Pulse Oximeter Performance during Rapid Desaturation
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
SGS20/202/OHK4/3T/17
Czech Technical University in Prague
PubMed
35684858
PubMed Central
PMC9185462
DOI
10.3390/s22114236
PII: s22114236
Knihovny.cz E-resources
- Keywords
- avalanche victim, hypoxemia, outdoor experiments, oxygen saturation, pulse oximetry, safety limits,
- MeSH
- Hypoxia diagnosis MeSH
- Oxygen * MeSH
- Humans MeSH
- Monitoring, Physiologic MeSH
- Oximetry * MeSH
- Reproducibility of Results MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Oxygen * MeSH
The reliability of pulse oximetry is crucial, especially in cases of rapid changes in body oxygenation. In order to evaluate the performance of pulse oximeters during rapidly developing short periods of concurrent hypoxemia and hypercapnia, 13 healthy volunteers underwent 3 breathing phases during outdoor experiments (39 phases in total), monitored simultaneously by five different pulse oximeters. A significant incongruity in values displayed by the tested pulse oximeters was observed, even when the accuracy declared by the manufacturers were considered. In 28.2% of breathing phases, the five used devices did not show any congruent values. The longest uninterrupted congruent period formed 74.4% of total recorded time. Moreover, the congruent periods were rarely observed during the critical desaturation phase of the experiment. The time difference between the moments when the first and the last pulse oximeter showed the typical study endpoint values of SpO2 85% and 75% was 32.1 ± 23.6 s and 24.7 ± 19.3 s, respectively. These results suggest that SpO2 might not be a reliable parameter as a study endpoint, or more importantly as a safety limit in outdoor experiments. In the design of future studies, more parameters and continuous clinical assessment should be included.
See more in PubMed
Jensen L.A., Onyskiw J.E., Prasad N. Meta-analysis of arterial oxygen saturation monitoring by pulse oximetry in adults. Heart Lung. 1998;27:387–408. doi: 10.1016/S0147-9563(98)90086-3. PubMed DOI
Dünnwald T., Kienast R., Niederseer D., Burtscher M. The Use of Pulse Oximetry in the Assessment of Acclimatization to High Altitude. Sensors. 2021;21:1263. doi: 10.3390/s21041263. PubMed DOI PMC
Griesdale D.E., Bosma T.L., Kurth T., Isac G., Chittock D.R. Complications of endotracheal intubation in the critically ill. Intensive Care Med. 2008;34:1835–1842. doi: 10.1007/s00134-008-1205-6. PubMed DOI
Ehrenfeld J.M., Funk L.M., Van Schalkwyk J., Merry A.F., Sandberg W.S., Gawande A. The incidence of hypoxemia during surgery: Evidence from two institutions. Can. J. Anesth. 2010;57:888–897. doi: 10.1007/s12630-010-9366-5. PubMed DOI PMC
De Jong A., Rolle A., Molinari N., Paugam-Burtz C., Constantin J.-M., Lefrant J.-Y., Asehnoune K., Jung B., Futier E., Chanques G. Cardiac arrest and mortality related to intubation procedure in critically ill adult patients: A multicenter cohort study. Crit. Care Med. 2018;46:532–539. doi: 10.1097/CCM.0000000000002925. PubMed DOI
Baillard C., Boubaya M., Statescu E., Collet M., Solis A., Guezennec J., Levy V., Langeron O. Incidence and risk factors of hypoxaemia after preoxygenation at induction of anaesthesia. Br. J. Anaesth. 2019;122:388–394. doi: 10.1016/j.bja.2018.11.022. PubMed DOI
Hansel J., Solleder I., Gfroerer W., Muth C.M., Paulat K., Simon P., Heitkamp H.-C., Niess A., Tetzlaff K. Hypoxia and cardiac arrhythmias in breath-hold divers during voluntary immersed breath-holds. Eur. J. Appl. Physiol. 2009;105:673–678. doi: 10.1007/s00421-008-0945-x. PubMed DOI
Brugger H., Sumann G., Meister R., Adler-Kastner L., Mair P., Gunga H., Schobersberger W., Falk M. Hypoxia and hypercapnia during respiration into an artificial air pocket in snow: Implications for avalanche survival. Resuscitation. 2003;58:81–88. doi: 10.1016/S0300-9572(03)00113-8. PubMed DOI
Strapazzon G., Paal P., Schweizer J., Falk M., Reuter B., Schenk K., Gatterer H., Grasegger K., Dal Cappello T., Malacrida S. Effects of snow properties on humans breathing into an artificial air pocket–an experimental field study. Sci. Rep. 2017;7:17675. doi: 10.1038/s41598-017-17960-4. PubMed DOI PMC
