MXene-Chitosan Composites and Their Biomedical Potentials
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36144006
PubMed Central
PMC9500609
DOI
10.3390/mi13091383
PII: mi13091383
Knihovny.cz E-zdroje
- Klíčová slova
- MXene-based nanosystems, MXene-chitosan composites, MXenes, biomedicine, chitosan,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Today, MXenes with fascinating electronic, thermal, optical, and mechanical features have been broadly studied for biomedical applications, such as drug/gene delivery, photothermal/photodynamic therapy, antimicrobials/antivirals, sensing, tissue engineering, and regenerative medicine. In this context, various MXene-polymer composites have been designed to improve the characteristics such as physiological stability, sustained/controlled release behaviors, biodegradability, biocompatibility, selectivity/sensitivity, and functionality. Chitosan with advantages of ease of modification, biodegradability, antibacterial activities, non-toxicity, and biocompatibility can be considered as attractive materials for designing hybridized composites together with MXenes. These hybrid composites ought to be further explored for biomedical applications because of their unique properties such as high photothermal conversion efficiency, improved stability, selectivity/sensitivity, stimuli-responsiveness behaviors, and superior antibacterial features. These unique structural, functional, and biological attributes indicate that MXene-chitosan composites are attractive alternatives in biomedical engineering. However, several crucial aspects regarding the surface functionalization/modification, hybridization, nanotoxicological analyses, long-term biosafety assessments, biocompatibility, in vitro/in vivo evaluations, identification of optimization conditions, implementation of environmentally-benign synthesis techniques, and clinical translation studies are still need to be examined by researchers. Although very limited studies have revealed the great potentials of MXene-chitosan hybrids in biomedicine, the next steps should be toward the extensive research and detailed analyses in optimizing their properties and improving their functionality with a clinical and industrial outlook. Herein, recent developments in the use of MXene-chitosan composites with biomedical potentials are deliberated, with a focus on important challenges and future perspectives. In view of the fascinating properties and multifunctionality of MXene-chitosan composites, these hybrid materials can open significant new opportunities in the future for bio- and nano-medicine arena.
Zobrazit více v PubMed
Hu M., Zhang H., Hu T., Fan B., Wang X., Li Z. Emerging 2D MXenes for supercapacitors:status, challenges and prospects. Chem. Soc. Rev. 2020;49:6666–6693. doi: 10.1039/D0CS00175A. PubMed DOI
Wu X., Ma P., Sun Y., Du F., Song D., Xu G. Application of MXene in Electrochemical Sensors: A Review. Electroanalysis. 2021;33:1827–1851. doi: 10.1002/elan.202100192. DOI
