MXene-Chitosan Composites and Their Biomedical Potentials

. 2022 Aug 25 ; 13 (9) : . [epub] 20220825

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36144006

Today, MXenes with fascinating electronic, thermal, optical, and mechanical features have been broadly studied for biomedical applications, such as drug/gene delivery, photothermal/photodynamic therapy, antimicrobials/antivirals, sensing, tissue engineering, and regenerative medicine. In this context, various MXene-polymer composites have been designed to improve the characteristics such as physiological stability, sustained/controlled release behaviors, biodegradability, biocompatibility, selectivity/sensitivity, and functionality. Chitosan with advantages of ease of modification, biodegradability, antibacterial activities, non-toxicity, and biocompatibility can be considered as attractive materials for designing hybridized composites together with MXenes. These hybrid composites ought to be further explored for biomedical applications because of their unique properties such as high photothermal conversion efficiency, improved stability, selectivity/sensitivity, stimuli-responsiveness behaviors, and superior antibacterial features. These unique structural, functional, and biological attributes indicate that MXene-chitosan composites are attractive alternatives in biomedical engineering. However, several crucial aspects regarding the surface functionalization/modification, hybridization, nanotoxicological analyses, long-term biosafety assessments, biocompatibility, in vitro/in vivo evaluations, identification of optimization conditions, implementation of environmentally-benign synthesis techniques, and clinical translation studies are still need to be examined by researchers. Although very limited studies have revealed the great potentials of MXene-chitosan hybrids in biomedicine, the next steps should be toward the extensive research and detailed analyses in optimizing their properties and improving their functionality with a clinical and industrial outlook. Herein, recent developments in the use of MXene-chitosan composites with biomedical potentials are deliberated, with a focus on important challenges and future perspectives. In view of the fascinating properties and multifunctionality of MXene-chitosan composites, these hybrid materials can open significant new opportunities in the future for bio- and nano-medicine arena.

Zobrazit více v PubMed

Hu M., Zhang H., Hu T., Fan B., Wang X., Li Z. Emerging 2D MXenes for supercapacitors:status, challenges and prospects. Chem. Soc. Rev. 2020;49:6666–6693. doi: 10.1039/D0CS00175A. PubMed DOI

Wu X., Ma P., Sun Y., Du F., Song D., Xu G. Application of MXene in Electrochemical Sensors: A Review. Electroanalysis. 2021;33:1827–1851. doi: 10.1002/elan.202100192. DOI

Li K., Liang M., Wang H., Wang X., Huang Y., Coelho J., Pinilla S., Zhang Y., Qi F., Nicolosi V., et al. 3D MXene Architectures for Efficient Energy Storage and Conversion. Adv. Funct. Mater. 2020;30:2000842. doi: 10.1002/adfm.202000842. DOI

Huang M., Gu Z., Zhang J., Zhang D., Zhang H., Yang Z., Qu J. MXene and black phosphorus based 2D nanomaterials in bioimaging and biosensing: Progress and perspectives. J. Mater. Chem. B. 2021;9:5195–5220. doi: 10.1039/D1TB00410G. PubMed DOI

Kuang P., Low J., Cheng B., Yu J., Fan J. MXene-based photocatalysts. J. Mater. Sci. Technol. 2020;56:18–44. doi: 10.1016/j.jmst.2020.02.037. DOI

Ihsanullah I. MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: Progress, challenges and prospects. Chem. Eng. J. 2020;388:124340. doi: 10.1016/j.cej.2020.124340. DOI

Nasrollahzadeh M., Sajjadi M., Iravani S., Varma R.S. Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. J. Hazard. Mater. 2021;401:123401. doi: 10.1016/j.jhazmat.2020.123401. PubMed DOI PMC

Nasrollahzadeh M., Sajjadi M., Iravani S., Varma R.S. Carbon-based Sustainable Nanomaterials for Water Treatment: State-of-art and Future Perspectives. Chemosphere. 2021;263:128005. doi: 10.1016/j.chemosphere.2020.128005. PubMed DOI PMC

