doi: 10.1042/BST20170048. PubMed DOI
Shida T, Iwasaki H, Shinagawa H, Kyogoku Y. Characterization and comparison of synthetic immobile and mobile Holliday junctions. J. Biochem. 1996;119:653–658. doi: 10.1093/oxfordjournals.jbchem.a021292. PubMed DOI
Yadav RK, Yadava U. Molecular dynamics simulation of hydrated d(CGGGTACCCG)(4) as a four-way DNA Holliday junction and comparison with the crystallographic structure. Mol. Simul. 2016;42:25–30. doi: 10.1080/08927022.2015.1007052. DOI
Starr FW, et al. Holliday junction thermodynamics and structure: comparisons of coarse-grained simulations and experiments. Biophys. J. 2016;110:178A–178A. doi: 10.1016/j.bpj.2015.11.992. PubMed DOI PMC
McKinney SA, Declais AC, Lilley DMJ, Ha T. Structural dynamics of individual Holliday junctions. Nat. Struct. Biol. 2003;10:93–97. doi: 10.1038/nsb883. PubMed DOI
Weiss S. Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nat. Struct. Biol. 2000;7:724–729. doi: 10.1038/78941. PubMed DOI
Clegg RM, et al. Fluorescence resonance energy-transfer analysis of the structure of the 4-way DNA junction. Biochemistry. 1992;31:4846–4856. doi: 10.1021/bi00135a016. PubMed DOI
Yu J, Ha TJ, Schulten K. Conformational model of the Holliday junction transition deduced from molecular dynamics simulations. Nucleic Acids Res. 2004;32:6683–6695. doi: 10.1093/nar/gkh1006. PubMed DOI PMC
Eis PS, Millar DP. Conformational distributions of a 4-way DNA junction revealed by time-resolved fluorescence resonance energy-transfer. Biochemistry. 1993;32:13852–13860. doi: 10.1021/bi00213a014. PubMed DOI
Pinheiro AV, Han DR, Shih WM, Yan H. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 2011;6:763–772. doi: 10.1038/nnano.2011.187. PubMed DOI PMC
Hsieh, P. & Panyutin, I. G. In Nucleic Acids and Molecular Biology (eds Eckstein, F. & Lilley, D. M. J.) 42–65 (Springer Berlin Heidelberg, 1995).
Seeman NC, Kallenbach NR. DNA branched junctions. Annu. Rev. Biophys. Biomol. Struct. 1994;23:53–86. doi: 10.1146/annurev.bb.23.060194.000413. PubMed DOI
Holliday R. Molecular aspects of genetic exchange and gene conversion. Genetics. 1974;78:273–287. doi: 10.1093/genetics/78.1.273. PubMed DOI PMC
Zhang SW, Fu TJ, Seeman NC. Symmetrical immobile dna branched junctions. Biochemistry. 1993;32:8062–8067. doi: 10.1021/bi00083a002. PubMed DOI
Ma RI, Kallenbach NR, Sheardy RD, Petrillo ML, Seeman NC. Three-arm nucleic acid junctions are flexible. Nucleic Acids Res. 1986;14:9745–9753. doi: 10.1093/nar/14.24.9745. PubMed DOI PMC
Wang X, Seeman NC. Assembly and characterization of 8-arm and 12-arm DNA branched junctions. J. Am. Chem. Soc. 2007;129:8169–8176. doi: 10.1021/ja0693441. PubMed DOI PMC
Wang YL, Mueller JE, Kemper B, Seeman NC. Assembly and characterization of five-arm and six-arm DNA branched junctions. Biochemistry. 1991;30:5667–5674. doi: 10.1021/bi00237a005. PubMed DOI
Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science. 2003;301:1882–1884. doi: 10.1126/science.1089389. PubMed DOI
He Y, Tian Y, Ribbe AE, Mao CD. Highly connected two-dimensional crystals of DNA six-point-stars. J. Am. Chem. Soc. 2006;128:15978–15979. doi: 10.1021/ja0665141. PubMed DOI