Li K., Liang M., Wang H., Wang X., Huang Y., Coelho J., Pinilla S., Zhang Y., Qi F., Nicolosi V., et al. 3D MXene Architectures for Efficient Energy Storage and Conversion. Adv. Funct. Mater. 2020;30:2000842. doi: 10.1002/adfm.202000842. DOI
Huang M., Gu Z., Zhang J., Zhang D., Zhang H., Yang Z., Qu J. MXene and black phosphorus based 2D nanomaterials in bioimaging and biosensing: Progress and perspectives. J. Mater. Chem. B. 2021;9:5195–5220. doi: 10.1039/D1TB00410G. PubMed DOI
Kuang P., Low J., Cheng B., Yu J., Fan J. MXene-based photocatalysts. J. Mater. Sci. Technol. 2020;56:18–44. doi: 10.1016/j.jmst.2020.02.037. DOI
Ihsanullah I. MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: Progress, challenges and prospects. Chem. Eng. J. 2020;388:124340. doi: 10.1016/j.cej.2020.124340. DOI
Nasrollahzadeh M., Sajjadi M., Iravani S., Varma R.S. Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. J. Hazard. Mater. 2021;401:123401. doi: 10.1016/j.jhazmat.2020.123401. PubMed DOI PMC
Nasrollahzadeh M., Sajjadi M., Iravani S., Varma R.S. Carbon-based Sustainable Nanomaterials for Water Treatment: State-of-art and Future Perspectives. Chemosphere. 2021;263:128005. doi: 10.1016/j.chemosphere.2020.128005. PubMed DOI PMC
Nasrollahzadeh M., Sajjadi M., Iravani S., Varma R.S. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: A review. Carbohydr. Polym. 2021;251:116986. doi: 10.1016/j.carbpol.2020.116986. PubMed DOI PMC
Zhang Y.-Z., El-Demellawi J.K., Jiang Q., Ge G., Liang H., Lee K., Dong X., Alshareef H.N. MXene hydrogels: Fundamentals and applications. Chem. Soc. Rev. 2020;49:7229–7251. doi: 10.1039/D0CS00022A. PubMed DOI
Huang R., Chen X., Dong Y., Zhang X., Wei Y., Yang Z., Li W., Guo Y., Liu J., Yang Z., et al. MXene Composite Nanofibers for Cell Culture and Tissue Engineering. ACS Appl. Bio Mater. 2020;3:2125–2131. doi: 10.1021/acsabm.0c00007. PubMed DOI
Zha X.-J., Zhao X., Pu J.-H., Tang L.-S., Ke K., Bao R.-Y., Bai L., Liu Z.-Y., Yang M.-B., Yang W. Flexible Anti-Biofouling MXene/Cellulose Fibrous Membrane for Sustainable Solar-Driven Water Purification. ACS Appl. Mater. Interfaces. 2019;11:36589–36597. doi: 10.1021/acsami.9b10606. PubMed DOI
Zhan X., Si C., Zhou J., Sun Z. MXene and MXene-based composites: Synthesis, properties and environment-related applications. Nanoscale Horiz. 2020;5:235–258. doi: 10.1039/C9NH00571D. DOI
Gogotsi Y., Anasori B. The Rise of MXenes. ACS Nano. 2019;13:8491–8494. doi: 10.1021/acsnano.9b06394. PubMed DOI
Huang H., Dong C., Feng W., Wang Y., Huang B., Chen Y. Biomedical Engineering of Two-Dimensional MXenes. Adv. Drug Deliv. Rev. 2022;184:114178. doi: 10.1016/j.addr.2022.114178. PubMed DOI
Li L., Lu Y., Qian Z., Yang Z., Zong S., Wang Z., Cui Y. A Ti2N MXene-based nanosystem with ultrahigh drug loading for dual-strategy synergistic oncotherapy. Nanoscale. 2021;13:18546–18557. doi: 10.1039/D1NR04008A. PubMed DOI
Lim G.P., Soon C.F., Ma N.L., Morsin M., Nayan N., Ahmad M.K., Tee K.S. Cytotoxicity of MXene-based nanomaterials for biomedical applications: A mini review. Environ. Res. 2021;201:111592. doi: 10.1016/j.envres.2021.111592. PubMed DOI