Nasrollahzadeh M., Sajjadi M., Iravani S., Varma R.S. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: A review. Carbohydr. Polym. 2021;251:116986. doi: 10.1016/j.carbpol.2020.116986. PubMed DOI PMC

Zhang Y.-Z., El-Demellawi J.K., Jiang Q., Ge G., Liang H., Lee K., Dong X., Alshareef H.N. MXene hydrogels: Fundamentals and applications. Chem. Soc. Rev. 2020;49:7229–7251. doi: 10.1039/D0CS00022A. PubMed DOI

Huang R., Chen X., Dong Y., Zhang X., Wei Y., Yang Z., Li W., Guo Y., Liu J., Yang Z., et al. MXene Composite Nanofibers for Cell Culture and Tissue Engineering. ACS Appl. Bio Mater. 2020;3:2125–2131. doi: 10.1021/acsabm.0c00007. PubMed DOI

Zha X.-J., Zhao X., Pu J.-H., Tang L.-S., Ke K., Bao R.-Y., Bai L., Liu Z.-Y., Yang M.-B., Yang W. Flexible Anti-Biofouling MXene/Cellulose Fibrous Membrane for Sustainable Solar-Driven Water Purification. ACS Appl. Mater. Interfaces. 2019;11:36589–36597. doi: 10.1021/acsami.9b10606. PubMed DOI

Zhan X., Si C., Zhou J., Sun Z. MXene and MXene-based composites: Synthesis, properties and environment-related applications. Nanoscale Horiz. 2020;5:235–258. doi: 10.1039/C9NH00571D. DOI

Gogotsi Y., Anasori B. The Rise of MXenes. ACS Nano. 2019;13:8491–8494. doi: 10.1021/acsnano.9b06394. PubMed DOI

Huang H., Dong C., Feng W., Wang Y., Huang B., Chen Y. Biomedical Engineering of Two-Dimensional MXenes. Adv. Drug Deliv. Rev. 2022;184:114178. doi: 10.1016/j.addr.2022.114178. PubMed DOI

Li L., Lu Y., Qian Z., Yang Z., Zong S., Wang Z., Cui Y. A Ti2N MXene-based nanosystem with ultrahigh drug loading for dual-strategy synergistic oncotherapy. Nanoscale. 2021;13:18546–18557. doi: 10.1039/D1NR04008A. PubMed DOI

Lim G.P., Soon C.F., Ma N.L., Morsin M., Nayan N., Ahmad M.K., Tee K.S. Cytotoxicity of MXene-based nanomaterials for biomedical applications: A mini review. Environ. Res. 2021;201:111592. doi: 10.1016/j.envres.2021.111592. PubMed DOI

George S.M., Kandasubramanian B. Advancements in MXene-Polymer composites for various biomedical applications. Ceram. Int. 2020;46:8522–8535. doi: 10.1016/j.ceramint.2019.12.257. DOI

Iravani S. MXenes and MXene-based (nano)structures: A perspective on greener synthesis and biomedical prospects. Ceram. Int. 2022;48:24144–24156. doi: 10.1016/j.ceramint.2022.05.137. DOI

Iravani S., Varma R.S. MXenes and MXene-based materials for tissue engineering and regenerative medicine: Recent advances. Mater. Adv. 2021;2:2906–2917. doi: 10.1039/D1MA00189B. DOI

Iravani S., Varma R.S. MXenes for Cancer Therapy and Diagnosis: Recent Advances and Current Challenges. ACS Biomater. Sci. Eng. 2021;7:1900–1913. doi: 10.1021/acsbiomaterials.0c01763. PubMed DOI

Iravani S., Varma R.S. MXenes in photomedicine: Advances and prospects. Chem. Commun. 2022;58:7336–7350. doi: 10.1039/D2CC01694J. PubMed DOI