Hong F, et al. Layered-crossover tiles with precisely tunable angles for 2D and 3D DNA crystal engineering. J. Am. Chem. Soc. 2018;140:14670–14676. doi: 10.1021/jacs.8b07180. PubMed DOI
He Y, Chen Y, Liu H, Ribbe AE, Mao C. Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J. Am. Chem. Soc. 2005;127:12202–12203. doi: 10.1021/ja0541938. PubMed DOI
Kallenbach NR, Ma RI, Seeman NC. An immobile nucleic-acid junction constructed from oligonucleotides. Nature. 1983;305:829–831. doi: 10.1038/305829a0. DOI
Seeman NC, Kallenbach NR. Design of immobile nucleic-acid junctions. Biophys. J. 1983;44:201–209. doi: 10.1016/S0006-3495(83)84292-1. PubMed DOI PMC
Srinivasan AR, Olson WK. Computer models of DNA four-way junctions. Biochem. (Easton) 1994;33:9389–9404. doi: 10.1021/bi00198a004. PubMed DOI
von Kitzing E, Lilley DMJ, Diekmann S. The stereochemistry of a four-way DNA junction: a theoretical study. Nucleic Acids Res. 1990;18:2671–2683. doi: 10.1093/nar/18.9.2671. PubMed DOI PMC
Wood AA, Nunn CM, Trent JO, Neidle S. Sequence-dependent crossed helix packing in the crystal structure of a B-DNA decamer yields a detailed model for the Holliday junction. J. Mol. Biol. 1997;269:827–841. doi: 10.1006/jmbi.1997.1089. PubMed DOI
Goodsell DS, Grzeskowiak K, Dickerson RE. Crystal Structure of C-T-C-T-C-G-A-G-A-G. Implications for the Structure of the Holliday junction. Biochem. (Easton) 1995;34:1022–1029. doi: 10.1021/bi00003a037. PubMed DOI
Litke, J. L., Li, Y., Nocka, L. M. & Mukerji, I. Probing the ion binding site in a DNA Holliday junction using Förster resonance energy transfer (FRET). Int. J. Mol. Sci.17, 10.3390/ijms17030366 (2016). PubMed PMC
Várnai P, Timsit Y. Differential stability of DNA crossovers in solution mediated by divalent cations. Nucleic Acids Res. 2010;38:4163–4172. doi: 10.1093/nar/gkq150. PubMed DOI PMC
Duckett DR, Murchie AI, Lilley DM. The role of metal ions in the conformation of the four-way DNA junction. EMBO J. 1990;9:583–590. doi: 10.1002/j.1460-2075.1990.tb08146.x. PubMed DOI PMC
Møllegaard NE, Murchie AI, Lilley DM, Nielsen PE. Uranyl photoprobing of a four-way DNA junction: evidence for specific metal ion binding. EMBO J. 1994;13:1508–1513. doi: 10.1002/j.1460-2075.1994.tb06412.x. PubMed DOI PMC
Lu X-J, Bussemaker HJ, Olson WK. DSSR: an integrated software tool for dissecting the spatial structure of RNA. Nucleic Acids Res. 2015;43:e142–e142. doi: 10.1093/nar/gkv541. PubMed DOI PMC
Wang W, et al. Holliday junction thermodynamics and structure: coarse-grained simulations and experiments. Sci. Rep. 2016;6:22863. doi: 10.1038/srep22863. PubMed DOI PMC
Yadav RK, Yadava U. Molecular dynamics simulation of hydrated d(CGGGTACCCG)4 as a four-way DNA Holliday junction and comparison with the crystallographic structure. Mol. Simul. 2016;42:25–30. doi: 10.1080/08927022.2015.1007052. DOI
Yoo J, Aksimentiev A. In situ structure and dynamics of DNA Origami determined through molecular dynamics simulations. Proc. Natl Acad. Sci. USA. 2013;110:20099–20104. doi: 10.1073/pnas.1316521110. PubMed DOI PMC
Watson J, Hays FA, Ho PS. Definitions and analysis of DNA Holliday junction geometry. Nucleic Acids Res. 2004;32:3017–3027. doi: 10.1093/nar/gkh631. PubMed DOI PMC