George S.M., Kandasubramanian B. Advancements in MXene-Polymer composites for various biomedical applications. Ceram. Int. 2020;46:8522–8535. doi: 10.1016/j.ceramint.2019.12.257. DOI
Iravani S. MXenes and MXene-based (nano)structures: A perspective on greener synthesis and biomedical prospects. Ceram. Int. 2022;48:24144–24156. doi: 10.1016/j.ceramint.2022.05.137. DOI
Iravani S., Varma R.S. MXenes and MXene-based materials for tissue engineering and regenerative medicine: Recent advances. Mater. Adv. 2021;2:2906–2917. doi: 10.1039/D1MA00189B. DOI
Iravani S., Varma R.S. MXenes for Cancer Therapy and Diagnosis: Recent Advances and Current Challenges. ACS Biomater. Sci. Eng. 2021;7:1900–1913. doi: 10.1021/acsbiomaterials.0c01763. PubMed DOI
Iravani S., Varma R.S. MXenes in photomedicine: Advances and prospects. Chem. Commun. 2022;58:7336–7350. doi: 10.1039/D2CC01694J. PubMed DOI
Iravani S., Varma R.S. Bioinspired and biomimetic MXene-based structures with fascinating properties: Recent advances. Mater. Adv. 2022;3:4783–4796. doi: 10.1039/D2MA00151A. DOI
Carey M., Barsoum M.W. MXene polymer nanocomposites: A review. Mater. Today Adv. 2021;9:100120. doi: 10.1016/j.mtadv.2020.100120. DOI
Jimmy J., Kandasubramanian B. Mxene functionalized polymer composites: Synthesis and applications. Eur. Polym. J. 2020;122:109367. doi: 10.1016/j.eurpolymj.2019.109367. DOI
Gao L., Li C., Huang W., Mei S., Lin H., Ou Q., Zhang Y., Guo J., Zhang F., Xu S., et al. MXene/Polymer Membranes: Synthesis, Properties, and Emerging Applications. Chem. Mater. 2020;32:1703–1747. doi: 10.1021/acs.chemmater.9b04408. DOI
Bu F., Zagho M.M., Ibrahim Y., Ma B., Elzatahry A., Zhao D. Porous MXenes: Synthesis, structures, and applications. Nano Today. 2020;30:100803. doi: 10.1016/j.nantod.2019.100803. DOI
Wei Y., Zhang P., Soomro R.A., Zhu Q., Xu B. Advances in the Synthesis of 2D MXenes. Adv. Mater. 2021;33:2103148. doi: 10.1002/adma.202103148. PubMed DOI
Chaudhari N.K., Jin H., Kim B., Baek D.S., Joo S.H., Lee K. MXene: An emerging two-dimensional material for future energy conversion and storage applications. J. Mater. Chem. A. 2017;5:24564–24579. doi: 10.1039/C7TA09094C. DOI
Gazzi A., Fusco L., Khan A., Bedognetti D., Zavan B., Vitale F., Yilmazer A., Delogu L.G. Photodynamic Therapy Based on Graphene and MXene in Cancer Theranostics. Front. Bioeng. Biotechnol. 2019;7:295. doi: 10.3389/fbioe.2019.00295. PubMed DOI PMC
Huang J., Li Z., Mao Y., Li Z. Progress and biomedical applications of MXenes. Nano Sel. 2021;2:1480–1508. doi: 10.1002/nano.202000309. DOI
Yao Y., Lan L., Liu X., Ying Y., Ping J. Spontaneous growth and regulation of noble metal nanoparticles on flexible biomimetic MXene paper for bioelectronics. Biosens. Bioelectron. 2020;148:111799. doi: 10.1016/j.bios.2019.111799. PubMed DOI
Ma C., Ma M.-G., Si C., Ji X.-X., Wan P. Flexible MXene-Based Composites for Wearable Devices. Adv. Funct. Mater. 2021;31:2009524. doi: 10.1002/adfm.202009524. DOI