Strapazzon G., Gatterer H., Falla M., Dal Cappello T., Malacrida S., Turner R., Schenk K., Paal P., Falk M., Schweizer J., et al. Hypoxia and hypercapnia effects on cerebral oxygen saturation in avalanche burial: A pilot human experimental study. Resuscitation. 2021;158:175–182. doi: 10.1016/j.resuscitation.2020.11.023. PubMed DOI
Grissom C.K., Radwin M.I., Harmston C.H., Hirshberg E.L., Crowley T.J. Respiration during snow burial using an artificial air pocket. JAMA. 2000;283:2266–2271. doi: 10.1001/jama.283.17.2266. PubMed DOI
Radwin M.I., Grissom C.K., Scholand M.B., Harmston C.H. Normal oxygenation and ventilation during snow burial by the exclusion of exhaled carbon dioxide. Wilderness Environ. Med. 2001;12:256–262. doi: 10.1580/1080-6032(2001)012[0256:NOAVDS]2.0.CO;2. PubMed DOI
McIntosh S.E., Little C.E., Seibert T.D., Polukoff N.E., Grissom C.K. Avalanche airbag post-burial active deflation—The ability to create an air pocket to delay asphyxiation and prolong survival. Resuscitation. 2020;146:155–160. doi: 10.1016/j.resuscitation.2019.11.023. PubMed DOI
Roubik K., Sieger L., Sykora K. Work of breathing into snow in the presence versus absence of an artificial air pocket affects hypoxia and hypercapnia of a victim covered with avalanche snow: A randomized double blind crossover study. PLoS ONE. 2015;10:e0144332. doi: 10.1371/journal.pone.0144332. PubMed DOI PMC
Wik L., Brattebø G., Østerås Ø., Assmus J., Irusta U., Aramendi E., Mydske S., Skaalhegg T., Skaiaa S.C., Thomassen Ø. Physiological effects of providing supplemental air for avalanche victims. A randomised trial. Resuscitation. 2022;172:38–46. doi: 10.1016/j.resuscitation.2022.01.007. PubMed DOI
Roubik K., Filip J. Reliability and source of errors in end-tidal gas concentration evaluation algorithms during avalanche snow and rebreathing experiments. Lek. A Tech. Clin. Technol. 2017;47:73–80.
Horakova L., Roubik K. Performance of Different Pulse Oximeters Can Affect the Duration of Field Breathing Experiments; Proceedings of the 2019 E-Health and Bioengineering Conference, EHB; Iasi, Romania. 21–23 November 2019; pp. 1–4.
Horakova L., Sykora K., Sieger L., Roubik K. Breathing Experiments into the Simulated Avalanche Snow: Medical and Technical Issues of the Outdoor Breathing Trials. In: Lhotska L., Sukupova L., Lacković I., Ibbott G., editors. Proceedings of the World Congress on Medical Physics and Biomedical Engineering 2018, IFMBE Proceedings; Prague, Czech Republic. 3–8 June 2018; Singapore: Springer; 2019. pp. 711–717.
Trivedi N.S., Ghouri A.F., Shah N.K., Lai E., Barker S.J. Pulse oximeter performance during desaturation and resaturation: A comparison of seven models. J. Clin. Anesth. 1997;9:184–188. doi: 10.1016/S0952-8180(97)00037-8. PubMed DOI
Roubik K., Sykora K., Sieger L., Ort V., Horakova L., Walzel S. Perlite is a suitable model material for experiments investigating breathing in high density snow. Sci. Rep. 2022;12:2070. doi: 10.1038/s41598-022-06015-y. PubMed DOI PMC
General Electric Company . Technical Reference Manual. General Electric Company; Madison, MI, USA: 2006. Datex Ohmeda S/5 Compact Anesthesia Monitor.
GE Healthcare . Carescape Monitors B850 and B650 User’s Manual. GE Healthcare; Milwaukee, WI, USA: 2013.
Edan USA . M3B Vital Signs Monitor User Manual, Version 1.6. EDAN Instruments; San Diego, CA, USA: 2012.
Masimo . Radical-7 Operator’s Manual. Masimo; Irvine, CA, USA: 2012.
Nonin . Operator’s Manual. Nonin Medical Inc.; Plymouth, MN, USA: 2014. Model 2500 PalmSAT.
Roubik K., Walzel S., Horakova L., Refalo A., Sykora K., Ort V., Sieger L. Materials suitable to simulate snow during breathing experiments for avalanche survival research. Lek. A Tech. Clin. Technol. 2020;50:32–39. doi: 10.14311/CTJ.2020.1.05. DOI
Nitzan M., Romem A., Koppel R. Pulse oximetry: Fundamentals and technology update. Med. Devices. 2014;7:231–239. doi: 10.2147/MDER.S47319. PubMed DOI PMC
International Organization for Standardization . Medical Electrical Equipment—Part 2-61: Particular Requirements for Basic Safety and Essential Performance of Pulse Oximeter Equipment ISO 80601-2-61:2017. CEN-CENELEC Management Centre; Brussels, Belgium: 2019.
