Multitargeting nature of muscarinic orthosteric agonists and antagonists
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
36148314
PubMed Central
PMC9486310
DOI
10.3389/fphys.2022.974160
PII: 974160
Knihovny.cz E-resources
- Keywords
- allosteric, multitarget, muscarinic agonist, muscarinic antagonist, muscarinic receptors, orthosteric,
- Publication type
- Journal Article MeSH
- Review MeSH
Muscarinic receptors (mAChRs) are typical members of the G protein-coupled receptor (GPCR) family and exist in five subtypes from M1 to M5. Muscarinic receptor subtypes do not sufficiently differ in affinity to orthosteric antagonists or agonists; therefore, the analysis of receptor subtypes is complicated, and misinterpretations can occur. Usually, when researchers mainly specialized in CNS and peripheral functions aim to study mAChR involvement in behavior, learning, spinal locomotor networks, biological rhythms, cardiovascular physiology, bronchoconstriction, gastrointestinal tract functions, schizophrenia, and Parkinson's disease, they use orthosteric ligands and they do not use allosteric ligands. Moreover, they usually rely on manufacturers' claims that could be misleading. This review aimed to call the attention of researchers not deeply focused on mAChR pharmacology to this fact. Importantly, limited selective binding is not only a property of mAChRs but is a general attribute of most neurotransmitter receptors. In this review, we want to give an overview of the most common off-targets for established mAChR ligands. In this context, an important point is a mention the tremendous knowledge gap on off-targets for novel compounds compared to very well-established ligands. Therefore, we will summarize reported affinities and give an outline of strategies to investigate the subtype's function, thereby avoiding ambiguous results. Despite that, the multitargeting nature of drugs acting also on mAChR could be an advantage when treating such diseases as schizophrenia. Antipsychotics are a perfect example of a multitargeting advantage in treatment. A promising strategy is the use of allosteric ligands, although some of these ligands have also been shown to exhibit limited selectivity. Another new direction in the development of muscarinic selective ligands is functionally selective and biased agonists. The possible selective ligands, usually allosteric, will also be listed. To overcome the limited selectivity of orthosteric ligands, the recommended process is to carefully examine the presence of respective subtypes in specific tissues via knockout studies, carefully apply "specific" agonists/antagonists at appropriate concentrations and then calculate the probability of a specific subtype involvement in specific functions. This could help interested researchers aiming to study the central nervous system functions mediated by the muscarinic receptor.
See more in PubMed
Abatematteo F. S., Niso M., Contino M., Leopoldo M., Abate C. (2021). Multi-target directed ligands (MTDLs) binding the σ1 receptor as promising therapeutics: State of the art and perspectives. Int. J. Mol. Sci. 22, 6359. 10.3390/ijms22126359 PubMed DOI PMC
Abdul-Ridha A., Lane J. R., Mistry S. N., López L., Sexton P. M., Scammells P. J., et al. (2014). Mechanistic insights into allosteric structure-function relationships at the M1 muscarinic acetylcholine receptor. J. Biol. Chem. 289, 33701–33711. 10.1074/jbc.M114.604967 PubMed DOI PMC
Ahlin G., Karlsson J., Pedersen J. M., Gustavsson L., Larsson R., Matsson P., et al. (2008). Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1. J. Med. Chem. 51, 5932–5942. 10.1021/jm8003152 PubMed DOI
Alexander S. P., Christopoulos A., Davenport A. P., Kelly E., Marrion N. V., Peters J. A., et al. (2017a). The concise guide to pharmacology 2017/18: G protein-coupled receptors. Br. J. Pharmacol. 174, S17–S129. 10.1111/bph.13878 PubMed DOI PMC
Alexander S. P. H., Peters J. A., Kelly E., Marrion N. V., Faccenda E., Harding S. D., et al. (2017b). The concise guide to pharmacology 2017/18: Ligand‐gated ion channels. Br. J. Pharmacol. 174, S130–S159. 10.1111/bph.13879 PubMed DOI PMC
Apelt J., Ligneau X., Pertz H. H., Arrang J. M., Ganellin C. R., Schwartz J. C., et al. (2002). Development of a new class of nonimidazole histamine H(3) receptor ligands with combined inhibitory histamine N-methyltransferase activity. J. Med. Chem. 45, 1128–1141. 10.1021/jm0110845 PubMed DOI
Arunotayanun W., Dalley J. W., Huang X. P., Setola V., Treble R., Iversen L., et al. (2013). An analysis of the synthetic tryptamines AMT and 5-MeO-DALT: Emerging 'novel psychoactive drugs. Bioorg. Med. Chem. Lett. 23, 3411–3415. 10.1016/j.bmcl.2013.03.066 PubMed DOI
Augelli-Szafran C. E., Jaen J. C., Moreland D. W., Nelson C. B., Penvose-Yi J. R., Schwarz R. D. (1998). Identification and characterization of m4 selective muscarinic antagonists. Bioorg. Med. Chem. Lett. 8, 1991–1996. 10.1016/s0960-894x(98)00351-5 PubMed DOI
Avlani V. A., Gregory K. J., Morton C. J., Parker M. W., Sexton P. M., Christopoulos A. (2007). Critical role for the second extracellular loop in the binding of both orthosteric and allosteric G protein-coupled receptor ligands. J. Biol. Chem. 282, 25677–25686. 10.1074/jbc.M702311200 PubMed DOI
Bandyopadhyaya A., Rajagopalan D. R., Rath N. P., Herrold A., Rajagopalan R., Napier T. C., et al. (2012). The synthesis and receptor binding affinities of DDD-016, a novel, potential, atypical antipsychotic. MedChemComm 3, 580–583. 10.1039/c2md00311b DOI
Bardien-Kruger S., Wulff H., Arieff Z., Brink P., Chandy K. G., Corfield V. (2002). Characterisation of the human voltage-gated potassium channel gene, KCNA7, a candidate gene for inherited cardiac disorders, and its exclusion as cause of progressive familial heart block I (PFHBI). Eur. J. Hum. Genet. 10, 36–43. 10.1038/sj.ejhg.5200739 PubMed DOI
Beattie D., Beer D., Bradley M. E., Bruce I., Charlton S. J., Cuenoud B. M., et al. (2012). An investigation into the structure–activity relationships associated with the systematic modification of the β2-adrenoceptor agonist indacaterol. Bioorg. Med. Chem. Lett. 22, 6280–6285. 10.1016/j.bmcl.2012.07.096 PubMed DOI
Becerra M. A., Herrera M. D., Marhuenda E. (2001). Action of tacrine on muscarinic receptors in rat intestinal smooth muscle. J. Auton. Pharmacol. 21, 113–119. 10.1046/j.1365-2680.2001.00213.x PubMed DOI
Belzer M., Morales M., Jagadish B., Mash E. A., Wright S. H. (2013). Substrate-dependent ligand inhibition of the human organic cation transporter OCT2. J. Pharmacol. Exp. Ther. 346, 300–310. 10.1124/jpet.113.203257 PubMed DOI PMC
Benes J., Novakova M., Rotkova J., Farar V., Kvetnansky R., Riljak V., et al. (2012). Beta3 adrenoceptors substitute the role of M-2 muscarinic receptor in coping with cold stress in the heart: Evidence from M2KO mice. Cell. Mol. Neurobiol. 32, 859–869. 10.1007/s10571-011-9781-3 PubMed DOI PMC
Bertron J. L., Cho H. P., Garcia-Barrantes P. M., Panarese J. D., Salovich J. M., Nance K. D., et al. (2018). The discovery of VU0486846: Steep SAR from a series of M(1) PAMs based on a novel benzomorpholine core. Bioorg. Med. Chem. Lett. 28, 2175–2179. 10.1016/j.bmcl.2018.05.009 PubMed DOI PMC
Beshore D. C., C N. D. M., Chang R. K., Greshock T. J., Ma L., Wittmann M., et al. (2018). MK-7622: A first-in-class M(1) positive allosteric modulator development candidate. ACS Med. Chem. Lett. 9, 652–656. 10.1021/acsmedchemlett.8b00095 PubMed DOI PMC
Birdsall N. J., Farries T., Gharagozloo P., Kobayashi S., Lazareno S., Sugimoto M. (1999). Subtype-selective positive cooperative interactions between brucine analogs and acetylcholine at muscarinic receptors: Functional studies. Mol. Pharmacol. 55, 778–786. PubMed
Birdsall N. J., Lazareno S., Popham A., Saldanha J. (2001). Multiple allosteric sites on muscarinic receptors. Life Sci. 68, 2517–2524. 10.1016/s0024-3205(01)01047-5 PubMed DOI
Bock A., Schrage R., Mohr K. (2018). Allosteric modulators targeting CNS muscarinic receptors. Neuropharmacology 136, 427–437. 10.1016/j.neuropharm.2017.09.024 PubMed DOI
Boess F. G., Riemer C., Bös M., Bentley J., Bourson A., Sleight A. J. (1998). The 5-hydroxytryptamine6 receptor-selective radioligand [3H]Ro 63-0563 labels 5-hydroxytryptamine receptor binding sites in rat and porcine striatum. Mol. Pharmacol. 54, 577–583. 10.1124/mol.54.3.577 PubMed DOI
Bohme T. M., Augelli-Szafran C. E., Hallak H., Pugsley T., Serpa K., Schwarz R. D. (2002). Synthesis and pharmacology of benzoxazines as highly selective antagonists at M(4) muscarinic receptors. J. Med. Chem. 45, 3094–3102. 10.1021/jm011116o PubMed DOI