Shaikh N.S., Ubale S.B., Mane V.J., Shaikh J.S., Lokhande V.C., Praserthdam S., Lokhande C.D., Kanjanaboos P. Novel electrodes for supercapacitor: Conducting polymers, metal oxides, chalcogenides, carbides, nitrides, MXenes, and their composites with graphene. J. Alloys Compd. 2022;893:161998. doi: 10.1016/j.jallcom.2021.161998. DOI
Ying G., Kota S., Dillon A.D., Fafarman A.T., Barsoum M.W. Conductive transparent V2CTx (MXene) films. FlatChem. 2018;8:25–30. doi: 10.1016/j.flatc.2018.03.001. DOI
Ronchi R.M., Arantes J.T., Santos S.F. Synthesis, structure, properties and applications of MXenes: Current statusand perspectives. Ceram. Int. 2019;45:18167–18188. doi: 10.1016/j.ceramint.2019.06.114. DOI
Ma L., Ting L.R.L., Molinari V., Giordano C., Yeo B.S. Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route. J. Mater. Chem. A. 2015;3:8361–8368. doi: 10.1039/C5TA00139K. DOI
Xu C., Wang L., Liu Z., Chen L., Guo J., Kang N., Ma X.-L., Cheng H.-M., Ren W. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 2015;14:1135–1141. doi: 10.1038/nmat4374. PubMed DOI
Urbankowski P., Anasori B., Makaryan T., Er D., Kota S., Walsh P.L., Zhao M., Shenoy V.B., Barsoum M.W., Gogotsi Y. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene) Nanoscale. 2016;8:11385. doi: 10.1039/C6NR02253G. PubMed DOI
Li T., Yao L., Liu Q., Gu J., Luo R., Li J., Yan X., Wang W., Liu P., Chen B. Fluorine-Free Synthesis of High-Purity Ti3C2Tx (T=OH, O) via Alkali Treatment. Angew. Chem. Int. Ed. 2018;57:6115–6119. doi: 10.1002/anie.201800887. PubMed DOI
Sun W., Shah S., Chen Y., Tan Z., Gao H., Habib T., Radovic M., Green M. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A. 2017;5:21663–21668. doi: 10.1039/C7TA05574A. DOI
Salim O., Mahmoud K.A., Pant K.K., Joshi R.K. Introduction to MXenes: Synthesis and characteristics. Mater. Today Chem. 2019;14:100191. doi: 10.1016/j.mtchem.2019.08.010. PubMed DOI
Liu J., Jiang X., Zhang R., Zhang Y., Wu L., Lu W., Li J., Li Y., Zhang H. MXene-Enabled Electrochemical Microfluidic Biosensor: Applications toward Multicomponent Continuous Monitoring in Whole Blood. Adv. Funct. Mater. 2019;29:1807326. doi: 10.1002/adfm.201807326. DOI
Tan Z., Zhao H., Sun F., Ran L., Yi L., Zhao L., Wu J. Fabrication of Chitosan/MXene multilayered film based on layer-by-layer assembly: Toward enhanced electromagnetic interference shielding and thermal management capacity. Compos. Part A Appl. Sci. Manuf. 2022;155:106809. doi: 10.1016/j.compositesa.2022.106809. DOI
Wei L., Deng W., Li S., Wu Z., Cai J., Luo J. Sandwich-like chitosan porous carbon Spheres/MXene composite with high specific capacitance and rate performance for supercapacitors. J. Bioresour. Bioprod. 2022;7:63–72. doi: 10.1016/j.jobab.2021.10.001. DOI
Dong L.M., Ye C., Zheng L.L., Gao Z.F., Xia F. Two-dimensional metal carbides and nitrides (MXenes): Preparation, property, and applications in cancer therapy. Nanophotonics. 2020;9:2125–2145. doi: 10.1515/nanoph-2019-0550. DOI
Liu F., Li Y., Hao S., Cheng Y., Zhan Y., Zhang C., Meng Y., Xie Q., Xia H. Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding. Carbohydr. Polym. 2020;243:116467. doi: 10.1016/j.carbpol.2020.116467. PubMed DOI