Iravani S., Varma R.S. Bioinspired and biomimetic MXene-based structures with fascinating properties: Recent advances. Mater. Adv. 2022;3:4783–4796. doi: 10.1039/D2MA00151A. DOI

Carey M., Barsoum M.W. MXene polymer nanocomposites: A review. Mater. Today Adv. 2021;9:100120. doi: 10.1016/j.mtadv.2020.100120. DOI

Jimmy J., Kandasubramanian B. Mxene functionalized polymer composites: Synthesis and applications. Eur. Polym. J. 2020;122:109367. doi: 10.1016/j.eurpolymj.2019.109367. DOI

Gao L., Li C., Huang W., Mei S., Lin H., Ou Q., Zhang Y., Guo J., Zhang F., Xu S., et al. MXene/Polymer Membranes: Synthesis, Properties, and Emerging Applications. Chem. Mater. 2020;32:1703–1747. doi: 10.1021/acs.chemmater.9b04408. DOI

Bu F., Zagho M.M., Ibrahim Y., Ma B., Elzatahry A., Zhao D. Porous MXenes: Synthesis, structures, and applications. Nano Today. 2020;30:100803. doi: 10.1016/j.nantod.2019.100803. DOI

Wei Y., Zhang P., Soomro R.A., Zhu Q., Xu B. Advances in the Synthesis of 2D MXenes. Adv. Mater. 2021;33:2103148. doi: 10.1002/adma.202103148. PubMed DOI

Chaudhari N.K., Jin H., Kim B., Baek D.S., Joo S.H., Lee K. MXene: An emerging two-dimensional material for future energy conversion and storage applications. J. Mater. Chem. A. 2017;5:24564–24579. doi: 10.1039/C7TA09094C. DOI

Gazzi A., Fusco L., Khan A., Bedognetti D., Zavan B., Vitale F., Yilmazer A., Delogu L.G. Photodynamic Therapy Based on Graphene and MXene in Cancer Theranostics. Front. Bioeng. Biotechnol. 2019;7:295. doi: 10.3389/fbioe.2019.00295. PubMed DOI PMC

Huang J., Li Z., Mao Y., Li Z. Progress and biomedical applications of MXenes. Nano Sel. 2021;2:1480–1508. doi: 10.1002/nano.202000309. DOI

Yao Y., Lan L., Liu X., Ying Y., Ping J. Spontaneous growth and regulation of noble metal nanoparticles on flexible biomimetic MXene paper for bioelectronics. Biosens. Bioelectron. 2020;148:111799. doi: 10.1016/j.bios.2019.111799. PubMed DOI

Ma C., Ma M.-G., Si C., Ji X.-X., Wan P. Flexible MXene-Based Composites for Wearable Devices. Adv. Funct. Mater. 2021;31:2009524. doi: 10.1002/adfm.202009524. DOI

Shaikh N.S., Ubale S.B., Mane V.J., Shaikh J.S., Lokhande V.C., Praserthdam S., Lokhande C.D., Kanjanaboos P. Novel electrodes for supercapacitor: Conducting polymers, metal oxides, chalcogenides, carbides, nitrides, MXenes, and their composites with graphene. J. Alloys Compd. 2022;893:161998. doi: 10.1016/j.jallcom.2021.161998. DOI

Ying G., Kota S., Dillon A.D., Fafarman A.T., Barsoum M.W. Conductive transparent V2CTx (MXene) films. FlatChem. 2018;8:25–30. doi: 10.1016/j.flatc.2018.03.001. DOI

Ronchi R.M., Arantes J.T., Santos S.F. Synthesis, structure, properties and applications of MXenes: Current statusand perspectives. Ceram. Int. 2019;45:18167–18188. doi: 10.1016/j.ceramint.2019.06.114. DOI

