Clinical Performance of the Consensus Immunoscore in Colon Cancer in the Asian Population from the Multicenter International SITC Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P30 CA008748
NCI NIH HHS - United States
UMRS1138
HalioDx
UMRS1138
Society for Immunotherapy of Cancer
Grants-in-aid for Scientific Research-S
MEXT
P-direct
Japan Agency for Medical Research and Development
PubMed
36139506
PubMed Central
PMC9497086
DOI
10.3390/cancers14184346
PII: cancers14184346
Knihovny.cz E-zdroje
- Klíčová slova
- Asian, Immunoscore, MSI, T cell, classification, colon cancer, immune response, prognostic markers, risk stratification, tumor microenvironment,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: In this study, we evaluated the prognostic value of Immunoscore in patients with stage I−III colon cancer (CC) in the Asian population. These patients were originally included in an international study led by the Society for Immunotherapy of Cancer (SITC) on 2681 patients with AJCC/UICC-TNM stages I−III CC. METHODS: CD3+ and cytotoxic CD8+ T-lymphocyte densities were quantified in the tumor and invasive margin by digital pathology. The association of Immunoscore with prognosis was evaluated for time to recurrence (TTR), disease-free survival (DFS), and overall survival (OS). RESULTS: Immunoscore stratified Asian patients (n = 423) into different risk categories and was not impacted by age. Recurrence-free rates at 3 years were 78.5%, 85.2%, and 98.3% for a Low, Intermediate, and High Immunoscore, respectively (HR[Low-vs-High] = 7.26 (95% CI 1.75−30.19); p = 0.0064). A High Immunoscore showed a significant association with prolonged TTR, OS, and DFS (p < 0.05). In Cox multivariable analysis stratified by center, Immunoscore association with TTR was independent (HR[Low-vs-Int+High] = 2.22 (95% CI 1.10−4.55) p = 0.0269) of the patient’s gender, T-stage, N-stage, sidedness, and MSI status. A significant association of a High Immunoscore with prolonged TTR was also found among MSS (HR[Low-vs-Int+High] = 4.58 (95% CI 2.27−9.23); p ≤ 0.0001), stage II (HR[Low-vs-Int+High] = 2.72 (95% CI 1.35−5.51); p = 0.0052), low-risk stage-II (HR[Low-vs-Int+High] = 2.62 (95% CI 1.21−5.68); p = 0.0146), and high-risk stage II patients (HR[Low-vs-Int+High] = 3.11 (95% CI 1.39−6.91); p = 0.0055). CONCLUSION: A High Immunoscore is significantly associated with the prolonged survival of CC patients within the Asian population.
Center for Immuno Oncology University Hospital 53100 Siena Italy
Centre de Recherche des Cordeliers Sorbonne Université Université de Paris 75006 Paris France
Curandis New York NY 10583 USA
Department of Biomedical Sciences Humanitas University Pieve Emanuele 20072 Milan Italy
Department of Biostatistics M D Anderson Cancer Center University of Texas Houston TX 77030 USA
Department of Laboratory Medicine and Pathobiology University of Toronto Toronto ON M5S 1A8 Canada
Department of Medical Oncology University Hospital of Bern 3010 Bern Switzerland
Department of Medicine and Surgery University of Parma 43125 Parma Italy
Department of Oncology Pathology Karolinska Institutet Karolinska University 17177 Stockholm Sweden
Department of Pathology Cliniques Universitaires St Luc 1200 Brussels Belgium
Department of Pathology Istituto Nazionale Tumori IRCCS Fondazione G Pascale 80131 Naples Italy
Department of Pathology Memorial Sloan Kettering Cancer Center New York NY 10065 USA
Department of Pathology Providence Portland Medical Center Portland OR 97213 USA