Böhme T. M., Keim C., Kreutzmann K., Linder M., Dingermann T., Dannhardt G., et al. (2003). Structure-activity relationships of dimethindene derivatives as new M2-selective muscarinic receptor antagonists. J. Med. Chem. 46, 856–867. 10.1021/jm020895l PubMed DOI
Bolchi C., Valoti E., Binda M., Fasoli F., Ferrara R., Fumagalli L., et al. (2013). Design, synthesis and binding affinity of acetylcholine carbamoyl analogues. Bioorg. Med. Chem. Lett. 23, 6481–6485. 10.1016/j.bmcl.2013.09.023 PubMed DOI
Bolden C., Cusack B., Richelson E. (1992). Antagonism by antimuscarinic and neuroleptic compounds at the five cloned human muscarinic cholinergic receptors expressed in Chinese hamster ovary cells. J. Pharmacol. Exp. Ther. 260, 576–580. PubMed
Bolognesi M. L., Minarini A., Budriesi R., Cacciaguerra S, Chiarini A., Spampinato S., et al. (1998). Universal template approach to drug design: Polyamines as selective muscarinic receptor antagonists. J. Med. Chem. 41, 4150–4160. 10.1021/jm981038d PubMed DOI
Bonner T. I. (1989). The molecular basis of muscarinic receptor diversity. Trends Neurosci. 12, 148–151. 10.1016/0166-2236(89)90054-4 PubMed DOI
Brady A. E., Jones C. K., Bridges T. M., Kennedy J. P., Thompson A. D., Heiman J. U., et al. (2008). Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats. J. Pharmacol. Exp. Ther. 327, 941–953. 10.1124/jpet.108.140350 PubMed DOI PMC
Bridges T. M., Kennedy J. P., Cho H. P., Breininger M. L., Gentry P. R., Hopkins C. R., et al. (2010b). Chemical lead optimization of a pan Gq mAChR M1, M3, M5 positive allosteric modulator (PAM) lead. Part I: Development of the first highly selective M5 PAM. Bioorg. Med. Chem. Lett. 20, 558–562. 10.1016/j.bmcl.2009.11.089 PubMed DOI PMC
Bridges T. M., Kennedy J. P., Hopkins C. R., Conn P. J., Lindsley C. W. (2010a). Heterobiaryl and heterobiaryl ether derived M5 positive allosteric modulators. Bioorg. Med. Chem. Lett. 20, 5617–5622. 10.1016/j.bmcl.2010.08.042 PubMed DOI PMC
Bridges T. M., Marlo J. E., Niswender C. M., Jones C. K., Jadhav S. B., Gentry P. R., et al. (2009). Discovery of the first highly M5-preferring muscarinic acetylcholine receptor ligand, an M5 positive allosteric modulator derived from a series of 5-trifluoromethoxy N-benzyl isatins. J. Med. Chem. 52, 3445–3448. 10.1021/jm900286j PubMed DOI PMC
Broad L. M., Sanger H. E., Mogg A. J., Colvin E. M., Zwart R., Evans D. A., et al. (2019). Identification and pharmacological profile of SPP1, a potent, functionally selective and brain penetrant agonist at muscarinic M(1) receptors. Br. J. Pharmacol. 176, 110–126. 10.1111/bph.14510 PubMed DOI PMC
Brunhofer G., Fallarero A., Karlsson D., Batista-Gonzalez A., Shinde P., Gopi Mohan C., et al. (2012). Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: The case of chelerythrine. Bioorg. Med. Chem. 20, 6669–6679. 10.1016/j.bmc.2012.09.040 PubMed DOI
Brus B., Košak U., Turk S., Pišlar A., Coquelle N., Kos J., et al. (2014). Discovery, biological evaluation, and crystal structure of a novel nanomolar selective butyrylcholinesterase inhibitor. J. Med. Chem. 57, 8167–8179. 10.1021/jm501195e PubMed DOI
Bubser M., Bridges T. M., Dencker D., Gould R. W., Grannan M., Noetzel M. J., et al. (2014). Selective activation of M4 muscarinic acetylcholine receptors reverses MK-801-induced behavioral impairments and enhances associative learning in rodents. ACS Chem. Neurosci. 5, 920–942. 10.1021/cn500128b PubMed DOI PMC
Buckley N. J., Bonner T. I., Buckley C. M., Brann M. R. (1989). Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. Mol. Pharmacol. 35, 469–476. PubMed
Buckley N. J., Hulme E. C., Birdsall N. J. (1990). Use of clonal cell lines in the analysis of neurotransmitter receptor mechanisms and function. Biochim. Biophys. Acta 1055, 43–53. 10.1016/0167-4889(90)90089-v PubMed DOI
Burger W. a. C., Gentry P. R., Berizzi A. E., Vuckovic Z., Van Der Westhuizen E. T., Thompson G., et al. (2021). Identification of a novel allosteric site at the M(5) muscarinic acetylcholine receptor. ACS Chem. Neurosci. 12, 3112–3123. 10.1021/acschemneuro.1c00383 PubMed DOI PMC
Butini S., Campiani G., Borriello M., Gemma S., Panico A., Persico M., et al. (2008). Exploiting protein fluctuations at the active-site gorge of human cholinesterases: Further optimization of the design strategy to develop extremely potent inhibitors. J. Med. Chem. 51, 3154–3170. 10.1021/jm701253t PubMed DOI
Canals M., Lane J. R., Wen A., Scammells P. J., Sexton P. M., Christopoulos A. (2012). A monod-wyman-changeux mechanism can explain G protein-coupled receptor (GPCR) allosteric modulation *. J. Biol. Chem. 287, 650–659. 10.1074/jbc.M111.314278 PubMed DOI PMC
Cantí C., Bodas E., Marsal J., Solsona C. (1998). Tacrine and physostigmine block nicotinic receptors in Xenopus oocytes injected with Torpedo electroplaque membranes. Eur. J. Pharmacol. 363, 197–202. 10.1016/s0014-2999(98)00793-6 PubMed DOI
Carlsson B., Singh B. N., Temciuc M., Nilsson S., Li Y.-L., Mellin C., et al. (2002). Synthesis and preliminary characterization of a novel antiarrhythmic compound (KB130015) with an improved toxicity profile compared with amiodarone. J. Med. Chem. 45, 623–630. 10.1021/jm001126+ PubMed DOI
Carr B. J., Mihara K., Ramachandran R., Saifeddine M., Nathanson N. M., Stell W. K., et al. (2018). Myopia-inhibiting concentrations of muscarinic receptor antagonists block Activation of Alpha2A-adrenoceptors in vitro . Invest. Ophthalmol. Vis. Sci. 59, 2778–2791. 10.1167/iovs.17-22562 PubMed DOI
Caulfield M. P., Birdsall N. J. (1998). International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol. Rev. 50, 279–290. PubMed
Chackalamannil S., Ahn H. S., Xia Y., Doller D., Foster C. (2003). Potent non-peptide thrombin receptor antagonists. Curr. Med. Chem. Cardiovasc. Hematol. Agents 1, 37–45. 10.2174/1568016033356706 PubMed DOI
Chahdi A., Daeffler L., Gies J. P., Landry Y. (1998). Drugs interacting with G protein alpha subunits: Selectivity and perspectives. Fundam. Clin. Pharmacol. 12, 121–132. 10.1111/j.1472-8206.1998.tb00932.x PubMed DOI
Chatelain P., Meysmans L., Matteazzi J. R., Beaufort P., Clinet M. (1995). Interaction of the antiarrhythmic agents SR 33589 and amiodarone with the beta-adrenoceptor and adenylate cyclase in rat heart. Br. J. Pharmacol. 116, 1949–1956. 10.1111/j.1476-5381.1995.tb16397.x PubMed DOI PMC
Chelliah M. V., Chackalamannil S., Xia Y., Greenlee W. J., Ahn H. S., Kurowski S., et al. (2014). Himbacine-derived thrombin receptor antagonists: c7-aminomethyl and c9a-hydroxy analogues of vorapaxar. ACS Med. Chem. Lett. 5, 183–187. 10.1021/ml400452v PubMed DOI PMC
Chen E. C., Khuri N., Liang X., Stecula A., Chien H. C., Yee S. W., et al. (2017). Discovery of competitive and noncompetitive ligands of the organic cation transporter 1 (OCT1; SLC22A1). J. Med. Chem. 60, 2685–2696. 10.1021/acs.jmedchem.6b01317 PubMed DOI
Chen W.-Y., Wen Y.-C., Lin S.-R., Yeh H.-L., Jiang K.-C., Chen W.-H., et al. (2021). Nerve growth factor interacts with CHRM4 and promotes neuroendocrine differentiation of prostate cancer and castration resistance. Commun. Biol. 4, 22. 10.1038/s42003-020-01549-1 PubMed DOI PMC
Cheng K., Khurana S., Chen Y., Kennedy R. H., Zimniak P., Raufman J. P. (2002). Lithocholylcholine, a bile acid/acetylcholine hybrid, is a muscarinic receptor antagonist. J. Pharmacol. Exp. Ther. 303, 29–35. 10.1124/jpet.102.036376 PubMed DOI
Cheng Q., Shah N., Bröer A., Fairweather S., Jiang Y., Schmoll D., et al. (2017). Identification of novel inhibitors of the amino acid transporter B(0) AT1 (SLC6A19), a potential target to induce protein restriction and to treat type 2 diabetes. Br. J. Pharmacol. 174, 468–482. 10.1111/bph.13711 PubMed DOI PMC
Chidlow G., Osborne N. N. (1997). Antagonism of muscarinic receptors in the rabbit iris-ciliary body by 8-OH-DPAT and other 5-HT1A receptor agonists. J. Neural Transm. 104, 1015–1025. 10.1007/BF01273315 PubMed DOI
Choppin A., Stepan G. J., Loury D. N., Watson N., Eglen R. M. (1999). Characterization of the muscarinic receptor in isolated uterus of sham operated and ovariectomized rats. Br. J. Pharmacol. 127, 1551–1558. 10.1038/sj.bjp.0702696 PubMed DOI PMC
Christopoulos A., Changeux J.-P., Catterall W. A., Fabbro D., Burris T. P., Cidlowski J. A., et al. (2014). International union of basic and clinical pharmacology. XC. Multisite pharmacology: Recommendations for the nomenclature of receptor allosterism and allosteric ligands. Pharmacol. Rev. 66, 918–947. 10.1124/pr.114.008862 PubMed DOI PMC
Clark A. L., Mitchelson F. (1976). The inhibitory effect of gallamine on muscarinic receptors. Br. J. Pharmacol. 58, 323–331. 10.1111/j.1476-5381.1976.tb07708.x PubMed DOI PMC
