Crystal structure of SARS-CoV-2 nsp10-nsp16 in complex with small molecule inhibitors, SS148 and WZ16
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
P30 CA008748
NCI NIH HHS - United States
R35 GM131858
NIGMS NIH HHS - United States
PubMed
36040262
PubMed Central
PMC9375521
DOI
10.1002/pro.4395
Knihovny.cz E-resources
- Keywords
- COVID-19, SARS-CoV-2, SS148, WZ16, nsp10, nsp16,
- MeSH
- COVID-19 Drug Treatment * MeSH
- Humans MeSH
- Methyltransferases chemistry MeSH
- RNA, Viral metabolism MeSH
- SARS-CoV-2 * MeSH
- Viral Nonstructural Proteins chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Methyltransferases MeSH
- RNA, Viral MeSH
- Viral Nonstructural Proteins MeSH
SARS-CoV-2 nsp10-nsp16 complex is a 2'-O-methyltransferase (MTase) involved in viral RNA capping, enabling the virus to evade the immune system in humans. It has been considered a valuable target in the discovery of antiviral therapeutics, as the RNA cap formation is crucial for viral propagation. Through cross-screening of the inhibitors that we previously reported for SARS-CoV-2 nsp14 MTase activity against nsp10-nsp16 complex, we identified two compounds (SS148 and WZ16) that also inhibited nsp16 MTase activity. To further enable the chemical optimization of these two compounds towards more potent and selective dual nsp14/nsp16 MTase inhibitors, we determined the crystal structure of nsp10-nsp16 in complex with each of SS148 and WZ16. As expected, the structures revealed the binding of both compounds to S-adenosyl-L-methionine (SAM) binding pocket of nsp16. However, our structural data along with the biochemical mechanism of action determination revealed an RNA-dependent SAM-competitive pattern of inhibition for WZ16, clearly suggesting that binding of the RNA first may help the binding of some SAM competitive inhibitors. Both compounds also showed some degree of selectivity against human protein MTases, an indication of great potential for chemical optimization towards more potent and selective inhibitors of coronavirus MTases.
Chemical Biology Program Memorial Sloan Kettering Cancer Center New York New York USA
Department of Pharmacology and Toxicology University of Toronto Toronto Ontario Canada
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague 6 Czech Republic
Program of Pharmacology Weill Cornell Medical College of Cornell University New York New York USA
Structural Genomics Consortium University of Toronto Toronto Ontario Canada
See more in PubMed
Horova V, Landova B, Hodek J, et al. Localization of SARS‐CoV‐2 capping enzymes revealed by an antibody against the nsp10 subunit. Viruses. 2021;13(8):1487–1497. PubMed PMC
Nencka R, Silhan J, Klima M, et al. Coronaviral RNA‐methyltransferases: Function, structure and inhibition. Nucleic Acids Res. 2022;50(2):635–650. PubMed PMC
Eckerle LD, Becker MM, Halpin RA, et al. Infidelity of SARS‐CoV Nsp14‐exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog. 2010;6(5):e1000896. PubMed PMC
Bouvet M, Imbert I, Subissi L, Gluais L, Canard B, Decroly E. RNA 3′‐end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. Proc Natl Acad Sci U S A. 2012;109(24):9372–9377. PubMed PMC
Feder M, Pas J, Wyrwicz LS, Bujnicki JM. Molecular phylogenetics of the RrmJ/fibrillarin superfamily of ribose 2'‐O‐methyltransferases. Gene. 2003;302(1–2):129–138. PubMed
Zust R, Cervantes‐Barragan L, Habjan M, et al. Ribose 2'‐O‐methylation provides a molecular signature for the distinction of self and non‐self mRNA dependent on the RNA sensor Mda5. Nat Immunol. 2011;12(2):137–143. PubMed PMC
Devkota K, Schapira M, Perveen S, et al. Probing the SAM binding site of SARS‐CoV‐2 Nsp14 in vitro using SAM competitive inhibitors guides developing selective Bisubstrate inhibitors. SLAS Discov. 2021;26(9):1200–1211. PubMed PMC
Perveen S, Khalili Yazdi A, Devkota K, et al. A high‐throughput RNA displacement assay for screening SARS‐CoV‐2 nsp10‐nsp16 complex toward developing therapeutics for COVID‐19. SLAS Discov. 2021;26(5):620–627. PubMed PMC
Khalili Yazdi A, Li F, Devkota K, et al. A high‐throughput radioactivity‐based assay for screening SARS‐CoV‐2 nsp10‐nsp16 complex. SLAS Discov. 2021;26(6):757–765. PubMed PMC
Otava T, Sala M, Li F, et al. The structure‐based design of SARS‐CoV‐2 nsp14 methyltransferase ligands yields Nanomolar inhibitors. ACS Infect Dis. 2021;7(8):2214–2220. PubMed
Chen Y, Guo D. Molecular mechanisms of coronavirus RNA capping and methylation. Virol Sin. 2016;31(1):3–11. PubMed PMC
Decroly E, Ferron F, Lescar J, Canard B. Conventional and unconventional mechanisms for capping viral mRNA. Nat Rev Microbiol. 2011;10(1):51–65. PubMed PMC
Bujnicki JM, Rychlewski L. Reassignment of specificities of two cap methyltransferase domains in the reovirus lambda 2 protein. Genome Biol. 2001;2(9):RESEARCH0038. PubMed PMC