Ma L., Ting L.R.L., Molinari V., Giordano C., Yeo B.S. Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route. J. Mater. Chem. A. 2015;3:8361–8368. doi: 10.1039/C5TA00139K. DOI

Xu C., Wang L., Liu Z., Chen L., Guo J., Kang N., Ma X.-L., Cheng H.-M., Ren W. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 2015;14:1135–1141. doi: 10.1038/nmat4374. PubMed DOI

Urbankowski P., Anasori B., Makaryan T., Er D., Kota S., Walsh P.L., Zhao M., Shenoy V.B., Barsoum M.W., Gogotsi Y. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene) Nanoscale. 2016;8:11385. doi: 10.1039/C6NR02253G. PubMed DOI

Li T., Yao L., Liu Q., Gu J., Luo R., Li J., Yan X., Wang W., Liu P., Chen B. Fluorine-Free Synthesis of High-Purity Ti3C2Tx (T=OH, O) via Alkali Treatment. Angew. Chem. Int. Ed. 2018;57:6115–6119. doi: 10.1002/anie.201800887. PubMed DOI

Sun W., Shah S., Chen Y., Tan Z., Gao H., Habib T., Radovic M., Green M. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A. 2017;5:21663–21668. doi: 10.1039/C7TA05574A. DOI

Salim O., Mahmoud K.A., Pant K.K., Joshi R.K. Introduction to MXenes: Synthesis and characteristics. Mater. Today Chem. 2019;14:100191. doi: 10.1016/j.mtchem.2019.08.010. PubMed DOI

Liu J., Jiang X., Zhang R., Zhang Y., Wu L., Lu W., Li J., Li Y., Zhang H. MXene-Enabled Electrochemical Microfluidic Biosensor: Applications toward Multicomponent Continuous Monitoring in Whole Blood. Adv. Funct. Mater. 2019;29:1807326. doi: 10.1002/adfm.201807326. DOI

Tan Z., Zhao H., Sun F., Ran L., Yi L., Zhao L., Wu J. Fabrication of Chitosan/MXene multilayered film based on layer-by-layer assembly: Toward enhanced electromagnetic interference shielding and thermal management capacity. Compos. Part A Appl. Sci. Manuf. 2022;155:106809. doi: 10.1016/j.compositesa.2022.106809. DOI

Wei L., Deng W., Li S., Wu Z., Cai J., Luo J. Sandwich-like chitosan porous carbon Spheres/MXene composite with high specific capacitance and rate performance for supercapacitors. J. Bioresour. Bioprod. 2022;7:63–72. doi: 10.1016/j.jobab.2021.10.001. DOI

Dong L.M., Ye C., Zheng L.L., Gao Z.F., Xia F. Two-dimensional metal carbides and nitrides (MXenes): Preparation, property, and applications in cancer therapy. Nanophotonics. 2020;9:2125–2145. doi: 10.1515/nanoph-2019-0550. DOI

Liu F., Li Y., Hao S., Cheng Y., Zhan Y., Zhang C., Meng Y., Xie Q., Xia H. Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding. Carbohydr. Polym. 2020;243:116467. doi: 10.1016/j.carbpol.2020.116467. PubMed DOI

Hu C., Shen F., Zhu D., Zhang H., Xue J., Han X. Characteristics of Ti3C2X–Chitosan Films with Enhanced Mechanical Properties. Front. Energy Res. 2017;4:41. doi: 10.3389/fenrg.2016.00041. DOI

Wu S., Chen D., Han W., Xie Y., Zhao G., Dong S., Tan M., Huang H., Xu S., Chen G., et al. MXene/chitosan-derived hybrid carbon aerogel with hierarchical pore structure for durable electromagnetic interference shielding and thermal insulation. Chem. Eng. J. 2022;446:137093. doi: 10.1016/j.cej.2022.137093. DOI

Wang W., Bing X., Zhou Y., Geng M., Zhan Y., Xia H., Chen Z. Tunable electromagnetic interference shielding ability of MXene/chitosan/silver nanowire sandwich films. Funct. Mater. Lett. 2021;14:2151041. doi: 10.1142/S1793604721510413. DOI