Department of Pathology Sapporo Medical University Sapporo 060 8556 Japan
Department of Pathology University Erlangen Nürnberg 91054 Erlangen Germany
Department of Surgery Kindai University School of Medicine Osakasayama 589 0014 Japan
Department of Surgery University Erlangen Nürnberg 91054 Erlangen Germany
Equipe Labellisée Ligue Contre le Cancer 75006 Paris France
Health Science Center of Xi'an Jiaotong University Xi'an 710061 China
INSERM Laboratory of Integrative Cancer Immunology 75006 Paris France
Institute for Cancer Research School of Basic Medical Science Xi'an 710061 China
Institute of Pathology University of Bern 3008 Bern Switzerland
IRCCS Istituto Nazionale Tumori Regina Elena 00128 Rome Italy
Kite Pharma Santa Monica CA 90404 USA
Laboratory of Molecular Gastroenterology IRCCS Humanitas Research Hospital Rozzano 20090 Milan Italy
Pathology Department Radboud University 6500 HC Nijmegen The Netherlands
Princess Margaret Cancer Centre Toronto ON M5G 2C1 Canada
The Gujarat Cancer and Research Institute Asarwa Ahmedabad 380016 India
Zobrazit více v PubMed
Galon J., Mlecnik B., Bindea G., Angell H.K., Berger A., Lagorce C., Lugli A., Zlobec I., Hartmann A., Bifulco C., et al. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J. Pathol. 2014;232:199–209. doi: 10.1002/path.4287. PubMed DOI PMC
Guinney J., Dienstmann R., Wang X., de Reynies A., Schlicker A., Soneson C., Marisa L., Roepman P., Nyamundanda G., Angelino P., et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 2015;21:1350–1356. doi: 10.1038/nm.3967. PubMed DOI PMC
Galon J., Costes A., Sanchez-Cabo F., Kirilovsky A., Mlecnik B., Lagorce-Pages C., Tosolini M., Camus M., Berger A., Wind P., et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–1964. doi: 10.1126/science.1129139. PubMed DOI
Koelzer V.H., Dawson H., Andersson E., Karamitopoulou E., Masucci G.V., Lugli A., Zlobec I. Active immunosurveillance in the tumor microenvironment of colorectal cancer is associated with low frequency tumor budding and improved outcome. Transl. Res. 2015;166:207–217. doi: 10.1016/j.trsl.2015.02.008. PubMed DOI
Laghi L., Bianchi P., Miranda E., Balladore E., Pacetti V., Grizzi F., Allavena P., Torri V., Repici A., Santoro A., et al. CD3+ cells at the invasive margin of deeply invading (pT3-T4) colorectal cancer and risk of post-surgical metastasis: A longitudinal study. Lancet Oncol. 2009;10:877–884. doi: 10.1016/S1470-2045(09)70186-X. PubMed DOI
Lee W.S., Park S., Lee W.Y., Yun S.H., Chun H.K. Clinical impact of tumor-infiltrating lymphocytes for survival in stage II colon cancer. Cancer. 2010;116:5188–5199. doi: 10.1002/cncr.25293. PubMed DOI
Mlecnik B., Bindea G., Angell H.K., Maby P., Angelova M., Tougeron D., Church S.E., Lafontaine L., Fischer M., Fredriksen T., et al. Integrative Analyses of Colorectal Cancer Show Immunoscore Is a Stronger Predictor of Patient Survival Than Microsatellite Instability. Immunity. 2016;44:698–711. doi: 10.1016/j.immuni.2016.02.025. PubMed DOI
Mlecnik B., Tosolini M., Kirilovsky A., Berger A., Bindea G., Meatchi T., Bruneval P., Trajanoski Z., Fridman W.H., Pages F., et al. Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J. Clin. Oncol. 2011;29:610–618. doi: 10.1200/JCO.2010.30.5425. PubMed DOI
Nosho K., Baba Y., Tanaka N., Shima K., Hayashi M., Meyerhardt J.A., Giovannucci E., Dranoff G., Fuchs C.S., Ogino S. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer and prognosis: Cohort study and literature review. J. Pathol. 2010;222:350–366. doi: 10.1002/path.2774. PubMed DOI PMC