Hu C., Shen F., Zhu D., Zhang H., Xue J., Han X. Characteristics of Ti3C2X–Chitosan Films with Enhanced Mechanical Properties. Front. Energy Res. 2017;4:41. doi: 10.3389/fenrg.2016.00041. DOI
Wu S., Chen D., Han W., Xie Y., Zhao G., Dong S., Tan M., Huang H., Xu S., Chen G., et al. MXene/chitosan-derived hybrid carbon aerogel with hierarchical pore structure for durable electromagnetic interference shielding and thermal insulation. Chem. Eng. J. 2022;446:137093. doi: 10.1016/j.cej.2022.137093. DOI
Wang W., Bing X., Zhou Y., Geng M., Zhan Y., Xia H., Chen Z. Tunable electromagnetic interference shielding ability of MXene/chitosan/silver nanowire sandwich films. Funct. Mater. Lett. 2021;14:2151041. doi: 10.1142/S1793604721510413. DOI
Hroncekova S., Bertok T., Hires M., Jane E., Lorencova L., Vikartovska A., Tanvir A., Kasak P., Tkac J. Ultrasensitive Ti3C2TX MXene/Chitosan Nanocomposite-Based Amperometric Biosensor for Detection of Potential Prostate Cancer Marker in Urine Samples. Processes. 2020;8:580. doi: 10.3390/pr8050580. PubMed DOI PMC
Wang H., Dong A., Hu K., Sun W., Wang J., Han L., Mo L., Li L., Zhang W., Guo Y., et al. LBL assembly of Ag@Ti3C2TX and chitosan on PLLA substrate to enhance antibacterial and biocompatibility. Biomed. Mater. 2022;17:035006. doi: 10.1088/1748-605X/ac62e7. PubMed DOI
Wang Y., Jiang B., Sun T., Wang S., Jin Y. A bio-inspired MXene/quaternary chitosan membrane with a “brick-and-mortar” structure towards high-performance photothermal conversion. J. Mater. Chem. C. 2022;10:8043–8049. doi: 10.1039/D2TC00571A. DOI
Wu Z., Shi J., Song P., Li J., Cao S. Chitosan/hyaluronic acid based hollow microcapsules equipped with MXene/gold nanorods for synergistically enhanced near infrared responsive drug delivery. Int. J. Biol. Macromol. 2021;183:870–879. doi: 10.1016/j.ijbiomac.2021.04.164. PubMed DOI
Liu A., Liu Y., Liu G., Zhang A., Cheng Y., Li Y., Zhang L., Wang L., Zhou H., Liu J., et al. Engineering of surface modified Ti3C2Tx MXene based dually controlled drug release system for synergistic multitherapies of cancer. Chem. Eng. J. 2022;448:137691. doi: 10.1016/j.cej.2022.137691. DOI
Zhu B., Shi J., Liu C., Li J., Cao S. In-situ self-assembly of sandwich-like Ti3C2 MXene/gold nanorods nanosheets for synergistically enhanced near-infrared responsive drug delivery. Ceram. Int. 2021;47:24252–24261. doi: 10.1016/j.ceramint.2021.05.136. DOI
Lin B., Yin Yuen A.C., Oliver S., Liu J., Yu B., Yang W., Wu S., Yeoh G.H., Wang C.H. Dual functionalisation of polyurethane foam for unprecedented flame retardancy and antibacterial properties using layer-by-layer assembly of MXene chitosan with antibacterial metal particles. Compos. Part B Eng. 2022;244:110147. doi: 10.1016/j.compositesb.2022.110147. DOI
Hu T., Zhang M., Dong H., Li T., Zang X.-b., Li X., Ni Z.-h. Free-standing MXene/chitosan/Cu2O electrode: An enzyme-free and efficient biosensor for simultaneous determination of glucose and cholesterol. J. Zhejiang Univ. Sci. A. 2022;23:579–586. doi: 10.1631/jzus.A2100584. DOI