Connolly G. P., Stone T. W. (1995). Adenosine selectively depresses muscarinic compared with non-muscarinic receptor mediated depolarisation of the rat superior cervical ganglion. Gen. Pharmacol. 26, 865–873. 10.1016/0306-3623(94)00257-n PubMed DOI
Connolly S., Alcaraz L., Bailey A., Cadogan E., Christie J., Cook A. R., et al. (2011). Design-driven LO: The discovery of new ultra long acting dibasic β2-adrenoceptor agonists. Bioorg. Med. Chem. Lett. 21, 4612–4616. 10.1016/j.bmcl.2011.05.097 PubMed DOI
Coughlin Q., Hopper A. T., Blanco M.-J., Tirunagaru V., Robichaud A. J., Doller D. (2019). Allosteric modalities for membrane-bound receptors: Insights from drug hunting for brain diseases. J. Med. Chem. 62, 5979–6002. 10.1021/acs.jmedchem.8b01651 PubMed DOI
Croy C. H., Chan W. Y., Castetter A. M., Watt M. L., Quets A. T., Felder C. C. (2016). Characterization of PCS1055, a novel muscarinic M4 receptor antagonist. Eur. J. Pharmacol. 782, 70–76. 10.1016/j.ejphar.2016.04.022 PubMed DOI
Croy C. H., Schober D. A., Xiao H., Quets A., Christopoulos A., Felder C. C. (2014). Characterization of the novel positive allosteric modulator, LY2119620, at the muscarinic M2 and M4 receptors. Mol. Pharmacol. 86, 106–115. 10.1124/mol.114.091751 PubMed DOI
Daval S. B., Valant C., Bonnet D., Kellenberger E., Hibert M., Galzi J.-L., et al. (2012). Fluorescent derivatives of AC-42 to probe bitopic orthosteric/allosteric binding mechanisms on muscarinic M1 receptors. J. Med. Chem. 55, 2125–2143. 10.1021/jm201348t PubMed DOI
Davoren J. E., Lee C. W., Garnsey M., Brodney M. A., Cordes J., Dlugolenski K., et al. (2016). Discovery of the potent and selective M1 PAM-agonist N-[(3R, 4S)-3-Hydroxytetrahydro-2H-pyran-4-yl]-5-methyl-4-[4-(1, 3-thiazol-4-yl)benzyl]pyridine-2-carboxamide (PF-06767832): Evaluation of efficacy and cholinergic side effects. J. Med. Chem. 59, 6313–6328. 10.1021/acs.jmedchem.6b00544 PubMed DOI
Dean B., Scarr E. (2020). Muscarinic M1 and M4 receptors: Hypothesis driven drug development for schizophrenia. Psychiatry Res. 288, 112989. 10.1016/j.psychres.2020.112989 PubMed DOI
Dhein S., Van Koppen C. J., Brodde O. E. (2001). Muscarinic receptors in the mammalian heart. Pharmacol. Res. 44, 161–182. 10.1006/phrs.2001.0835 PubMed DOI
Disingrini T., Muth M., Dallanoce C., Barocelli E., Bertoni S., Kellershohn K., et al. (2006). Design, synthesis, and action of oxotremorine-related hybrid-type Allosteric modulators of muscarinic acetylcholine receptors. J. Med. Chem. 49, 366–372. 10.1021/jm050769s PubMed DOI
Dojo K., Yamaguchi Y., Fustin J.-M., Doi M., Kobayashi M., Okamura H. (2017). Carbachol induces phase-dependent phase shifts of Per1 transcription rhythms in cultured suprachiasmatic nucleus slices. J. Biol. Rhythms 32, 101–108. 10.1177/0748730417691205 PubMed DOI
Doods H. N., Entzeroth M., Ziegler H., Mayer N., Holzer P. (1994). Pharmacological profile of selective muscarinic receptor antagonists on Guinea-pig ileal smooth muscle. Eur. J. Pharmacol. 253, 275–281. 10.1016/0014-2999(94)90202-x PubMed DOI
Doods H. N., Willim K. D., Boddeke H. W., Entzeroth M. (1993). Characterization of muscarinic receptors in Guinea-pig uterus. Eur. J. Pharmacol. 250, 223–230. 10.1016/0014-2999(93)90385-u PubMed DOI
Dupuis D. S., Mannoury La Cour C., Chaput C., Verrièle L., Lavielle G., Millan M. J. (2008). Actions of novel agonists, antagonists and antipsychotic agents at recombinant rat 5-HT6 receptors: A comparative study of coupling to G alpha s. Eur. J. Pharmacol. 588, 170–177. 10.1016/j.ejphar.2008.04.039 PubMed DOI
Eglen R. M., Bonhaus D. W., Johnson L. G., Leung E., Clark R. D. (1995). Pharmacological characterization of two novel and potent 5-HT4 receptor agonists, RS 67333 and RS 67506, in vitro and in vivo . Br. J. Pharmacol. 115, 1387–1392. 10.1111/j.1476-5381.1995.tb16628.x PubMed DOI PMC
Eglen R. M., Nahorski S. R. (2000). The muscarinic M(5) receptor: A silent or emerging subtype? Br. J. Pharmacol. 130, 13–21. 10.1038/sj.bjp.0703276 PubMed DOI PMC
Eglen R. M., Whiting R. L. (1987). Competitive and non-competitive antagonism exhibited by 'selective' antagonists at atrial and ileal muscarinic receptor subtypes. Br. J. Pharmacol. 90, 701–707. 10.1111/j.1476-5381.1987.tb11223.x PubMed DOI PMC
Farar V., Myslivecek J. (2016). “Autoradiography assessment of muscarinic receptors in the central nervous system,” in Muscarinic receptor: From structure to animal models. Editors Myslivecek J., Jakubik J. (New York: Springer; ), 159–180.
Farde L., Suhara T., Halldin C., Nybäck H., Nakashima Y., Swahn C. G., et al. (1996). PET study of the M1-agonists [11C]xanomeline and [11C]butylthio-TZTP in monkey and man. Dementia 7, 187–195. 10.1159/000106877 PubMed DOI
Felder C. C., Goldsmith P. J., Jackson K., Sanger H. E., Evans D. A., Mogg A. J., et al. (2018). Current status of muscarinic M1 and M4 receptors as drug targets for neurodegenerative diseases. Neuropharmacology 136, 449–458. 10.1016/j.neuropharm.2018.01.028 PubMed DOI
Fernández De Sevilla D., Núñez A., Buño W. (2021). Muscarinic receptors, from synaptic plasticity to its role in network activity. Neuroscience 456, 60–70. 10.1016/j.neuroscience.2020.04.005 PubMed DOI
Ferrari-Dileo G., Waelbroeck M., Mash D. C., Flynn D. D. (1994). Selective labeling and localization of the M4 (m4) muscarinic receptor subtype. Mol. Pharmacol. 46, 1028–1035. PubMed
Fisher A. (2008). Cholinergic treatments with emphasis on m1 muscarinic agonists as potential disease-modifying agents for Alzheimer's disease. Neurotherapeutics 5, 433–442. 10.1016/j.nurt.2008.05.002 PubMed DOI PMC
Flamez A., De Backer J.-P., Wilczak N., Vauquelin G., De Keyser J. (1994). [3H]Clozapine is not a suitable radioligand for the labelling of D4 dopamine receptors in postmortem human brain. Neurosci. Lett. 175, 17–20. 10.1016/0304-3940(94)91067-7 PubMed DOI
Foster D. J., Bryant Z. K., Conn P. J. (2021). Targeting muscarinic receptors to treat schizophrenia. Behav. Brain Res. 405, 113201. 10.1016/j.bbr.2021.113201 PubMed DOI PMC
Fowler C. J., Ahlgren P. C., O'neill C. (1991). Antagonism by 8-hydroxy-2(di-n-propylamino)tetraline and other serotonin agonists of muscarinic M1-type receptors coupled to inositol phospholipid breakdown in human IMR-32 and SK-N-MC neuroblastoma cells. Life Sci. 48, 959–967. 10.1016/0024-3205(91)90361-e PubMed DOI
Fruchart-Gaillard C., Mourier G., Marquer C., Ménez A., Servent D. (2006). Identification of various allosteric interaction sites on M1 muscarinic receptor using 125I-Met35-Oxidized muscarinic toxin 7. Mol. Pharmacol. 69, 1641–1651. 10.1124/mol.105.020883 PubMed DOI
Gaulton A., Hersey A., Nowotka M., Bento A. P., Chambers J., Mendez D., et al. (2016). The ChEMBL database in 2017. Nucleic Acids Res. 45, D945–D954. 10.1093/nar/gkw1074 PubMed DOI PMC
Gentry P. R., Bridges T. M., Lamsal A., Vinson P. N., Smith E., Chase P., et al. (2013a). Discovery of ML326: The first sub-micromolar, selective M5 PAM. Bioorg. Med. Chem. Lett. 23, 2996–3000. 10.1016/j.bmcl.2013.03.032 PubMed DOI PMC
Gentry P. R., Kokubo M., Bridges T. M., Cho H. P., Smith E., Chase P., et al. (2014a). Discovery, synthesis and characterization of a highly muscarinic acetylcholine receptor (mAChR)-selective M5-orthosteric antagonist, VU0488130 (ML381): A novel molecular probe. ChemMedChem 9, 1677–1682. 10.1002/cmdc.201402051 PubMed DOI PMC
Gentry P. R., Kokubo M., Bridges T. M., Kett N. R., Harp J. M., Cho H. P., et al. (2013b). Discovery of the first M5-selective and CNS penetrant negative allosteric modulator (NAM) of a muscarinic acetylcholine receptor: (S)-9b-(4-chlorophenyl)-1-(3, 4-difluorobenzoyl)-2, 3-dihydro-1H-imidazo[2, 1-a]isoindol-5(9bH)-one (ML375). J. Med. Chem. 56, 9351–9355. 10.1021/jm4013246 PubMed DOI PMC
Gentry P. R., Kokubo M., Bridges T. M., Noetzel M. J., Cho H. P., Lamsal A., et al. (2014b). Development of a highly potent, novel M5 positive allosteric modulator (PAM) demonstrating CNS exposure: 1-((1H-indazol-5-yl)sulfoneyl)-N-ethyl-N-(2-(trifluoromethyl)benzyl)piperidine-4-carboxamide (ML380). J. Med. Chem. 57, 7804–7810. 10.1021/jm500995y PubMed DOI PMC
Ghoneim O. M., Legere J. A., Golbraikh A., Tropsha A., Booth R. G. (2006). Novel ligands for the human histamine H1 receptor: Synthesis, pharmacology, and comparative molecular field analysis studies of 2-dimethylamino-5-(6)-phenyl-1, 2, 3, 4-tetrahydronaphthalenes. Bioorg. Med. Chem. 14, 6640–6658. 10.1016/j.bmc.2006.05.077 PubMed DOI
Griffith R. C., Gentile R. J., Robichaud R. C., Frankenheim J. (1984). cis-1, 3, 4, 6, 7, 11b-Hexahydro-2-methyl-7-phenyl-2H-pyrazino[2, 1-a] isoquinoline: a new atypical antidepressant. J. Med. Chem. 27, 995–1003. 10.1021/jm00374a011 PubMed DOI