Ogino S., Galon J., Fuchs C.S., Dranoff G. Cancer immunology—Analysis of host and tumor factors for personalized medicine. Nat. Rev. Clin. Oncol. 2011;8:711–719. doi: 10.1038/nrclinonc.2011.122. PubMed DOI PMC
Ogino S., Nosho K., Irahara N., Meyerhardt J.A., Baba Y., Shima K., Glickman J.N., Ferrone C.R., Mino-Kenudson M., Tanaka N., et al. Lymphocytic reaction to colorectal cancer is associated with longer survival, independent of lymph node count, microsatellite instability, and CpG island methylator phenotype. Clin. Cancer Res. 2009;15:6412–6420. doi: 10.1158/1078-0432.CCR-09-1438. PubMed DOI PMC
Pages F., Berger A., Camus M., Sanchez-Cabo F., Costes A., Molidor R., Mlecnik B., Kirilovsky A., Nilsson M., Damotte D., et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N. Engl. J. Med. 2005;353:2654–2666. doi: 10.1056/NEJMoa051424. PubMed DOI
Mlecnik B., Bindea G., Angell H.K., Sasso M.S., Obenauf A.C., Fredriksen T., Lafontaine L., Bilocq A.M., Kirilovsky A., Tosolini M., et al. Functional network pipeline reveals genetic determinants associated with in situ lymphocyte proliferation and survival of cancer patients. Sci. Transl. Med. 2014;6:228ra37. doi: 10.1126/scitranslmed.3007240. PubMed DOI
Pages F., Kirilovsky A., Mlecnik B., Asslaber M., Tosolini M., Bindea G., Lagorce C., Wind P., Marliot F., Bruneval P., et al. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J. Clin. Oncol. 2009;27:5944–5951. doi: 10.1200/JCO.2008.19.6147. PubMed DOI
Bruni D., Angell H.K., Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer. 2020;20:662–680. doi: 10.1038/s41568-020-0285-7. PubMed DOI
Bindea G., Mlecnik B., Angell H.K., Galon J. The immune landscape of human tumors: Implications for cancer immunotherapy. Oncoimmunology. 2014;3:e27456. doi: 10.4161/onci.27456. PubMed DOI PMC
Bindea G., Mlecnik B., Fridman W.H., Galon J. The prognostic impact of anti-cancer immune response: A novel classification of cancer patients. Semin. Immunopathol. 2011;33:335–340. doi: 10.1007/s00281-011-0264-x. PubMed DOI PMC
Pages F., Galon J., Fridman W.H. The essential role of the in situ immune reaction in human colorectal cancer. J. Leukoc. Biol. 2008;84:981–987. doi: 10.1189/jlb.1107773. PubMed DOI
Angell H.K., Bruni D., Barrett J.C., Herbst R., Galon J. The Immunoscore: Colon Cancer and Beyond. Clin. Cancer Res. 2020;26:332–339. doi: 10.1158/1078-0432.CCR-18-1851. PubMed DOI
Galon J., Bruni D. Tumor Immunology and Tumor Evolution: Intertwined Histories. Immunity. 2020;52:55–81. doi: 10.1016/j.immuni.2019.12.018. PubMed DOI
Kirilovsky A., Marliot F., El Sissy C., Haicheur N., Galon J., Pages F. Rational bases for the use of the Immunoscore in routine clinical settings as a prognostic and predictive biomarker in cancer patients. Int. Immunol. 2016;28:373–382. doi: 10.1093/intimm/dxw021. PubMed DOI PMC
Pages F., Mlecnik B., Marliot F., Bindea G., Ou F.S., Bifulco C., Lugli A., Zlobec I., Rau T.T., Berger M.D., et al. International validation of the consensus Immunoscore for the classification of colon cancer: A prognostic and accuracy study. Lancet. 2018;391:2128–2139. doi: 10.1016/S0140-6736(18)30789-X. PubMed DOI
Zhang X., Yang J., Du L., Zhou Y., Li K. The prognostic value of Immunoscore in patients with cancer: A pooled analysis of 10,328 patients. Int. J. Biol. Markers. 2020;35:3–13. doi: 10.1177/1724600820927409. PubMed DOI