Wang L., Wang D.P., Wang K., Jiang K., Shen G. Biocompatible MXene/Chitosan-Based Flexible Bimodal Devices for Real-Time Pulse and Respiratory Rate Monitoring. ACS Mater. Lett. 2021;3:921–929. doi: 10.1021/acsmaterialslett.1c00246. DOI
Szuplewska A., Kulpińska D., Dybko A., Chudy M., Maria Jastrzębska A., Olszyna A., Brzózka Z. Future Applications of MXenes in Biotechnology, Nanomedicine, and Sensors. Trends Biotechnol. 2020;38:264–279. doi: 10.1016/j.tibtech.2019.09.001. PubMed DOI
Liu Y., Xu D., Ding Y., Lv X., Huang T., Yuan B., Jiang L., Sun X., Yao Y., Tang J. A conductive polyacrylamide hydrogel enabled by dispersion-enhanced MXene@chitosan assembly for highly stretchable and sensitive wearable skin. J. Mater. Chem. B. 2021;9:8862–8870. doi: 10.1039/D1TB01798E. PubMed DOI
Lorencova L., Gajdosova V., Hroncekova S., Bertok T., Blahutova J., Vikartovska A., Parrakova L., Gemeiner P., Kasak P., Tkac J. 2D MXenes as Perspective Immobilization Platforms for Design of Electrochemical Nanobiosensors. Electroanalysis. 2019;31:1833–1844. doi: 10.1002/elan.201900288. DOI
Kalambate P.K., Dhanjai, Sinha A., Yankai L., Shen Y., Huang Y. An electrochemical sensor for ifosfamide, acetaminophen, domperidone, and sumatriptan based on self-assembled MXene/MWCNT/chitosan nanocomposite thin film. Microchim. Acta. 2020;187:402. doi: 10.1007/s00604-020-04366-9. PubMed DOI
Li X., Lu Y., Shi Z., Liu G., Xu G., An Z., Xing H., Chen Q., Han R.P.S., Liu Q. Onion-inspired MXene/chitosan-quercetin multilayers: Enhanced response to H2O molecules for wearable human physiological monitoring. Sens. Actuators B Chem. 2021;329:129209. doi: 10.1016/j.snb.2020.129209. PubMed DOI
Sun W., Wu F.-G. Two-dimensional materials for antimicrobialapplications: Graphene materials and beyond. Chem. Asian J. 2018;13:3378–3410. doi: 10.1002/asia.201800851. PubMed DOI
Rasool K., Helal M., Ali A., Ren C.E., Gogotsi Y., Mahmoud K.A. Antibacterial Activity of Ti3C2Tx MXene. ACS Nano. 2016;10:3674–3684. doi: 10.1021/acsnano.6b00181. PubMed DOI
Khatami M., Alijani H., Sharifi I. Biosynthesis of bimetallic and core shell nanoparticles: Their biomedical applications: A review. IET Nanobiotechnol. 2018;12:879–887. doi: 10.1049/iet-nbt.2017.0308. PubMed DOI PMC
Khatami M., Alijani H.Q., Mousazadeh F., Hashemi N., Mahmoudi Z., Darijani S., Bamorovat M., Keyhani A., Abdollahpour-Alitappeh M., Borhani F. Calcium carbonate nanowires: Greener biosynthesis and their leishmanicidal activity. RSC Adv. 2020;10:38063–38068. doi: 10.1039/D0RA04503A. PubMed DOI PMC
Khatami M., Alijani H.Q., Nejad M.S., Varma R.S. Core@shell Nanoparticles: Greener Synthesis Using Natural Plant Products. Appl. Sci. 2018;8:411. doi: 10.3390/app8030411. DOI
Khatami M., Iravani S., Varma R.S., Mosazade F., Darroudi M., Borhani F. Cockroach wings-promoted safe and greener synthesis of silver nanoparticles and their insecticidal activity. Bioprocess Biosyst. Eng. 2019;42:2007–2014. doi: 10.1007/s00449-019-02193-8. PubMed DOI
Khatami M., Siavash I. MXenes and MXene-based Materials for the Removal of Water Pollutants: Challenges and Opportunities. Comments Inorg. Chem. 2021;41:213–248. doi: 10.1080/02603594.2021.1922396. DOI