Hroncekova S., Bertok T., Hires M., Jane E., Lorencova L., Vikartovska A., Tanvir A., Kasak P., Tkac J. Ultrasensitive Ti3C2TX MXene/Chitosan Nanocomposite-Based Amperometric Biosensor for Detection of Potential Prostate Cancer Marker in Urine Samples. Processes. 2020;8:580. doi: 10.3390/pr8050580. PubMed DOI PMC

Wang H., Dong A., Hu K., Sun W., Wang J., Han L., Mo L., Li L., Zhang W., Guo Y., et al. LBL assembly of Ag@Ti3C2TX and chitosan on PLLA substrate to enhance antibacterial and biocompatibility. Biomed. Mater. 2022;17:035006. doi: 10.1088/1748-605X/ac62e7. PubMed DOI

Wang Y., Jiang B., Sun T., Wang S., Jin Y. A bio-inspired MXene/quaternary chitosan membrane with a “brick-and-mortar” structure towards high-performance photothermal conversion. J. Mater. Chem. C. 2022;10:8043–8049. doi: 10.1039/D2TC00571A. DOI

Wu Z., Shi J., Song P., Li J., Cao S. Chitosan/hyaluronic acid based hollow microcapsules equipped with MXene/gold nanorods for synergistically enhanced near infrared responsive drug delivery. Int. J. Biol. Macromol. 2021;183:870–879. doi: 10.1016/j.ijbiomac.2021.04.164. PubMed DOI

Liu A., Liu Y., Liu G., Zhang A., Cheng Y., Li Y., Zhang L., Wang L., Zhou H., Liu J., et al. Engineering of surface modified Ti3C2Tx MXene based dually controlled drug release system for synergistic multitherapies of cancer. Chem. Eng. J. 2022;448:137691. doi: 10.1016/j.cej.2022.137691. DOI

Zhu B., Shi J., Liu C., Li J., Cao S. In-situ self-assembly of sandwich-like Ti3C2 MXene/gold nanorods nanosheets for synergistically enhanced near-infrared responsive drug delivery. Ceram. Int. 2021;47:24252–24261. doi: 10.1016/j.ceramint.2021.05.136. DOI

Lin B., Yin Yuen A.C., Oliver S., Liu J., Yu B., Yang W., Wu S., Yeoh G.H., Wang C.H. Dual functionalisation of polyurethane foam for unprecedented flame retardancy and antibacterial properties using layer-by-layer assembly of MXene chitosan with antibacterial metal particles. Compos. Part B Eng. 2022;244:110147. doi: 10.1016/j.compositesb.2022.110147. DOI

Hu T., Zhang M., Dong H., Li T., Zang X.-b., Li X., Ni Z.-h. Free-standing MXene/chitosan/Cu2O electrode: An enzyme-free and efficient biosensor for simultaneous determination of glucose and cholesterol. J. Zhejiang Univ. Sci. A. 2022;23:579–586. doi: 10.1631/jzus.A2100584. DOI

Wang L., Wang D.P., Wang K., Jiang K., Shen G. Biocompatible MXene/Chitosan-Based Flexible Bimodal Devices for Real-Time Pulse and Respiratory Rate Monitoring. ACS Mater. Lett. 2021;3:921–929. doi: 10.1021/acsmaterialslett.1c00246. DOI

Szuplewska A., Kulpińska D., Dybko A., Chudy M., Maria Jastrzębska A., Olszyna A., Brzózka Z. Future Applications of MXenes in Biotechnology, Nanomedicine, and Sensors. Trends Biotechnol. 2020;38:264–279. doi: 10.1016/j.tibtech.2019.09.001. PubMed DOI