Pages F., Andre T., Taieb J., Vernerey D., Henriques J., Borg C., Marliot F., Ben Jannet R., Louvet C., Mineur L., et al. Prognostic and predictive value of the Immunoscore in stage III colon cancer patients treated with oxaliplatin in the prospective IDEA France PRODIGE-GERCOR cohort study. Ann. Oncol. 2020;31:921–929. doi: 10.1016/j.annonc.2020.03.310. PubMed DOI
Sinicrope F.A., Shi Q., Hermitte F., Zemla T.J., Mlecnik B., Benson A.B., Gill S., Goldberg R.M., Kahlenberg M.S., Nair S.G., et al. Contribution of Immunoscore and Molecular Features to Survival Prediction in Stage III Colon Cancer. JNCI Cancer Spectr. 2020;4:pkaa023. doi: 10.1093/jncics/pkaa023. PubMed DOI PMC
Uno H., Claggett B., Tian L., Inoue E., Gallo P., Miyata T., Schrag D., Takeuchi M., Uyama Y., Zhao L., et al. Moving beyond the hazard ratio in quantifying the between-group difference in survival analysis. J. Clin. Oncol. 2014;32:2380–2385. doi: 10.1200/JCO.2014.55.2208. PubMed DOI PMC
Galon J., Angell H.K., Bedognetti D., Marincola F.M. The continuum of cancer immunosurveillance: Prognostic, predictive, and mechanistic signatures. Immunity. 2013;39:11–26. doi: 10.1016/j.immuni.2013.07.008. PubMed DOI
Galon J., Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 2019;18:197–218. doi: 10.1038/s41573-018-0007-y. PubMed DOI
Van den Eynde M., Mlecnik B., Bindea G., Fredriksen T., Church S.E., Lafontaine L., Haicheur N., Marliot F., Angelova M., Vasaturo A., et al. The Link between the Multiverse of Immune Microenvironments in Metastases and the Survival of Colorectal Cancer Patients. Cancer Cell. 2018;34:1012–1026. doi: 10.1016/j.ccell.2018.11.003. PubMed DOI
Mlecnik B., Bifulco C., Bindea G., Marliot F., Lugli A., Lee J.J., Zlobec I., Rau T.T., Berger M.D., Nagtegaal I.D., et al. Multicenter International Society for Immunotherapy of Cancer Study of the Consensus Immunoscore for the Prediction of Survival and Response to Chemotherapy in Stage III Colon Cancer. J. Clin. Oncol. 2020;38:3638–3651. doi: 10.1200/JCO.19.03205. PubMed DOI PMC
Mascaux C., Angelova M., Vasaturo A., Beane J., Hijazi K., Anthoine G., Buttard B., Rothe F., Willard-Gallo K., Haller A., et al. Immune evasion before tumour invasion in early lung squamous carcinogenesis. Nature. 2019;571:570–575. doi: 10.1038/s41586-019-1330-0. PubMed DOI
Bindea G., Mlecnik B., Tosolini M., Kirilovsky A., Waldner M., Obenauf A.C., Angell H., Fredriksen T., Lafontaine L., Berger A., et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013;39:782–795. doi: 10.1016/j.immuni.2013.10.003. PubMed DOI
Angelova M., Mlecnik B., Vasaturo A., Bindea G., Fredriksen T., Lafontaine L., Buttard B., Morgand E., Bruni D., Jouret-Mourin A., et al. Evolution of metastases in space and time under immune selection. Cell. 2018;175:751–765.e16. doi: 10.1016/j.cell.2018.09.018. PubMed DOI
Berghoff A.S., Fuchs E., Ricken G., Mlecnik B., Bindea G., Spanberger T., Hackl M., Widhalm G., Dieckmann K.D., Bilocq A.M., et al. Density of tumor-infiltrating lymphocytes correlates with extent of brain edema and overall survival time in patients with brain metastases. Oncoimmunology. 2016;5:e1. doi: 10.1080/2162402X.2015.1057388. PubMed DOI PMC
Mlecnik B., Bindea G., Kirilovsky A., Angell H.K., Obenauf A.C., Tosolini M., Church S.E., Maby P., Vasaturo A., Angelova M., et al. The tumor microenvironment and Immunoscore are critical determinants of dissemination to distant metastasis. Sci. Transl. Med. 2016;8:327ra26. doi: 10.1126/scitranslmed.aad6352. PubMed DOI