Hall M. D., Salam N. K., Hellawell J. L., Fales H. M., Kensler C. B., Ludwig J. A., et al. (2009). Synthesis, activity, and pharmacophore development for isatin-β-thiosemicarbazones with selective activity toward multidrug-resistant cells. J. Med. Chem. 52, 3191–3204. 10.1021/jm800861c PubMed DOI PMC
Hals P. A., Hall H., Dahl S. G. (1988). Muscarinic cholinergic and histamine H1 receptor binding of phenothiazine drug metabolites. Life Sci. 43, 405–412. 10.1016/0024-3205(88)90519-x PubMed DOI
Harada T., Fushimi K., Kato A., Ito Y., Nishijima S., Sugaya K., et al. (2010). Demonstration of muscarinic and nicotinic receptor binding activities of distigmine to treat detrusor underactivity. Biol. Pharm. Bull. 33, 653–658. 10.1248/bpb.33.653 PubMed DOI
Harvey A. L., Kornisiuk E., Bradley K. N., Cerveñansky C., Durán R., Adrover M., et al. (2002). Effects of muscarinic toxins MT1 and MT2 from green mamba on different muscarinic cholinoceptors. Neurochem. Res. 27, 1543–1554. 10.1023/a:1021660708187 PubMed DOI
Hasuo H., Matsuoka T., Akasu T. (2002). Activation of presynaptic 5-hydroxytryptamine 2A receptors facilitates excitatory synaptic transmission via protein kinase C in the dorsolateral septal nucleus. J. Neurosci. 22, 7509–7517. 10.1523/jneurosci.22-17-07509.2002 PubMed DOI PMC
Hegde S. S., Pulido-Rios M. T., Luttmann M. A., Foley J. J., Hunsberger G. E., Steinfeld T., et al. (2018). Pharmacological properties of revefenacin (TD-4208), a novel, nebulized long-acting, and lung selective muscarinic antagonist, at human recombinant muscarinic receptors and in rat, Guinea pig, and human isolated airway tissues. Pharmacol. Res. Perspect. 6, e00400. 10.1002/prp2.400 PubMed DOI PMC
Heinrich J. N., Butera J. A., Carrick T., Kramer A., Kowal D., Lock T., et al. (2009). Pharmacological comparison of muscarinic ligands: Historical versus more recent muscarinic M1-preferring receptor agonists. Eur. J. Pharmacol. 605, 53–56. 10.1016/j.ejphar.2008.12.044 PubMed DOI
Hern J. A., Baig A. H., Mashanov G. I., Birdsall B., Corrie J. E., Lazareno S., et al. (2010). Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc. Natl. Acad. Sci. U. S. A. 107, 2693–2698. 10.1073/pnas.0907915107 PubMed DOI PMC
Heusler P., Bruins Slot L., Tourette A., Tardif S., Cussac D. (2011). The clozapine metabolite N-desmethylclozapine displays variable activity in diverse functional assays at human dopamine D₂ and serotonin 5-HT₁A receptors. Eur. J. Pharmacol. 669, 51–58. 10.1016/j.ejphar.2011.07.031 PubMed DOI
Hill K., Mcnulty S., Randall A. D. (2004). Inhibition of TRPM2 channels by the antifungal agents clotrimazole and econazole. Naunyn. Schmiedeb. Arch. Pharmacol. 370, 227–237. 10.1007/s00210-004-0981-y PubMed DOI
Huang F., Buchwald P., Browne C. E., Farag H. H., Wu W. M., Ji F., et al. (2001). Receptor binding studies of soft anticholinergic agents. AAPS PharmSci 3, E30. 10.1208/ps030430 PubMed DOI PMC
Hudkins R. L., Dehaven-Hudkins D. L., Stubbins J. F. (1991). Muscarinic receptor binding profile of para-substituted caramiphen analogues. J. Med. Chem. 34, 2984–2989. 10.1021/jm00114a005 PubMed DOI
Hung Y. H., Huang H. L., Chen W. C., Yen M. C., Cho C. Y., Weng T. Y., et al. (2017). Argininosuccinate lyase interacts with cyclin A2 in cytoplasm and modulates growth of liver tumor cells. Oncol. Rep. 37, 969–978. 10.3892/or.2016.5334 PubMed DOI PMC
Ito Y., Oyunzul L., Seki M., Fujino Oki T., Matsui M., Yamada S. (2009). Quantitative analysis of the loss of muscarinic receptors in various peripheral tissues in M1-M5 receptor single knockout mice. Br. J. Pharmacol. 156, 1147–1153. 10.1111/j.1476-5381.2009.00113.x PubMed DOI PMC
Jakubík J., Bacáková L., El-Fakahany E. E., Tucek S. (1997). Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol. Pharmacol. 52, 172–179. 10.1124/mol.52.1.172 PubMed DOI
Jakubik J., Tucek S., El-Fakahany E. E. (2004). Role of receptor protein and membrane lipids in xanomeline wash-resistant binding to muscarinic M1 receptors. J. Pharmacol. Exp. Ther. 308, 105–110. 10.1124/jpet.103.058594 PubMed DOI
Jolkkonen M., Van Giersbergen P. L., Hellman U., Wernstedt C., Karlsson E. (1994). A toxin from the green mamba dendroaspis angusticeps: Amino acid sequence and selectivity for muscarinic m4 receptors. FEBS Lett. 352, 91–94. 10.1016/0014-5793(94)00933-3 PubMed DOI
Karlsson E., Jolkkonen M., Mulugeta E., Onali P., Adem A. (2000). Snake toxins with high selectivity for subtypes of muscarinic acetylcholine receptors. Biochimie 82, 793–806. 10.1016/s0300-9084(00)01176-7 PubMed DOI
Kashihara K., Varga E. V., Waite S. L., Roeske W. R., Yamamura H. I. (1992). Cloning of the rat M3, M4 and M5 muscarinic acetylcholine receptor genes by the polymerase chain reaction (PCR) and the pharmacological characterization of the expressed genes. Life Sci. 51, 955–971. 10.1016/0024-3205(92)90403-c PubMed DOI
Khajehali E., Valant C., Jörg M., Tobin A. B., Conn P. J., Lindsley C. W., et al. (2018). Probing the binding site of novel selective positive allosteric modulators at the M1 muscarinic acetylcholine receptor. Biochem. Pharmacol. 154, 243–254. 10.1016/j.bcp.2018.05.009 PubMed DOI PMC
Kiesewetter D. O., Carson R. E., Jagoda E. M., Endres C. J., Der M. G., Herscovitch P., et al. (1997). In vivo muscarinic binding selectivity of (R, S)- and (R, R)-[18F]-fluoromethyl QNB. Bioorg. Med. Chem. 5, 1555–1567. 10.1016/s0968-0896(97)00100-4 PubMed DOI
Kireev D., Wigle T. J., Norris-Drouin J., Herold J. M., Janzen W. P., Frye S. V. (2010). Identification of non-peptide malignant brain tumor (MBT) repeat antagonists by virtual screening of commercially available compounds. J. Med. Chem. 53, 7625–7631. 10.1021/jm1007374 PubMed DOI PMC
Kistemaker L. E. M., Gosens R. (2015). Acetylcholine beyond bronchoconstriction: Roles in inflammation and remodeling. Trends Pharmacol. Sci. 36, 164–171. 10.1016/j.tips.2014.11.005 PubMed DOI
Kleinschroth J., Hartenstein J., Rudolph C., Schächtele C. (1995). Novel indolocarbazole protein kinase c inhibitors with improved biochemical and physicochemical properties. Bioorg. Med. Chem. Lett. 5, 55–60. 10.1016/0960-894x(94)00458-r DOI
Kobayashi T., Washiyama K., Ikeda K. (2004). Inhibition of G protein-activated inwardly rectifying K+ channels by various antidepressant drugs. Neuropsychopharmacology 29, 1841–1851. 10.1038/sj.npp.1300484 PubMed DOI
Kovacs I., Yamamura H. I., Waite S. L., Varga E. V., Roeske W. R. (1998). Pharmacological comparison of the cloned human and rat M2 muscarinic receptor genes expressed in the murine fibroblast (B82) cell line. J. Pharmacol. Exp. Ther. 284, 500–507. PubMed
Kozaka T., Uno I., Kitamura Y., Miwa D., Ogawa K., Shiba K. (2012). Syntheses and in vitro evaluation of decalinvesamicol analogues as potential imaging probes for vesicular acetylcholine transporter (VAChT). Bioorg. Med. Chem. 20, 4936–4941. 10.1016/j.bmc.2012.06.040 PubMed DOI
Kozlowski J. A., Lowe D. B., Guzik H. S., Zhou G., Ruperto V. B., Duffy R. A., et al. (2000). Diphenyl sulfoxides as selective antagonists of the muscarinic M2 receptor. Bioorg. Med. Chem. Lett. 10, 2255–2257. 10.1016/s0960-894x(00)00438-8 PubMed DOI
Kruse A. C., Kobilka B. K., Gautam D., Sexton P. M., Christopoulos A., Wess J. (2014). Muscarinic acetylcholine receptors: Novel opportunities for drug development. Nat. Rev. Drug Discov. 13, 549–560. 10.1038/nrd4295 PubMed DOI PMC
Kruse A. C., Ring A. M., Manglik A., Hu J., Hu K., Eitel K., et al. (2013). Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–106. 10.1038/nature12735 PubMed DOI PMC
Kulkarni S. S., Kopajtic T. A., Katz J. L., Newman A. H. (2006). Comparative structure-activity relationships of benztropine analogues at the dopamine transporter and histamine H(1) receptors. Bioorg. Med. Chem. 14, 3625–3634. 10.1016/j.bmc.2006.01.017 PubMed DOI PMC
Lamba D., Pesaresi A. (2022). Kinetic modeling of time-dependent enzyme inhibition by pre-steady-state analysis of progress curves: The case study of the anti-alzheimer’s drug galantamine. Int. J. Mol. Sci. 23, 5072. 10.3390/ijms23095072 PubMed DOI PMC
Lange J. H., Coolen H. K., Van Der Neut M. A., Borst A. J., Stork B., Verveer P. C., et al. (2010). Design, synthesis, biological properties, and molecular modeling investigations of novel tacrine derivatives with a combination of acetylcholinesterase inhibition and cannabinoid CB1 receptor antagonism. J. Med. Chem. 53, 1338–1346. 10.1021/jm901614b PubMed DOI
Langmead C. J., Austin N. E., Branch C. L., Brown J. T., Buchanan K. A., Davies C. H., et al. (2008). Characterization of a CNS penetrant, selective M1 muscarinic receptor agonist, 77-LH-28-1. Br. J. Pharmacol. 154, 1104–1115. 10.1038/bjp.2008.152 PubMed DOI PMC