Ledvina PS, Yao N, Choudhary A, Quiocho FA. Negative electrostatic surface potential of protein sites specific for anionic ligands. Proc. Natl Acad. Sci. USA. 1996;93:6786. doi: 10.1073/pnas.93.13.6786. PubMed DOI PMC
Auffinger P, Bielecki L, Westhof E. Anion binding to nucleic acids. Structure. 2004;12:379–388. doi: 10.1016/j.str.2004.02.015. PubMed DOI
Trausch JJ, Marcano-Velázquez JG, Matyjasik MM, Batey RT. Metal ion-mediated nucleobase recognition by the ZTP riboswitch. Chem. Biol. 2015;22:829–837. doi: 10.1016/j.chembiol.2015.06.007. PubMed DOI PMC
Valls N, Richter M, Subirana JA. Structure of a DNA duplex with all-AT base pairs. Acta Crystallogr. Sect. D. 2005;61:1587–1593. doi: 10.1107/S0907444905029781. PubMed DOI
Šponer J, et al. RNA structural dynamics as captured by molecular simulations: a comprehensive overview. Chem. Rev. 2018;118:4177–4338. doi: 10.1021/acs.chemrev.7b00427. PubMed DOI PMC
Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Macromol. Crystallogr., Pt A. 1997;276:307–326. doi: 10.1016/S0076-6879(97)76066-X. PubMed DOI
McCoy AJ, et al. Phaser crystallographic software. J. Appl. Crystallogr. 2007;40:658–674. doi: 10.1107/S0021889807021206. PubMed DOI PMC
Adams PD, et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. Sect. D.-Biol. Crystallogr. 2002;58:1948–1954. doi: 10.1107/S0907444902016657. PubMed DOI
Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. Sect. D.-Struct. Biol. 1997;53:240–255. doi: 10.1107/S0907444996012255. PubMed DOI
Bailey S. The CCP4 suite - programs for protein crystallography. Acta Crystallogr. Sect. D.-Biol. Crystallogr. 1994;50:760–763. doi: 10.1107/S0907444993011898. PubMed DOI
Schrödinger, L. & DeLano, W. PyMOL (2020).
Case, D. A. et al. AMBER18 (University of California, San Francisco, 2018).
Zgarbová M, et al. Refinement of the sugar–phosphate backbone torsion beta for AMBER force fields improves the description of Z- and B-DNA. J. Chem. Theory Comput. 2015;11:5723–5736. doi: 10.1021/acs.jctc.5b00716. PubMed DOI
Ivani I, et al. Parmbsc1: a refined force field for DNA simulations. Nat. Methods. 2016;13:55–58. doi: 10.1038/nmeth.3658. PubMed DOI PMC
Liebl K, Zacharias M. Tumuc1: a new accurate DNA force field consistent with high-level quantum chemistry. J. Chem. Theory Comput. 2021;17:7096–7105. doi: 10.1021/acs.jctc.1c00682. PubMed DOI
Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J. Phys. Chem. 1987;91:6269–6271. doi: 10.1021/j100308a038. DOI
Joung IS, Cheatham TE. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008;112:9020–9041. doi: 10.1021/jp8001614. PubMed DOI PMC
Le Grand S, Götz AW, Walker RC. SPFP: speed without compromise—a mixed precision model for gpu accelerated molecular dynamics simulations. Comput. Phys. Commun. 2013;184:374–380. doi: 10.1016/j.cpc.2012.09.022. DOI
Krepl M, et al. An intricate balance of hydrogen bonding, ion atmosphere and dynamics facilitates a seamless uracil to cytosine substitution in the U-turn of the neomycin-sensing riboswitch. Nucleic Acids Res. 2018;46:6528–6543. doi: 10.1093/nar/gky490. PubMed DOI PMC
Roe DR, Cheatham TE. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013;9:3084–3095. doi: 10.1021/ct400341p. PubMed DOI
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Assessing the Current State of Amber Force Field Modifications for DNA─2023 Edition