Liu Y., Xu D., Ding Y., Lv X., Huang T., Yuan B., Jiang L., Sun X., Yao Y., Tang J. A conductive polyacrylamide hydrogel enabled by dispersion-enhanced MXene@chitosan assembly for highly stretchable and sensitive wearable skin. J. Mater. Chem. B. 2021;9:8862–8870. doi: 10.1039/D1TB01798E. PubMed DOI

Lorencova L., Gajdosova V., Hroncekova S., Bertok T., Blahutova J., Vikartovska A., Parrakova L., Gemeiner P., Kasak P., Tkac J. 2D MXenes as Perspective Immobilization Platforms for Design of Electrochemical Nanobiosensors. Electroanalysis. 2019;31:1833–1844. doi: 10.1002/elan.201900288. DOI

Kalambate P.K., Dhanjai, Sinha A., Yankai L., Shen Y., Huang Y. An electrochemical sensor for ifosfamide, acetaminophen, domperidone, and sumatriptan based on self-assembled MXene/MWCNT/chitosan nanocomposite thin film. Microchim. Acta. 2020;187:402. doi: 10.1007/s00604-020-04366-9. PubMed DOI

Li X., Lu Y., Shi Z., Liu G., Xu G., An Z., Xing H., Chen Q., Han R.P.S., Liu Q. Onion-inspired MXene/chitosan-quercetin multilayers: Enhanced response to H2O molecules for wearable human physiological monitoring. Sens. Actuators B Chem. 2021;329:129209. doi: 10.1016/j.snb.2020.129209. PubMed DOI

Sun W., Wu F.-G. Two-dimensional materials for antimicrobialapplications: Graphene materials and beyond. Chem. Asian J. 2018;13:3378–3410. doi: 10.1002/asia.201800851. PubMed DOI

Rasool K., Helal M., Ali A., Ren C.E., Gogotsi Y., Mahmoud K.A. Antibacterial Activity of Ti3C2Tx MXene. ACS Nano. 2016;10:3674–3684. doi: 10.1021/acsnano.6b00181. PubMed DOI

Khatami M., Alijani H., Sharifi I. Biosynthesis of bimetallic and core shell nanoparticles: Their biomedical applications: A review. IET Nanobiotechnol. 2018;12:879–887. doi: 10.1049/iet-nbt.2017.0308. PubMed DOI PMC

Khatami M., Alijani H.Q., Mousazadeh F., Hashemi N., Mahmoudi Z., Darijani S., Bamorovat M., Keyhani A., Abdollahpour-Alitappeh M., Borhani F. Calcium carbonate nanowires: Greener biosynthesis and their leishmanicidal activity. RSC Adv. 2020;10:38063–38068. doi: 10.1039/D0RA04503A. PubMed DOI PMC

Khatami M., Alijani H.Q., Nejad M.S., Varma R.S. Core@shell Nanoparticles: Greener Synthesis Using Natural Plant Products. Appl. Sci. 2018;8:411. doi: 10.3390/app8030411. DOI

Khatami M., Iravani S., Varma R.S., Mosazade F., Darroudi M., Borhani F. Cockroach wings-promoted safe and greener synthesis of silver nanoparticles and their insecticidal activity. Bioprocess Biosyst. Eng. 2019;42:2007–2014. doi: 10.1007/s00449-019-02193-8. PubMed DOI

Khatami M., Siavash I. MXenes and MXene-based Materials for the Removal of Water Pollutants: Challenges and Opportunities. Comments Inorg. Chem. 2021;41:213–248. doi: 10.1080/02603594.2021.1922396. DOI

Nazaripour E., Mousazadeh F., Moghadam M.D., Najafi K., Borhani F., Sarani M., Ghasemi M., Rahdar A., Iravani S., Khatami M. Biosynthesis of lead oxide and cerium oxide nanoparticles and their cytotoxic activities against colon cancer cell line. Inorg. Chem. Commun. 2021;131:108800. doi: 10.1016/j.inoche.2021.108800. DOI