Langmead C. J., Fry V. A., Forbes I. T., Branch C. L., Christopoulos A., Wood M. D., et al. (2006). Probing the molecular mechanism of interaction between 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine (AC-42) and the muscarinic M(1) receptor: Direct pharmacological evidence that AC-42 is an allosteric agonist. Mol. Pharmacol. 69, 236–246. 10.1124/mol.105.017814 PubMed DOI
Laukova M., Tillinger A., Novakova M., Krizanova O., Kvetnansky R., Myslivecek J. (2014). Repeated immobilization stress increases expression of β3-adrenoceptor in the left ventricle and atrium of the rat heart. Stress Health 30, 301–309. 10.1002/smi.2515 PubMed DOI
Lazareno S., Gharagozloo P., Kuonen D., Popham A., Birdsall N. J. (1998). Subtype-selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors: Radioligand binding studies. Mol. Pharmacol. 53, 573–589. 10.1124/mol.53.3.573 PubMed DOI
Lazareno S., Popham A., Birdsall N. J. M. (2000). Allosteric interactions of staurosporine and other indolocarbazoles withN-[methyl-3H]scopolamine and acetylcholine at muscarinic receptor subtypes: Identification of a second allosteric site. Mol. Pharmacol. 58, 194–207. 10.1124/mol.58.1.194 PubMed DOI
Lazareno S., Popham A., Birdsall N. J. M. (2002). Analogs of WIN 62, 577 define a second allosteric site on muscarinic receptors. Mol. Pharmacol. 62, 1492–1505. 10.1124/mol.62.6.1492 PubMed DOI
Le U., Melancon B. J., Bridges T. M., Vinson P. N., Utley T. J., Lamsal A., et al. (2013a). Discovery of a selective M4 positive allosteric modulator based on the 3-amino-thieno[2, 3-b]pyridine-2-carboxamide scaffold: Development of ML253, a potent and brain penetrant compound that is active in a preclinical model of schizophrenia. Bioorg. Med. Chem. Lett. 23, 346–350. 10.1016/j.bmcl.2012.10.073 PubMed DOI PMC
Le U., Melancon B. J., Bridges T. M., Vinson P. N., Utley T. J., Lamsal A., et al. (2013b). Discovery of a selective M₄ positive allosteric modulator based on the 3-amino-thieno[2, 3-b]pyridine-2-carboxamide scaffold: Development of ML253, a potent and brain penetrant compound that is active in a preclinical model of schizophrenia. Bioorg. Med. Chem. Lett. 23, 346–350. 10.1016/j.bmcl.2012.10.073 PubMed DOI PMC
Lebois E. P., Thorn C., Edgerton J. R., Popiolek M., Xi S. (2018). Muscarinic receptor subtype distribution in the central nervous system and relevance to aging and Alzheimer's disease. Neuropharmacology 136, 362–373. 10.1016/j.neuropharm.2017.11.018 PubMed DOI
Lochner M., Thompson A. J. (2016). The muscarinic antagonists scopolamine and atropine are competitive antagonists at 5-HT3 receptors. Neuropharmacology 108, 220–228. 10.1016/j.neuropharm.2016.04.027 PubMed DOI PMC
Lockhart B., Closier M., Howard K., Steward C., Lestage P. (2001). Differential inhibition of [3H]-oxotremorine-M and [3H]-quinuclinidyl benzilate binding to muscarinic receptors in rat brain membranes with acetylcholinesterase inhibitors. Naunyn. Schmiedeb. Arch. Pharmacol. 363, 429–438. 10.1007/s002100000382 PubMed DOI
Lu L., Huang R., Wu Y., Jin J.-M., Chen H.-Z., Zhang L.-J., et al. (2020). Brucine: A review of phytochemistry, pharmacology, and toxicology. Front. Pharmacol. 11, 377. 10.3389/fphar.2020.00377 PubMed DOI PMC
Ma L., Seager M. A., Wittmann M., Jacobson M., Bickel D., Burno M., et al. (2009). Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation. Proc. Natl. Acad. Sci. U. S. A. 106, 15950–15955. 10.1073/pnas.0900903106 PubMed DOI PMC
Maeda S., Qu Q., Robertson M. J., Skiniotis G., Kobilka B. K. (2019). Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Science 364, 552–557. 10.1126/science.aaw5188 PubMed DOI PMC
Maksay G., Laube B., Betz H. (1999). Selective blocking effects of tropisetron and atropine on recombinant glycine receptors. J. Neurochem. 73, 802–806. 10.1046/j.1471-4159.1999.0730802.x PubMed DOI
Mandai T., Sako Y., Kurimoto E., Shimizu Y., Nakamura M., Fushimi M., et al. (2020). T-495, a novel low cooperative M1 receptor positive allosteric modulator, improves memory deficits associated with cholinergic dysfunction and is characterized by low gastrointestinal side effect risk. Pharmacol. Res. Perspect. 8, e00560. 10.1002/prp2.560 PubMed DOI PMC
Marlo J. E., Niswender C. M., Days E. L., Bridges T. M., Xiang Y., Rodriguez A. L., et al. (2009). Discovery and characterization of novel allosteric potentiators of M1 muscarinic receptors reveals multiple modes of activity. Mol. Pharmacol. 75, 577–588. 10.1124/mol.108.052886 PubMed DOI PMC
Maurice T., Su T.-P. (2009). The pharmacology of sigma-1 receptors. Pharmacol. Ther. 124, 195–206. 10.1016/j.pharmthera.2009.07.001 PubMed DOI PMC
McKenna M. T., Proctor G. R., Young L. C., Harvey A. L. (1997). Novel tacrine analogues for potential use against Alzheimer's disease: Potent and selective acetylcholinesterase inhibitors and 5-HT uptake inhibitors. J. Med. Chem. 40, 3516–3523. 10.1021/jm970150t PubMed DOI
Melancon B. J., Gogliotti R. D., Tarr J. C., Saleh S. A., Chauder B. A., Lebois E. P., et al. (2012a). Continued optimization of the MLPCN probe ML071 into highly potent agonists of the hM1 muscarinic acetylcholine receptor. Bioorg. Med. Chem. Lett. 22, 3467–3472. 10.1016/j.bmcl.2012.03.088 PubMed DOI PMC
Melancon B. J., Hopkins C. R., Wood M. R., Emmitte K. A., Niswender C. M., Christopoulos A., et al. (2012b). Allosteric modulation of seven transmembrane spanning receptors: Theory, practice, and opportunities for central nervous system drug discovery. J. Med. Chem. 55, 1445–1464. 10.1021/jm201139r PubMed DOI PMC
Mellor I. R., Ogilvie J., Pluteanu F., Clothier R. H., Parker T. L., Rosini M., et al. (2004). Methoctramine analogues inhibit responses to capsaicin and protons in rat dorsal root ganglion neurons. Eur. J. Pharmacol. 505, 37–50. 10.1016/j.ejphar.2004.10.005 PubMed DOI
Mille T., Quilgars C., Cazalets J.-R., Bertrand S. S. (2021). Acetylcholine and spinal locomotor networks: The insider. Physiol. Rep. 9, e14736. 10.14814/phy2.14736 PubMed DOI PMC
Mirams G. R., Davies M. R., Brough S. J., Bridgland-Taylor M. H., Cui Y., Gavaghan D. J., et al. (2014). Prediction of Thorough QT study results using action potential simulations based on ion channel screens. J. Pharmacol. Toxicol. Methods 70, 246–254. 10.1016/j.vascn.2014.07.002 PubMed DOI PMC
Modell J. G., Tandon R., Beresford T. P. (1989). Dopaminergic activity of the antimuscarinic antiparkinsonian agents. J. Clin. Psychopharmacol. 9, 347–351. 10.1097/00004714-198910000-00006 PubMed DOI
Mohr K., Schmitz J., Schrage R., Tränkle C., Holzgrabe U. (2013). Molecular alliance—from orthosteric and allosteric ligands to dualsteric/bitopic agonists at G protein coupled receptors. Angew. Chem. Int. Ed. Engl. 52, 508–516. 10.1002/anie.201205315 PubMed DOI
Morales-Weil K., Moreno M., Ahumada J., Arriagada J., Fuentealba P., Bonansco C., et al. (2020). Priming of GABAergic long-term potentiation by muscarinic receptors. Neuroscience 428, 242–251. 10.1016/j.neuroscience.2019.12.033 PubMed DOI
Moran S. P., Maksymetz J., Conn P. J. (2019). Targeting muscarinic acetylcholine receptors for the treatment of psychiatric and neurological disorders. Trends Pharmacol. Sci. 40, 1006–1020. 10.1016/j.tips.2019.10.007 PubMed DOI PMC
Mulholland G. K., Kilbourn M. R., Sherman P., Carey J. E., Frey K. A., Koeppe R. A., et al. (1995). Synthesis, in vivo biodistribution and dosimetry of [11C]N-methylpiperidyl benzilate ([11C]NMPB), a muscarinic acetylcholine receptor antagonist. Nucl. Med. Biol. 22, 13–17. 10.1016/0969-8051(94)00082-u PubMed DOI
Myslivecek J. (2022). Dopamine and dopamine-related ligands can bind not only to dopamine receptors. Life (Basel). 12 (5), 606. 10.3390/life12050606 PubMed DOI PMC
Myslivecek J., Farar V., Valuskova P. (2017). M(4) muscarinic receptors and locomotor activity regulation. Physiol. Res. 66, S443–s455. 10.33549/physiolres.933796 PubMed DOI
Myslivecek J., Klein M., Novakova M., Ricny J. (2008a). The detection of the non-M-2 muscarinic receptor subtype in the rat heart atria and ventricles. Naunyn. Schmiedeb. Arch. Pharmacol. 378, 103–116. 10.1007/s00210-008-0285-8 PubMed DOI
Myslivecek J., Lisa V., Trojan S., Tucek S. (1998). Heterologous regulation of muscarinic and beta-adrenergic receptors in rat cardiomyocytes in culture. Life Sci. 63, 1169–1182. 10.1016/s0024-3205(98)00378-6 PubMed DOI
Myslivecek J. (2019). “M4 muscarinic receptors – structure, ligands, detection and function,” in Acetylcholine receptors in health and disease. Editor Gupta A. E. (New York: Nova Science Publishers; ), 41–68.