Nazaripour E., Mousazadeh F., Moghadam M.D., Najafi K., Borhani F., Sarani M., Ghasemi M., Rahdar A., Iravani S., Khatami M. Biosynthesis of lead oxide and cerium oxide nanoparticles and their cytotoxic activities against colon cancer cell line. Inorg. Chem. Commun. 2021;131:108800. doi: 10.1016/j.inoche.2021.108800. DOI
Mayerberger E.A., Street R.M., McDaniel R.M., Barsoum M.W., Schauer C.L. Antibacterial properties of electrospun Ti3C2Tz (MXene)/chitosan nanofibers. RSC Adv. 2018;8:35386–35394. doi: 10.1039/C8RA06274A. PubMed DOI PMC
Yang X., Zhang C., Deng D., Gu Y., Wang H., Zhong Q. Multiple Stimuli-Responsive MXene-Based Hydrogel as Intelligent Drug Delivery Carriers for Deep Chronic Wound Healing. Small. 2022;18:2104368. doi: 10.1002/smll.202104368. PubMed DOI
Wang Y., Wan Y., Meng X., Jiang L., Wei H., Zhang X., Ma N. Bio-inspired MXene coated wood-like ordered chitosan aerogels for efficient solar steam generating devices. J. Mater. Sci. 2022;57:13962–13973. doi: 10.1007/s10853-022-07494-0. DOI
Perini G., Rosenkranz A., Friggeri G., Zambrano D., Rosa E., Augello A., Palmieri V., De Spirito M., Papi M. Advanced usage of Ti3C2Tx MXenes for photothermal therapy on different 3D breast cancer models. Biomed. Pharmacother. 2022;153:113496. doi: 10.1016/j.biopha.2022.113496. PubMed DOI
Li Y., Han M., Cai Y., Jiang B., Zhang Y., Yuan B., Zhou F., Cao C. Muscle-inspired MXene/PVA hydrogel with high toughness and photothermal therapy for promoting bacteria-infected wound healing. Biomater. Sci. 2022;10:1068–1082. doi: 10.1039/D1BM01604K. PubMed DOI
Jiang X., Kuklin A.V., Baev A., Ge Y., Ågren H., Zhang H., Prasad P.N. Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 2020;848:1–58. doi: 10.1016/j.physrep.2019.12.006. DOI
Hwang S.K., Kang S.-M., Rethinasabapathy M., Roh C., Huh Y.S. MXene: An emerging two-dimensional layered material for removal of radioactive pollutants. Chem. Eng. J. 2020;397:125428. doi: 10.1016/j.cej.2020.125428. DOI
Li S., Dong L., Wei Z., Sheng G., Du K., Hu B. Adsorption and mechanistic study of the invasive plant-derived biochar functionalized with CaAl-LDH for Eu (III) in water. J. Environ. Sci. 2020;96:127–137. doi: 10.1016/j.jes.2020.05.001. PubMed DOI
Champagne A., Charlier J.-C. Physical properties of 2D MXenes: From a theoretical perspective. J. Phys. Mater. 2021;3:032006. doi: 10.1088/2515-7639/ab97ee. DOI
Mostafavi E., Iravani S. MXene-Graphene Composites: A Perspective on Biomedical Potentials. Nano-Micro Lett. 2022;14:130. doi: 10.1007/s40820-022-00880-y. PubMed DOI PMC
Tabish T.A., Pranjol M.Z.I., Jabeen F., Abdullah T., Latif A., Khalid A., Ali M., Hayat H., Winyard P.G., Whatmore J.L., et al. Investigation into the toxic effects of graphene nanopores on lung cancer cells and biological tissues. Appl. Mater. Today. 2018;12:389–401. doi: 10.1016/j.apmt.2018.07.005. DOI
Han X., Huang J., Lin H., Wang Z., Li P., Chen Y. 2D Ultrathin MXene-Based Drug-Delivery Nanoplatform for Synergistic Photothermal Ablation and Chemotherapy of Cancer. Adv. Healthc. Mater. 2018;7:1701394. doi: 10.1002/adhm.201701394. PubMed DOI