Mayerberger E.A., Street R.M., McDaniel R.M., Barsoum M.W., Schauer C.L. Antibacterial properties of electrospun Ti3C2Tz (MXene)/chitosan nanofibers. RSC Adv. 2018;8:35386–35394. doi: 10.1039/C8RA06274A. PubMed DOI PMC

Yang X., Zhang C., Deng D., Gu Y., Wang H., Zhong Q. Multiple Stimuli-Responsive MXene-Based Hydrogel as Intelligent Drug Delivery Carriers for Deep Chronic Wound Healing. Small. 2022;18:2104368. doi: 10.1002/smll.202104368. PubMed DOI

Wang Y., Wan Y., Meng X., Jiang L., Wei H., Zhang X., Ma N. Bio-inspired MXene coated wood-like ordered chitosan aerogels for efficient solar steam generating devices. J. Mater. Sci. 2022;57:13962–13973. doi: 10.1007/s10853-022-07494-0. DOI

Perini G., Rosenkranz A., Friggeri G., Zambrano D., Rosa E., Augello A., Palmieri V., De Spirito M., Papi M. Advanced usage of Ti3C2Tx MXenes for photothermal therapy on different 3D breast cancer models. Biomed. Pharmacother. 2022;153:113496. doi: 10.1016/j.biopha.2022.113496. PubMed DOI

Li Y., Han M., Cai Y., Jiang B., Zhang Y., Yuan B., Zhou F., Cao C. Muscle-inspired MXene/PVA hydrogel with high toughness and photothermal therapy for promoting bacteria-infected wound healing. Biomater. Sci. 2022;10:1068–1082. doi: 10.1039/D1BM01604K. PubMed DOI

Jiang X., Kuklin A.V., Baev A., Ge Y., Ågren H., Zhang H., Prasad P.N. Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 2020;848:1–58. doi: 10.1016/j.physrep.2019.12.006. DOI

Hwang S.K., Kang S.-M., Rethinasabapathy M., Roh C., Huh Y.S. MXene: An emerging two-dimensional layered material for removal of radioactive pollutants. Chem. Eng. J. 2020;397:125428. doi: 10.1016/j.cej.2020.125428. DOI

Li S., Dong L., Wei Z., Sheng G., Du K., Hu B. Adsorption and mechanistic study of the invasive plant-derived biochar functionalized with CaAl-LDH for Eu (III) in water. J. Environ. Sci. 2020;96:127–137. doi: 10.1016/j.jes.2020.05.001. PubMed DOI

Champagne A., Charlier J.-C. Physical properties of 2D MXenes: From a theoretical perspective. J. Phys. Mater. 2021;3:032006. doi: 10.1088/2515-7639/ab97ee. DOI

Mostafavi E., Iravani S. MXene-Graphene Composites: A Perspective on Biomedical Potentials. Nano-Micro Lett. 2022;14:130. doi: 10.1007/s40820-022-00880-y. PubMed DOI PMC

Tabish T.A., Pranjol M.Z.I., Jabeen F., Abdullah T., Latif A., Khalid A., Ali M., Hayat H., Winyard P.G., Whatmore J.L., et al. Investigation into the toxic effects of graphene nanopores on lung cancer cells and biological tissues. Appl. Mater. Today. 2018;12:389–401. doi: 10.1016/j.apmt.2018.07.005. DOI

Han X., Huang J., Lin H., Wang Z., Li P., Chen Y. 2D Ultrathin MXene-Based Drug-Delivery Nanoplatform for Synergistic Photothermal Ablation and Chemotherapy of Cancer. Adv. Healthc. Mater. 2018;7:1701394. doi: 10.1002/adhm.201701394. PubMed DOI

Han X., Jing X., Yang D., Lin H., Wang Z., Ran H., Li P., Chen Y. Therapeutic mesopore construction on 2D Nb2C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow. Theranostics. 2018;8:4491–4508. doi: 10.7150/thno.26291. PubMed DOI PMC