Myslivecek J., Novakova M., Klein M. (2008b). Receptor subtype abundance as a tool for effective intracellular signalling. Cardiovasc. Hematol. Disord. Drug Targets 8, 66–79. 10.2174/187152908783884939 PubMed DOI
Myslivecek J., Ricny J., Palkovits M., Kvetnansky R. (2004). The effects of short-term immobilization stress on muscarinic receptors, β-adrenoceptors, and adenylyl cyclase in different heart regions. Ann. N. Y. Acad. Sci. 1018, 315–322. 10.1196/annals.1296.038 PubMed DOI
Myslivecek J. (2021). Social isolation: How can the effects on the cholinergic system Be isolated? Front. Pharmacol. 12, 716460. 10.3389/fphar.2021.716460 PubMed DOI PMC
Myslivecek J., Tillinger A., Novakova M., Kvetnansky R., Kvetnansky R., Aguilera G., et al. (2008c). Regulation of adrenoceptor and muscarinic receptor gene expression after single and repeated stress. Stress, Neurotransmitters, Hormones Neuroendocrine Genet. Mech. 1148, 367–376. PubMed
Myslivecek J., Trojan S., Tucek S. (1996). Biphasic changes in the density of muscarinic and beta-adrenergic receptors in cardiac atria of rats treated with diisopropylfluorophosphate. Life Sci. 58, 2423–2430. 10.1016/0024-3205(96)00246-9 PubMed DOI
Nabulsi N. B., Holden D., Zheng M. Q., Bois F., Lin S. F., Najafzadeh S., et al. (2019). Evaluation of (11)C-LSN3172176 as a novel PET tracer for imaging M(1) muscarinic acetylcholine receptors in nonhuman primates. J. Nucl. Med. 60, 1147–1153. 10.2967/jnumed.118.222034 PubMed DOI
Nedoma J., Dorofeeva N. A., Tucek S., Shelkovnikov S. A., Danilov A. F. (1985). Interaction of the neuromuscular blocking drugs alcuronium, decamethonium, gallamine, pancuronium, ritebronium, tercuronium and d-tubocurarine with muscarinic acetylcholine receptors in the heart and ileum. Naunyn. Schmiedeb. Arch. Pharmacol. 329, 176–181. 10.1007/BF00501209 PubMed DOI
Nenasheva T. A., Neary M., Mashanov G. I., Birdsall N. J., Breckenridge R. A., Molloy J. E. (2013). Abundance, distribution, mobility and oligomeric state of M₂ muscarinic acetylcholine receptors in live cardiac muscle. J. Mol. Cell. Cardiol. 57, 129–136. 10.1016/j.yjmcc.2013.01.009 PubMed DOI PMC
Newman A. H., Kulkarni S. (2002). Probes for the dopamine transporter: New leads toward a cocaine-abuse therapeutic-A focus on analogues of benztropine and rimcazole. Med. Res. Rev. 22, 429–464. 10.1002/med.10014 PubMed DOI
Obara K., Horiguchi S., Shimada T., Ikarashi T., Yamaki F., Matsuo K., et al. (2019). Characterization of binding of antipsychotics to muscarinic receptors using mouse cerebral cortex. J. Pharmacol. Sci. 140, 197–200. 10.1016/j.jphs.2019.05.006 PubMed DOI
Ochillo R. F., Kau S. T., Sastry B. V. (1977). Activities of 5-methylfurfuryltrimethylammonium iodide (5-methylfurmethide) at nicotinic receptors. Pharmacol. Res. Commun. 9, 719–727. 10.1016/s0031-6989(77)80063-5 PubMed DOI
Ohmori J., Maeno K., Hidaka K., Nakato K., Matsumoto M., Tada S., et al. (1996). Dopamine D3 and D4 receptor antagonists: Synthesis and Structure−Activity relationships of (S)-(+)-N-(1-Benzyl-3-pyrrolidinyl)-5-chloro-4- [(cyclopropylcarbonyl)amino]-2-methoxybenzamide (YM-43611) and related compounds. J. Med. Chem. 39, 2764–2772. 10.1021/jm9601720 PubMed DOI
Ohno-Shosaku T., Matsui M., Fukudome Y., Shosaku J., Tsubokawa H., Taketo M. M., et al. (2003). Postsynaptic M1 and M3 receptors are responsible for the muscarinic enhancement of retrograde endocannabinoid signalling in the hippocampus. Eur. J. Neurosci. 18, 109–116. 10.1046/j.1460-9568.2003.02732.x PubMed DOI
Oki T., Takagi Y., Inagaki S., Taketo M. M., Manabe T., Matsui M., et al. (2005). Quantitative analysis of binding parameters of [3H]N-methylscopolamine in central nervous system of muscarinic acetylcholine receptor knockout mice. Mol. Brain Res. 133, 6–11. 10.1016/j.molbrainres.2004.09.012 PubMed DOI
Okimoto R., Ino K., Ishizu K., Takamatsu H., Sakamoto K., Yuyama H., et al. (2021). Potentiation of muscarinic M(3) receptor activation through a new allosteric site with a novel positive allosteric modulator ASP8302. J. Pharmacol. Exp. Ther. 379, 64–73. 10.1124/jpet.121.000709 PubMed DOI
Olianas M. C., Dedoni S., Ambu R., Onali P. (2009). Agonist activity of N-desmethylclozapine at delta-opioid receptors of human frontal cortex. Eur. J. Pharmacol. 607, 96–101. 10.1016/j.ejphar.2009.02.025 PubMed DOI
Olianas M. C., Dedoni S., Onali P. (2020). Antidepressants induce profibrotic responses via the lysophosphatidic acid receptor LPA(1). Eur. J. Pharmacol. 873, 172963. 10.1016/j.ejphar.2020.172963 PubMed DOI
Ozenil M., Aronow J., Millard M., Langer T., Wadsak W., Hacker M., et al. (2021). Update on PET tracer development for muscarinic acetylcholine receptors. Pharmaceuticals 14, 530. 10.3390/ph14060530 PubMed DOI PMC
Pankaskie M. C., Kachur J. F., Itoh T., Gordon R. K., Chiang P. K. (1985). Inhibition of muscarinic receptor binding and acetylcholine-induced contraction of Guinea pig ileum by analogues of 5'-(isobutylthio)adenosine. J. Med. Chem. 28, 1117–1119. 10.1021/jm00146a027 PubMed DOI
Pascuzzo G. J., Akaike A., Maleque M. A., Shaw K. P., Aronstam R. S., Rickett D. L., et al. (1984). The nature of the interactions of pyridostigmine with the nicotinic acetylcholine receptor-ionic channel complex. I. Agonist, desensitizing, and binding properties. Mol. Pharmacol. 25, 92–101. PubMed
Peddi S., Roth B. L., Glennon R. A., Westkaemper R. B. (2004). Structural determinants for high 5-HT(2A) receptor affinity of spiro[9, 10-dihydroanthracene]-9, 3(')-pyrrolidine (SpAMDA). Bioorg. Med. Chem. Lett. 14, 2279–2283. 10.1016/j.bmcl.2004.02.014 PubMed DOI
Pei X.-F., Gupta T. H., Badio B., Padgett W. L., Daly J. W. (1998). 6β-Acetoxynortropane: A potent muscarinic agonist with apparent selectivity toward M2-receptors. J. Med. Chem. 41, 2047–2055. 10.1021/jm9705115 PubMed DOI
Peralta E. G., Ashkenazi A., Winslow J. W., Smith D. H., Ramachandran J., Capon D. J. (1987). Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. Embo J. 6, 3923–3929. 10.1002/j.1460-2075.1987.tb02733.x PubMed DOI PMC
Peters J. U. (2013). Polypharmacology - foe or friend? J. Med. Chem. 56, 8955–8971. 10.1021/jm400856t PubMed DOI
Pradidarcheep W., Michel M. C. (2016). “Use of antibodies in the research on muscarinic receptor subtypes,” in Muscarinic receptor: From structure to animal models. Editors Myslivecek J., Jakubik J. (New York, NY: Springer New York; ), 83–94.
Prat M., Fernández D., Buil M. A., Crespo M. I., Casals G., Ferrer M., et al. (2009). Discovery of novel quaternary ammonium derivatives of (3r)-quinuclidinol esters as potent and long-acting muscarinic antagonists with potential for minimal systemic exposure after inhaled administration: Identification of (3r)-3-{[hydroxy(di-2-thienyl)acetyl]oxy}-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane bromide (aclidinium bromide). J. Med. Chem. 52, 5076–5092. 10.1021/jm900132z PubMed DOI
Psaridi-Linardaki L., Mamalaki A., Tzartos S., J. (2003). Future therapeutic strategies in autoimmune myasthenia gravis. Ann. N. Y. Acad. Sci. 998, 539–548. 10.1196/annals.1254.071 PubMed DOI
Pujito P. P., Govitrapong P., Ebadi M. (1991). Inhibitory actions of muscarinic cholinergic receptor agonists on serotonin N-acetyltransferase in bovine pineal explants in culture. Neurochem. Res. 16, 885–889. 10.1007/BF00965537 PubMed DOI
Randáková A., Jakubík J. (2021). Functionally selective and biased agonists of muscarinic receptors. Pharmacol. Res. 169, 105641. 10.1016/j.phrs.2021.105641 PubMed DOI
Richards M. H., van Giersbergen P. L. (1995). Human muscarinic receptors expressed in A9L and CHO cells: Activation by full and partial agonists. Br. J. Pharmacol. 114, 1241–1249. 10.1111/j.1476-5381.1995.tb13339.x PubMed DOI PMC
Ronsisvalle G., Marrazzo A., Prezzavento O., Pasquinucci L., Vittorio F., Pittalà V., et al. (1998). (+)-cis-N-ethyleneamino-N-normetazocine derivatives. Novel and selective sigma ligands with antagonist properties. J. Med. Chem. 41, 1574–1580. 10.1021/jm970333f PubMed DOI
Rook Y., Schmidtke K. U., Gaube F., Schepmann D., Wünsch B., Heilmann J., et al. (2010). Bivalent beta-carbolines as potential multitarget anti-Alzheimer agents. J. Med. Chem. 53, 3611–3617. 10.1021/jm1000024 PubMed DOI
Rowley M., Bristow L. J., Hutson P. H. (2001). Current and novel approaches to the drug treatment of schizophrenia. J. Med. Chem. 44, 477–501. 10.1021/jm0002432 PubMed DOI
Ruan Y., Patzak A., Pfeiffer N., Gericke A. (2021). Muscarinic acetylcholine receptors in the retina—therapeutic implications. Int. J. Mol. Sci. 22, 4989. 10.3390/ijms22094989 PubMed DOI PMC
Runyon S. P., Carroll F. I. (2006). Dopamine transporter ligands: Recent developments and therapeutic potential. Curr. Top. Med. Chem. 6, 1825–1843. 10.2174/156802606778249775 PubMed DOI
Runyon S. P., Savage J. E., Taroua M., Roth B. L., Glennon R. A., Westkaemper R. B. (2001). Influence of chain length and N-alkylation on the selective serotonin receptor ligand 9-(aminomethyl)-9, 10-dihydroanthracene. Bioorg. Med. Chem. Lett. 11, 655–658. 10.1016/s0960-894x(01)00023-3 PubMed DOI
Sagrada A., Schiavi G. B., Cereda E., Ladinsky H. (1994). Antagonistic properties of McNeil-A-343 at 5-HT4 and 5-HT3 receptors. Br. J. Pharmacol. 113, 711–716. 10.1111/j.1476-5381.1994.tb17051.x PubMed DOI PMC
Saiki R., Yoshizawa Y., Minarini A., Milelli A., Marchetti C., Tumiatti V., et al. (2013). In vitro and in vivo evaluation of polymethylene tetraamine derivatives as NMDA receptor channel blockers. Bioorg. Med. Chem. Lett. 23, 3901–3904. 10.1016/j.bmcl.2013.04.063 PubMed DOI