Han X., Jing X., Yang D., Lin H., Wang Z., Ran H., Li P., Chen Y. Therapeutic mesopore construction on 2D Nb2C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow. Theranostics. 2018;8:4491–4508. doi: 10.7150/thno.26291. PubMed DOI PMC
Lin H., Chen Y., Shi J. Insights into 2D MXenes for Versatile Biomedical Applications: Current Advances and Challenges Ahead. Adv. Sci. 2018;5:1800518. doi: 10.1002/advs.201800518. PubMed DOI PMC
Lin H., Wang Y., Gao S., Chen Y., Shi J. Theranostic 2D Tantalum Carbide (MXene) Adv. Mater. 2018;30:1703284. doi: 10.1002/adma.201703284. PubMed DOI
Vasyukova I.A., Zakharova O.V., Kuznetsov D.V., Gusev A.A. Synthesis, toxicity assessment, environmental and biomedical applications of MXenes: A review. Nanomaterials. 2022;12:1797. doi: 10.3390/nano12111797. PubMed DOI PMC
Nasrallah G.K., Al-Asmakh M., Rasool K., Mahmoud K.A. Ecotoxicological assessment of Ti3C2Tx (MXene) using a zebrafish embryo model. Environ. Sci Nano. 2018;5:1002–1011. doi: 10.1039/C7EN01239J. DOI
Hussein E.A., Zagho M.M., Rizeq B.R., Younes N.N., Pintus G., Mahmoud K.A., Nasrallah G.K., Elzatahry A.A. Plasmonic MXene-based nanocomposites exhibiting photothermal therapeutic effects with lower acute toxicity than pure MXene. Int. J. Nanomed. 2019;14:4529–4539. doi: 10.2147/IJN.S202208. PubMed DOI PMC
Pan S., Yin J., Yu L., Zhang C., Zhu Y., Gao Y., Chen Y. 2D MXene-Integrated 3D-Printing Scaffolds for Augmented Osteosarcoma Phototherapy and Accelerated Tissue Reconstruction. Adv. Sci. 2020;7:1901511. doi: 10.1002/advs.201901511. PubMed DOI PMC
Dai C., Lin H., Xu G., Liu Z., Wu R., Chen Y. Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia. Chem. Mater. 2017;29:8637–8652. doi: 10.1021/acs.chemmater.7b02441. DOI
Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., Barsoum M.W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011;23:4248–4253. doi: 10.1002/adma.201102306. PubMed DOI
Lin H., Gao S., Dai C., Chen Y., Shi J. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 2017;139:16235–16247. doi: 10.1021/jacs.7b07818. PubMed DOI
Huang K., Li Z., Lin J., Han G., Huang P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018;47:5109–5124. doi: 10.1039/C7CS00838D. PubMed DOI
Xu Z., Liu G., Ye H., Jin W., Cui Z. Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration. J. Membr. Sci. 2018;563:625–632. doi: 10.1016/j.memsci.2018.05.044. DOI
Pu L., Zhang J., Jiresse N.K.L., Gao Y., Zhou H., Naik N., Gao P., Guo Z. N-doped MXene derived from chitosan for the highly effective electrochemical properties as supercapacitor. Adv. Compos. Hybrid Mater. 2022;5:356–369. doi: 10.1007/s42114-021-00371-5. DOI
Prakash N.J., Kandasubramanian B. Nanocomposites of MXene for industrial applications. J. Alloys Compd. 2021;862:158547. doi: 10.1016/j.jallcom.2020.158547. DOI
MXene-Carbon Nanotube Composites: Properties and Applications
Advanced MXene-Based Micro- and Nanosystems for Targeted Drug Delivery in Cancer Therapy
MXene-Based Photocatalysts in Degradation of Organic and Pharmaceutical Pollutants
MXenes in Cancer Nanotheranostics