Lin H., Chen Y., Shi J. Insights into 2D MXenes for Versatile Biomedical Applications: Current Advances and Challenges Ahead. Adv. Sci. 2018;5:1800518. doi: 10.1002/advs.201800518. PubMed DOI PMC

Lin H., Wang Y., Gao S., Chen Y., Shi J. Theranostic 2D Tantalum Carbide (MXene) Adv. Mater. 2018;30:1703284. doi: 10.1002/adma.201703284. PubMed DOI

Vasyukova I.A., Zakharova O.V., Kuznetsov D.V., Gusev A.A. Synthesis, toxicity assessment, environmental and biomedical applications of MXenes: A review. Nanomaterials. 2022;12:1797. doi: 10.3390/nano12111797. PubMed DOI PMC

Nasrallah G.K., Al-Asmakh M., Rasool K., Mahmoud K.A. Ecotoxicological assessment of Ti3C2Tx (MXene) using a zebrafish embryo model. Environ. Sci Nano. 2018;5:1002–1011. doi: 10.1039/C7EN01239J. DOI

Hussein E.A., Zagho M.M., Rizeq B.R., Younes N.N., Pintus G., Mahmoud K.A., Nasrallah G.K., Elzatahry A.A. Plasmonic MXene-based nanocomposites exhibiting photothermal therapeutic effects with lower acute toxicity than pure MXene. Int. J. Nanomed. 2019;14:4529–4539. doi: 10.2147/IJN.S202208. PubMed DOI PMC

Pan S., Yin J., Yu L., Zhang C., Zhu Y., Gao Y., Chen Y. 2D MXene-Integrated 3D-Printing Scaffolds for Augmented Osteosarcoma Phototherapy and Accelerated Tissue Reconstruction. Adv. Sci. 2020;7:1901511. doi: 10.1002/advs.201901511. PubMed DOI PMC

Dai C., Lin H., Xu G., Liu Z., Wu R., Chen Y. Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia. Chem. Mater. 2017;29:8637–8652. doi: 10.1021/acs.chemmater.7b02441. DOI

Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., Barsoum M.W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011;23:4248–4253. doi: 10.1002/adma.201102306. PubMed DOI

Lin H., Gao S., Dai C., Chen Y., Shi J. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 2017;139:16235–16247. doi: 10.1021/jacs.7b07818. PubMed DOI

Huang K., Li Z., Lin J., Han G., Huang P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018;47:5109–5124. doi: 10.1039/C7CS00838D. PubMed DOI

Xu Z., Liu G., Ye H., Jin W., Cui Z. Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration. J. Membr. Sci. 2018;563:625–632. doi: 10.1016/j.memsci.2018.05.044. DOI

Pu L., Zhang J., Jiresse N.K.L., Gao Y., Zhou H., Naik N., Gao P., Guo Z. N-doped MXene derived from chitosan for the highly effective electrochemical properties as supercapacitor. Adv. Compos. Hybrid Mater. 2022;5:356–369. doi: 10.1007/s42114-021-00371-5. DOI

Prakash N.J., Kandasubramanian B. Nanocomposites of MXene for industrial applications. J. Alloys Compd. 2021;862:158547. doi: 10.1016/j.jallcom.2020.158547. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

MXene-Carbon Nanotube Composites: Properties and Applications

. 2023 Jan 14 ; 13 (2) : . [epub] 20230114

Advanced MXene-Based Micro- and Nanosystems for Targeted Drug Delivery in Cancer Therapy

. 2022 Oct 19 ; 13 (10) : . [epub] 20221019

MXene-Based Photocatalysts in Degradation of Organic and Pharmaceutical Pollutants

. 2022 Oct 16 ; 27 (20) : . [epub] 20221016

MXenes in Cancer Nanotheranostics

. 2022 Sep 27 ; 12 (19) : . [epub] 20220927

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...