Mlecnik B., Van den Eynde M., Bindea G., Church S.E., Vasaturo A., Fredriksen T., Lafontaine L., Haicheur N., Marliot F., Debetancourt D., et al. Comprehensive Intrametastatic Immune Quantification and Major Impact of Immunoscore on Survival. J. Natl. Cancer Inst. 2018;110:97–108. doi: 10.1093/jnci/djx123. PubMed DOI
Halama N., Michel S., Kloor M., Zoernig I., Benner A., Spille A., Pommerencke T., von Knebel D.M., Folprecht G., Luber B., et al. Localization and Density of Immune Cells in the Invasive Margin of Human Colorectal Cancer Liver Metastases Are Prognostic for Response to Chemotherapy. Cancer Res. 2011;71:5670–5677. doi: 10.1158/0008-5472.CAN-11-0268. PubMed DOI
Montecino-Rodriguez E., Berent-Maoz B., Dorshkind K. Causes, consequences, and reversal of immune system aging. J. Clin. Investig. 2013;123:958–965. doi: 10.1172/JCI64096. PubMed DOI PMC
Andre T., Boni C., Mounedji-Boudiaf L., Navarro M., Tabernero J., Hickish T., Topham C., Zaninelli M., Clingan P., Bridgewater J., et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N. Engl. J. Med. 2004;350:2343–2351. doi: 10.1056/NEJMoa032709. PubMed DOI
Twelves C., Wong A., Nowacki M.P., Abt M., Burris H., 3rd, Carrato A., Cassidy J., Cervantes A., Fagerberg J., Georgoulias V., et al. Capecitabine as adjuvant treatment for stage III colon cancer. N. Engl. J. Med. 2005;352:2696–2704. doi: 10.1056/NEJMoa043116. PubMed DOI
Yothers G., O’Connell M.J., Allegra C.J., Kuebler J.P., Colangelo L.H., Petrelli N.J., Wolmark N. Oxaliplatin as adjuvant therapy for colon cancer: Updated results of NSABP C-07 trial, including survival and subset analyses. J. Clin. Oncol. 2011;29:3768–3774. doi: 10.1200/JCO.2011.36.4539. PubMed DOI PMC
Auclin E., Zaanan A., Vernerey D., Douard R., Gallois C., Laurent-Puig P., Bonnetain F., Taieb J. Subgroups and prognostication in stage III colon cancer: Future perspectives for adjuvant therapy. Ann. Oncol. 2017;28:958–968. doi: 10.1093/annonc/mdx030. PubMed DOI
Cheema A.R., Hersh E.M. Patient survival after chemotherapy and its relationship to in vitro lymphocyte blastogenesis. Cancer. 1971;28:851–855. doi: 10.1002/1097-0142(1971)28:4<851::AID-CNCR2820280408>3.0.CO;2-E. PubMed DOI
Emens L.A., Machiels J.P., Reilly R.T., Jaffee E.M. Chemotherapy: Friend or foe to cancer vaccines? Curr. Opin. Mol. Ther. 2001;3:77–84. PubMed
Mathe G. Chemotherapy, a double agent in respect of immune functions. Cancer Chemother. Pharmacol. 1978;1:65–68. doi: 10.1007/BF00254037. PubMed DOI
Vacchelli E., Aranda F., Eggermont A., Galon J., Sautes-Fridman C., Cremer I., Zitvogel L., Kroemer G., Galluzzi L. Trial Watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology. 2014;3:e27878. doi: 10.4161/onci.27878. PubMed DOI PMC
Benson A.B., 3rd, Hamilton S.R. Path toward prognostication and prediction: An evolving matrix. J. Clin. Oncol. 2011;29:4599–4601. doi: 10.1200/JCO.2011.37.8646. PubMed DOI
Emens L.A. It’s TIME for a biomarker-driven approach to cancer immunotherapy. J. Immunother. Cancer. 2016;4:1–3. doi: 10.1186/s40425-016-0147-8. PubMed DOI PMC
Argilés G., Tabernero J., Labianca R., Hochhauser D., Salazar R., Iveson T., Laurent-Puig P., Quirke P., Yoshino T., Taieb J., et al. Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020;31:1291–1305. doi: 10.1016/j.annonc.2020.06.022. PubMed DOI
Yoshino T., Argilés G., Oki E., Martinelli E., Taniguchi H., Arnold D., Mishima S., Li Y., Smruti B.K., Ahn J.B., et al. Pan-Asian adapted ESMO Clinical Practice Guidelines for the diagnosis treatment and follow-up of patients with localised colon cancer. Ann. Oncol. 2021;32:1496–1510. doi: 10.1016/j.annonc.2021.08.1752. PubMed DOI