Salmon M., Luttmann M. A., Foley J. J., Buckley P. T., Schmidt D. B., Burman M., et al. (2013). Pharmacological characterization of GSK573719 (umeclidinium): A novel, long-acting, inhaled antagonist of the muscarinic cholinergic receptors for treatment of pulmonary diseases. J. Pharmacol. Exp. Ther. 345, 260–270. 10.1124/jpet.112.202051 PubMed DOI
Salovich J. M., Vinson P. N., Sheffler D. J., Lamsal A., Utley T. J., Blobaum A. L., et al. (2012). Discovery of N-(4-methoxy-7-methylbenzo[d]thiazol-2-yl)isonicatinamide, ML293, as a novel, selective and brain penetrant positive allosteric modulator of the muscarinic 4 (M4) receptor. Bioorg. Med. Chem. Lett. 22, 5084–5088. 10.1016/j.bmcl.2012.05.109 PubMed DOI PMC
Samadi A., De Los Ríos C., Bolea I., Chioua M., Iriepa I., Moraleda I., et al. (2012). Multipotent MAO and cholinesterase inhibitors for the treatment of Alzheimer's disease: Synthesis, pharmacological analysis and molecular modeling of heterocyclic substituted alkyl and cycloalkyl propargyl amine. Eur. J. Med. Chem. 52, 251–262. 10.1016/j.ejmech.2012.03.022 PubMed DOI
Samochocki M., Höffle A., Fehrenbacher A., Jostock R., Ludwig J., Christner C., et al. (2003). Galantamine is an allosterically potentiating ligand of neuronal nicotinic but not of muscarinic acetylcholine receptors. J. Pharmacol. Exp. Ther. 305, 1024–1036. 10.1124/jpet.102.045773 PubMed DOI
Sams A. G., Hentzer M., Mikkelsen G. K., Larsen K., Bundgaard C., Plath N., et al. (2010). Discovery of N-1-[3-(3-oxo-2, 3-dihydrobenzo[1, 4]oxazin-4-yl)propyl]piperidin-4-yl-2-phenylacetamide (Lu AE51090): An allosteric muscarinic M1 receptor agonist with unprecedented selectivity and procognitive potential. J. Med. Chem. 53, 6386–6397. PubMed
Sánchez C., Hyttel J. (1999). Comparison of the effects of antidepressants and their metabolites on reuptake of biogenic amines and on receptor binding. Cell. Mol. Neurobiol. 19, 467–489. 10.1023/a:1006986824213 PubMed DOI PMC
Saternos H. C., Almarghalani D. A., Gibson H. M., Meqdad M. A., Antypas R. B., Lingireddy A., et al. (2017). Distribution and function of the muscarinic receptor subtypes in the cardiovascular system. Physiol. Genomics 50, 1–9. 10.1152/physiolgenomics.00062.2017 PubMed DOI
Schober D. A., Croy C. H., Xiao H., Christopoulos A., Felder C. C. (2014). Development of a radioligand, [3H]LY2119620, to probe the human M2 and M4 muscarinic receptor allosteric binding sites. Mol. Pharmacol. 86, 116–123. 10.1124/mol.114.091785 PubMed DOI
Schubert J. W., Harrison S. T., Mulhearn J., Gomez R., Tynebor R., Jones K., et al. (2019). Discovery, optimization, and biological characterization of 2, 3, 6-trisubstituted pyridine-containing M4 positive allosteric modulators. ChemMedChem 14, 943–951. 10.1002/cmdc.201900088 PubMed DOI
Sheffler D. J., Williams R., Bridges T. M., Xiang Z., Kane A. S., Byun N. E., et al. (2009). A novel selective muscarinic acetylcholine receptor subtype 1 antagonist reduces seizures without impairing hippocampus-dependent learning. Mol. Pharmacol. 76, 356–368. 10.1124/mol.109.056531 PubMed DOI PMC
Sheldon R. S., Hill R. J., Cannon N. J., Duff H. J. (1989). Amiodarone: Biochemical evidence for binding to a receptor for class I drugs associated with the rat cardiac sodium channel. Circ. Res. 65, 477–482. 10.1161/01.res.65.2.477 PubMed DOI
Shen Y., Monsma F. J., Jr., Metcalf M. A., Jose P. A., Hamblin M. W., Sibley D. R. (1993). Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype. J. Biol. Chem. 268, 18200–18204. 10.1016/s0021-9258(17)46830-x PubMed DOI
Shirey J. K., Xiang Z., Orton D., Brady A. E., Johnson K. A., Williams R., et al. (2008). An allosteric potentiator of M4 mAChR modulates hippocampal synaptic transmission. Nat. Chem. Biol. 4, 42–50. 10.1038/nchembio.2007.55 PubMed DOI
Sinha S., Gupta S., Malhotra S., Krishna N. S., Meru A. V., Babu V., et al. (2010). AE9C90CB: A novel, bladder-selective muscarinic receptor antagonist for the treatment of overactive bladder. Br. J. Pharmacol. 160, 1119–1127. 10.1111/j.1476-5381.2010.00752.x PubMed DOI PMC
So E. C., Huang Y. M., Hsing C. H., Liao Y. K., Wu S. N. (2015). Arecoline inhibits intermediate-conductance calcium-activated potassium channels in human glioblastoma cell lines. Eur. J. Pharmacol. 758, 177–187. 10.1016/j.ejphar.2015.03.065 PubMed DOI
Sowell J. W., Tang Y., Valli M. J., Chapman J. M., Usher L. A., Vaughan C. M., et al. (1992). Synthesis and cholinergic properties of bis[[(dimethylamino)methyl]furanyl] analogs of ranitidine. J. Med. Chem. 35, 1102–1108. 10.1021/jm00084a015 PubMed DOI
Spalding T. A., Ma J. N., Ott T. R., Friberg M., Bajpai A., Bradley S. R., et al. (2006). Structural requirements of transmembrane domain 3 for activation by the M1 muscarinic receptor agonists AC-42, AC-260584, clozapine, and N-desmethylclozapine: Evidence for three distinct modes of receptor activation. Mol. Pharmacol. 70, 1974–1983. 10.1124/mol.106.024901 PubMed DOI
Stahl E., Ellis J. (2010). Novel allosteric effects of amiodarone at the muscarinic M5 receptor. J. Pharmacol. Exp. Ther. 334, 214–222. 10.1124/jpet.109.165316 PubMed DOI PMC
Stahl E., Elmslie G., Ellis J. (2011). Allosteric modulation of the M₃ muscarinic receptor by amiodarone and N-ethylamiodarone: Application of the four-ligand allosteric two-state model. Mol. Pharmacol. 80, 378–388. 10.1124/mol.111.072991 PubMed DOI PMC
Stanton T., Bolden-Watson C., Cusack B., Richelson E. (1993). Antagonism of the five cloned human muscarinic cholinergic receptors expressed in CHO-K1 cells by antidepressants and antihistaminics. Biochem. Pharmacol. 45, 2352–2354. 10.1016/0006-2952(93)90211-e PubMed DOI
Staszewski M., Nelic D., Jonczyk J., Dubiel M., Frank A., Stark H., et al. (2021). Guanidine derivatives: How simple structural modification of histamine H3R antagonists has led to the discovery of potent muscarinic m2r/m4r antagonists. ACS Chem. Neurosci. 12, 2503–2519. 10.1021/acschemneuro.1c00237 PubMed DOI PMC
Stein R., Pinkas-Kramarski R., Sokolovsky M. (1988). Cloned M1 muscarinic receptors mediate both adenylate cyclase inhibition and phosphoinositide turnover. Embo J. 7, 3031–3035. 10.1002/j.1460-2075.1988.tb03167.x PubMed DOI PMC
Steinfeld T., Mammen M., Smith J. a. M., Wilson R. D., Jasper J. R. (2007b). A novel multivalent ligand that bridges the allosteric and orthosteric binding sites of the M2 muscarinic receptor. Mol. Pharmacol. 72, 291–302. 10.1124/mol.106.033746 PubMed DOI
Steinfeld T., Mammen M., Smith J. A., Wilson R. D., Jasper J. R. (2007a). A novel multivalent ligand that bridges the allosteric and orthosteric binding sites of the M2 muscarinic receptor. Mol. Pharmacol. 72, 291–302. 10.1124/mol.106.033746 PubMed DOI
Suno R., Lee S., Maeda S., Yasuda S., Yamashita K., Hirata K., et al. (2018). Structural insights into the subtype-selective antagonist binding to the M(2) muscarinic receptor. Nat. Chem. Biol. 14, 1150–1158. 10.1038/s41589-018-0152-y PubMed DOI PMC
Sur C., Mallorga P. J., Wittmann M., Jacobson M. A., Pascarella D., Williams J. B., et al. (2003). N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartate receptor activity. Proc. Natl. Acad. Sci. 100, 13674–13679. 10.1073/pnas.1835612100 PubMed DOI PMC
Svoboda D. L., Saddler T., Auerbach S. S. (2019). “An overview of national toxicology program’s toxicogenomic applications: DrugMatrix and ToxFX,” in Advances in computational toxicology: Methodologies and applications in regulatory science. Editor Hong H. (Cham: Springer International Publishing; ), 141–157.
Sykes D. A., Dowling M. R., Leighton-Davies J., Kent T. C., Fawcett L., Renard E., et al. (2012). The Influence of receptor kinetics on the onset and duration of action and the therapeutic index of NVA237 and tiotropium. J. Pharmacol. Exp. Ther. 343, 520–528. 10.1124/jpet.112.194456 PubMed DOI
Szabo M., Lim H. D., Klein Herenbrink C., Christopoulos A., Lane J. R., Capuano B. (2015). Proof of concept study for designed multiple ligands targeting the dopamine D2, serotonin 5-HT2A, and muscarinic M1 acetylcholine receptors. J. Med. Chem. 58, 1550–1555. 10.1021/jm5013243 PubMed DOI
Taggi M., Kovacevic A., Capponi C., Falcinelli M., Cacciamani V., Vicini E., et al. (2022). The activation of M2 muscarinic receptor inhibits cell growth and survival in human epithelial ovarian carcinoma. J. Cell. Biochem. 10.1002/jcb.30303 PubMed DOI
Tarr J. C., Turlington M. L., Reid P. R., Utley T. J., Sheffler D. J., Cho H. P., et al. (2012). Targeting selective activation of M(1) for the treatment of Alzheimer's disease: Further chemical optimization and pharmacological characterization of the M(1) positive allosteric modulator ML169. ACS Chem. Neurosci. 3, 884–895. 10.1021/cn300068s PubMed DOI PMC
Tatsumi M., Groshan K., Blakely R. D., Richelson E. (1997). Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur. J. Pharmacol. 340, 249–258. 10.1016/s0014-2999(97)01393-9 PubMed DOI
Tenjin T., Miyamoto S., Ninomiya Y., Kitajima R., Ogino S., Miyake N., et al. (2013). Profile of blonanserin for the treatment of schizophrenia. Neuropsychiatr. Dis. Treat. 9, 587–594. 10.2147/NDT.S34433 PubMed DOI PMC
Thal D. M., Sun B., Feng D., Nawaratne V., Leach K., Felder C. C., et al. (2016). Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature 531, 335–340. 10.1038/nature17188 PubMed DOI PMC
Tobin G., Giglio D., Lundgren O. (2009). Muscarinic receptor subtypes in the alimentary tract. J. Physiol. Pharmacol. 60, 3–21. PubMed
Tomankova H., Valuskova P., Varejkova E., Rotkova J., Benes J., Myslivecek J. (2015). The M 2 muscarinic receptors are essential for signaling in the heart left ventricle during restraint stress in mice. Stress 18, 208–220. 10.3109/10253890.2015.1007345 PubMed DOI
Tomizawa M., Yamamoto I. (1992). Binding of nicotinoids and the related compounds to the insect nicotinic acetyicholine receptor. ournal Pesticide Sci. 17, 231–236.