Vagedes J., Bialkowski A., Wiechers C., Poets C.F., Dietz K. A conversion formula for comparing pulse oximeter desaturation rates obtained with different averaging times. PLoS ONE. 2014;9:e87280. PubMed PMC
McClure C., Jang S.Y., Fairchild K. Alarms, oxygen saturations, and SpO2 averaging time in the NICU. J. Neonatal. Perinat. Med. 2016;9:357–362. doi: 10.3233/NPM-16162. PubMed DOI PMC
Goldman J.M., Petterson M.T., Kopotic R.J., Barker S.J. Masimo signal extraction pulse oximetry. J. Clin. Monit. Comput. 2000;16:475–483. doi: 10.1023/A:1011493521730. PubMed DOI
Jubran A. Pulse oximetry. Crit. Care. 2015;19:272. doi: 10.1186/s13054-015-0984-8. PubMed DOI PMC
Horakova L., Kudrna P., Roubik K. 2021 International Conference on e-Health and Bioengineering (EHB) IEEE; Piscataway, NJ, USA: 2021. Dynamic changes of perfusion index during hypoxemia and hypercapnia in outdoor experiments; pp. 1–6.
Lawless S.T. Crying wolf: False alarms in a pediatric intensive care unit. Crit. Care Med. 1994;22:981–985. doi: 10.1097/00003246-199406000-00017. PubMed DOI
Chambrin M.-C., Ravaux P., Calvelo-Aros D., Jaborska A., Chopin C., Boniface B. Multicentric study of monitoring alarms in the adult intensive care unit (ICU): A descriptive analysis. Intensive Care Med. 1999;25:1360–1366. doi: 10.1007/s001340051082. PubMed DOI
Taylor M., Whitwam J. The accuracy of pulse oximeters: A comparative clinical evaluation of five pulse oximeters. Anaesthesia. 1988;43:229–232. doi: 10.1111/j.1365-2044.1988.tb05549.x. PubMed DOI
Barker S.J. “Motion-resistant” pulse oximetry: A comparison of new and old models. Anesth. Analg. 2002;95:967–972. PubMed
Robertson F.A., Hoffman G.M. Clinical evaluation of the effects of signal integrity and saturation on data availability and accuracy of Masimo SET® and Nellcor N-395 oximeters in children. Anesth. Analg. 2004;98:617–622. doi: 10.1213/01.ANE.0000101601.43781.15. PubMed DOI
Van de Louw A., Cracco C., Cerf C., Harf A., Duvaldestin P., Lemaire F., Brochard L. Accuracy of pulse oximetry in the intensive care unit. Intensive Care Med. 2001;27:1606–1613. doi: 10.1007/s001340101064. PubMed DOI
Nitzan M., Nitzan I., Arieli Y. The Various Oximetric Techniques Used for the Evaluation of Blood Oxygenation. Sensors. 2020;20:4844. doi: 10.3390/s20174844. PubMed DOI PMC
Jubran A. Pulse oximetry. In: Tobin M.J., editor. Principles and Practice of Intensive Care Monitoring. McGraw-Hill; New York, NY, USA: 1998. pp. 261–289.
Johnston E.D., Boyle B., Juszczak E., King A., Brocklehurst P., Stenson B.J. Oxygen targeting in preterm infants using the Masimo SET Radical pulse oximeter. Arch. Dis. Child. Fetal Neonatal Ed. 2011;96:F429–F433. doi: 10.1136/adc.2010.206011. PubMed DOI PMC
Ross P.A., Newth C.J., Khemani R.G. Accuracy of pulse oximetry in children. Pediatrics. 2014;133:22–29. doi: 10.1542/peds.2013-1760. PubMed DOI
Bachman T.E., Newth C.J., Ross P.A., Iyer N.P., Khemani R.G. Characterization of the bias between oxygen saturation measured by pulse oximetry and calculated by an arterial blood gas analyzer in critically ill neonates. Lek. A Tech. Clin. Technol. 2017;47:130–134.
Ikeda K., MacLeod D.B., Grocott H.P., Moretti E.W., Ames W., Vacchiano C. The accuracy of a near-infrared spectroscopy cerebral oximetry device and its potential value for estimating jugular venous oxygen saturation. Anesth. Analg. 2014;119:1381–1392. doi: 10.1213/ANE.0000000000000463. PubMed DOI PMC
Gehring H., Hornberger C., Hornberger H., Schmucker P. The effects of motion artifact and low perfusion on the performance of a new generation of pulse oximeters in volunteers undergoing hypoxemia. Respir. Care. 2002;47:48–60. PubMed
Yamaya Y., Bogaard H.J., Wagner P.D., Niizeki K., Hopkins S.R. Validity of pulse oximetry during maximal exercise in normoxia, hypoxia, and hyperoxia. J. Appl. Physiol. 2002;92:162–168. doi: 10.1152/japplphysiol.00409.2001. PubMed DOI
Ricart A., Pages T., Viscor G., Leal C., Ventura J.L. Sex-linked differences in pulse oxymetry. Br. J. Sports Med. 2008;42:620–621. doi: 10.1136/bjsm.2007.038653. PubMed DOI