Egloff MP, Benarroch D, Selisko B, Romette JL, Canard B. An RNA cap (nucleoside‐2'‐O‐)‐methyltransferase in the flavivirus RNA polymerase NS5: Crystal structure and functional characterization. EMBO J. 2002;21(11):2757–2768. PubMed PMC
Bouvet M, Debarnot C, Imbert I, et al. In vitro reconstitution of SARS‐coronavirus mRNA cap methylation. PLoS Pathog. 2010;6(4):e1000863. PubMed PMC
Decroly E, Debarnot C, Ferron F, et al. Crystal structure and functional analysis of the SARS‐coronavirus RNA cap 2'‐O‐methyltransferase nsp10/nsp16 complex. PLoS Pathog. 2011;7(5):e1002059. PubMed PMC
Chen Y, Su C, Ke M, et al. Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2'‐O‐methylation by nsp16/nsp10 protein complex. PLoS Pathog. 2011;7(10):e1002294. PubMed PMC
Benoni R, Krafcikova P, Baranowski MR, Kowalska J, Boura E, Cahova H. Substrate specificity of SARS‐CoV‐2 Nsp10‐Nsp16 Methyltransferase. Viruses. 2021;13(9):1722. PubMed PMC
Aouadi W, Blanjoie A, Vasseur JJ, Debart F, Canard B, Decroly E. Binding of the methyl donor S‐adenosyl‐l‐methionine to Middle East respiratory syndrome coronavirus 2'‐O‐Methyltransferase nsp16 promotes recruitment of the allosteric activator nsp10. J Virol. 2017;91(5):e02217‐16. PubMed PMC
Rosas‐Lemus M, Minasov G, Shuvalova L, et al. High‐resolution structures of the SARS‐CoV‐2 2'‐O‐methyltransferase reveal strategies for structure‐based inhibitor design. Sci Signal. 2020;13(651):eabe1202. PubMed PMC
Joseph JS, Saikatendu KS, Subramanian V, et al. Crystal structure of nonstructural protein 10 from the severe acute respiratory syndrome coronavirus reveals a novel fold with two zinc‐binding motifs. J Virol. 2006;80(16):7894–7901. PubMed PMC
Matthes N, Mesters JR, Coutard B, et al. The non‐structural protein Nsp10 of mouse hepatitis virus binds zinc ions and nucleic acids. FEBS Lett. 2006;580(17):4143–4149. PubMed PMC
Lugari A, Betzi S, Decroly E, et al. Molecular mapping of the RNA cap 2'‐O‐methyltransferase activation interface between severe acute respiratory syndrome coronavirus nsp10 and nsp16. J Biol Chem. 2010;285(43):33230–33241. PubMed PMC
Dostalik P, Krafcikova P, Silhan J, et al. Structural analysis of the OC43 coronavirus 2'‐O‐RNA Methyltransferase. J Virol. 2021;95(15):e0046321. PubMed PMC
Lin S, Chen H, Ye F, et al. Crystal structure of SARS‐CoV‐2 nsp10/nsp16 2'‐O‐methylase and its implication on antiviral drug design. Signal Transduct Target Ther. 2020;5(1):131. PubMed PMC
Krafcikova P, Silhan J, Nencka R, Boura E. Structural analysis of the SARS‐CoV‐2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nat Commun. 2020;11(1):3717. PubMed PMC
Viswanathan T, Arya S, Chan SH, et al. Structural basis of RNA cap modification by SARS‐CoV‐2. Nat Commun. 2020;11(1):3718. PubMed PMC
Hudecek O, Benoni R, Reyes‐Gutierrez PE, et al. Dinucleoside polyphosphates act as 5'‐RNA caps in bacteria. Nat Commun. 2020;11(1):1052. PubMed PMC
Copeland RA. Evaluation of enzyme inhibitors in drug discovery. John Wiley & Sons, Inc., New Jersey, USA: 2005.
Barsyte‐Lovejoy D, Li F, Oudhoff MJ, et al. (R)‐PFI‐2 is a potent and selective inhibitor of SETD7 methyltransferase activity in cells. Proc Natl Acad Sci U S A. 2014;111(35):12853–12858. PubMed PMC
Scheer S, Ackloo S, Medina TS, et al. A chemical biology toolbox to study protein methyltransferases and epigenetic signaling. Nat Commun. 2019;10(1):19. PubMed PMC
Talukdar A, Mukherjee A, Bhattacharya D. Fascinating transformation of SAM‐competitive protein Methyltransferase inhibitors from nucleoside analogues to non‐nucleoside analogues. J Med Chem. 2022;65(3):1662–1684. PubMed
Bobileva O, Bobrovs R, Kanepe I, et al. Potent SARS‐CoV‐2 mRNA cap Methyltransferase inhibitors by Bioisosteric replacement of methionine in SAM Cosubstrate. ACS Med Chem Lett. 2021;12(7):1102–1107. PubMed PMC
Khan AA, Ullah S, Amin R. Correction to: Optimal control analysis of COVID‐19 vaccine epidemic model: A case study. Eur Phys J Plus. 2022;137(2):198. PubMed PMC
Kabsch W. XDS. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 2):125–132. PubMed PMC
McCoy AJ, Grosse‐Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Cryst. 2007;40(Pt 4):658–674. PubMed PMC
Liebschner D, Afonine PV, Baker ML, et al. Macromolecular structure determination using X‐rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr D Struct Biol. 2019;75(Pt 10):861–877. PubMed PMC
Afonine PV, Grosse‐Kunstleve RW, Echols N, et al. Towards automated crystallographic structure refinement with phenix.Refine. Acta Crystallogr D Biol Crystallogr. 2012;68(Pt 4):352–367. PubMed PMC
Emsley P, Cowtan K. Coot: Model‐building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60(Pt 12 Pt 1):2126–2132. PubMed
Structural basis for broad-spectrum binding of AT-9010 to flaviviral methyltransferases
Discovery of a Druggable, Cryptic Pocket in SARS-CoV-2 nsp16 Using Allosteric Inhibitors
Structure of monkeypox virus poxin: implications for drug design