Tränkle C., Dittmann A., Schulz U., Weyand O., Buller S., Jöhren K., et al. (2005). Atypical muscarinic allosteric modulation: Cooperativity between modulators and their atypical binding topology in muscarinic M2 and M2/M5 chimeric receptors. Mol. Pharmacol. 68, 1597–1610. 10.1124/mol.105.017707 PubMed DOI
Tränkle C., Weyand O., Voigtländer U., Mynett A., Lazareno S., Birdsall N. J., et al. (2003). Interactions of orthosteric and allosteric ligands with [3H]dimethyl-W84 at the common allosteric site of muscarinic M2 receptors. Mol. Pharmacol. 64, 180–190. 10.1124/mol.64.1.180 PubMed DOI
Tumiatti V., Rosini M., Bartolini M., Cavalli A., Marucci G., Andrisano V., et al. (2003). Structure−Activity relationships of acetylcholinesterase noncovalent inhibitors based on a polyamine backbone. 2. Role of the substituents on the phenyl ring and nitrogen atoms of caproctamine. J. Med. Chem. 46, 954–966. 10.1021/jm021055+ PubMed DOI
Valant C., Felder C. C., Sexton P. M., Christopoulos A. (2012). Probe dependence in the allosteric modulation of a G protein-coupled receptor: Implications for detection and validation of allosteric ligand effects. Mol. Pharmacol. 81, 41–52. 10.1124/mol.111.074872 PubMed DOI
Valuskova P., Farar V., Forczek S., Krizova I., Myslivecek J. (2018a). Autoradiography of 3H-pirenzepine and 3H-AFDX-384 in mouse brain regions: Possible insights into M1, M2, and M4 muscarinic receptors distribution. Front. Pharmacol. 9, 124. 10.3389/fphar.2018.00124 PubMed DOI PMC
Valuskova P., Forczek S. T., Farar V., Myslivecek J. (2018b). The deletion of M4 muscarinic receptors increases motor activity in females in the dark phase. Brain Behav. 8, e01057. 10.1002/brb3.1057 PubMed DOI PMC
Vass M., Kooistra A. J., Yang D., Stevens R. C., Wang M.-W., De Graaf C. (2018). Chemical diversity in the G protein-coupled receptor superfamily. Trends Pharmacol. Sci. 39, 494–512. 10.1016/j.tips.2018.02.004 PubMed DOI
von Coburg Y., Kottke T., Weizel L., Ligneau X., Stark H. (2009). Potential utility of histamine H3 receptor antagonist pharmacophore in antipsychotics. Bioorg. Med. Chem. Lett. 19, 538–542. 10.1016/j.bmcl.2008.09.012 PubMed DOI
Vuckovic Z., Gentry P. R., Berizzi A. E., Hirata K., Varghese S., Thompson G., et al. (2019). Crystal structure of the M5 muscarinic acetylcholine receptor. Proc. Natl. Acad. Sci. U. S. A. 116, 26001–26007. 10.1073/pnas.1914446116 PubMed DOI PMC
Waelbroeck M., De Neef P., Domenach V., Vandermeers-Piret M. C., Vandermeers A. (1996). Binding of the labelled muscarinic toxin 125I-MT1 to rat brain muscarinic M1 receptors. Eur. J. Pharmacol. 305, 187–192. 10.1016/0014-2999(96)00136-7 PubMed DOI
Walker L. C., Huckstep K. L., Chen N. A., Hand L. J., Lindsley C. W., Langmead C. J., et al. (2021). Muscarinic M4 and M5 receptors in the ventral subiculum differentially modulate alcohol seeking versus consumption in male alcohol-preferring rats. Br. J. Pharmacol. 178, 3730–3746. 10.1111/bph.15513 PubMed DOI
Wang J., Wu M., Chen Z., Wu L., Wang T., Cao D., et al. (2022). The unconventional activation of the muscarinic acetylcholine receptor M4R by diverse ligands. Nat. Commun. 13, 2855. 10.1038/s41467-022-30595-y PubMed DOI PMC
Wang Y., Law W. K., Hu J. S., Lin H. Q., Ip T. M., Wan D. C. (2014). Discovery of FDA-approved drugs as inhibitors of fatty acid binding protein 4 using molecular docking screening. J. Chem. Inf. Model. 54, 3046–3050. 10.1021/ci500503b PubMed DOI
Wang Z., Shi H., Wang H. (2004). Functional M3 muscarinic acetylcholine receptors in mammalian hearts. Br. J. Pharmacol. 142, 395–408. 10.1038/sj.bjp.0705787 PubMed DOI PMC
Ward J. S., Merritt L., Bymaster F. P., Calligaro D. O. (1994). Isoarecolones and arecolones: Selective central nicotinic agonists that cross the blood-brain barrier. Bioorg. Med. Chem. Lett. 4, 573–578. 10.1016/s0960-894x(01)80157-8 DOI
Watson J., Brough S., Coldwell M. C., Gager T., Ho M., Hunter A. J., et al. (1998). Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors. Br. J. Pharmacol. 125, 1413–1420. 10.1038/sj.bjp.0702201 PubMed DOI PMC
Watt M. L., Schober D. A., Hitchcock S., Liu B., Chesterfield A. K., Mckinzie D., et al. (2011). Pharmacological characterization of LY593093, an M1 muscarinic acetylcholine receptor-selective partial orthosteric agonist. J. Pharmacol. Exp. Ther. 338, 622–632. 10.1124/jpet.111.182063 PubMed DOI
Wei H. B., Roeske W. R., Lai J., Wanibuchi F., Hidaka K., Usuda S., et al. (1992). Pharmacological characterization of a novel muscarinic partial agonist, YM796, in transfected cells expressing the m1 or m2 muscarinic receptor gene. Life Sci. 50, 355–363. 10.1016/0024-3205(92)90437-t PubMed DOI
Weiden P. J., Yohn S., Felder C. C. (2022). Understanding why muscarinic receptor agonists have antipsychotic properties. CNS Spectr. 27, 249. 10.1017/s1092852922000608 DOI
Weinhart C. G., Wifling D., Schmidt M. F., Neu E., Höring C., Clark T., et al. (2021). Dibenzodiazepinone-type muscarinic receptor antagonists conjugated to basic peptides: Impact of the linker moiety and unnatural amino acids on M2R selectivity. Eur. J. Med. Chem. 213, 113159. 10.1016/j.ejmech.2021.113159 PubMed DOI
Wess J., Lambrecht G., Mutschler E., Brann M. R., Dörje F. (1991). Selectivity profile of the novel muscarinic antagonist UH-AH 37 determined by the use of cloned receptors and isolated tissue preparations. Br. J. Pharmacol. 102, 246–250. 10.1111/j.1476-5381.1991.tb12161.x PubMed DOI PMC
Wiśniowska B., Mendyk A., Fijorek K., Glinka A., Polak S. (2012). Predictive model for L-type channel inhibition: Multichannel block in QT prolongation risk assessment. J. Appl. Toxicol. 32, 858–866. 10.1002/jat.2784 PubMed DOI
Wu J., Li X., Zhou P., Li X. (2020). M3 but not M4 muscarinic receptors in the rostromedial tegmental nucleus are involved in the acquisition of morphine-induced conditioned place preference. Eur. J. Pharmacol. 882, 173274. 10.1016/j.ejphar.2020.173274 PubMed DOI
Xu M., Peng Y., Zhu L., Wang S., Ji J., Rakesh K. P. (2019). Triazole derivatives as inhibitors of Alzheimer's disease: Current developments and structure-activity relationships. Eur. J. Med. Chem. 180, 656–672. 10.1016/j.ejmech.2019.07.059 PubMed DOI
Yamada S., Chimoto J., Shiho M., Okura T., Morikawa K., Kagota S., et al. (2021). Muscarinic receptor binding activity in rat tissues by vibegron and prediction of its receptor occupancy levels in the human bladder. Int. J. Urol. 28, 1298–1303. 10.1111/iju.14696 PubMed DOI
Yang Z., Ney A., Cromer B. A., Ng H. L., Parker M. W., Lynch J. W. (2007). Tropisetron modulation of the glycine receptor: Femtomolar potentiation and a molecular determinant of inhibition. J. Neurochem. 100, 758–769. 10.1111/j.1471-4159.2006.04242.x PubMed DOI
Yardley J. P., Husbands G. E., Stack G., Butch J., Bicksler J., Moyer J. A., et al. (1990). 2-Phenyl-2-(1-hydroxycycloalkyl)ethylamine derivatives: Synthesis and antidepressant activity. J. Med. Chem. 33, 2899–2905. 10.1021/jm00172a035 PubMed DOI
Zhang W., Bymaster F. P. (1999). The in vivo effects of olanzapine and other antipsychotic agents on receptor occupancy and antagonism of dopamine D1, D2, D3, 5HT2A and muscarinic receptors. Psychopharmacology 141, 267–278. 10.1007/s002130050834 PubMed DOI
Zhang Y., Joseph D. B., Bowen W. D., Flippen-Anderson J. L., Dersch C. M., Rothman R. B., et al. (2001). Synthesis and biological evaluation of tropane-like 1-{2-[Bis(4-fluorophenyl)methoxy]ethyl}-4-(3-phenylpropyl)piperazine (GBR 12909) analogues. J. Med. Chem. 44, 3937–3945. 10.1021/jm0101592 PubMed DOI
Zhuang Z. P., Kung M. P., Kung H. F. (1993). Synthesis of (R, S)-trans-8-hydroxy-2-[N-n-propyl-N-(3'-iodo-2'-propenyl)amino]tetralin (trans 8-OH-PIPAT): A new 5-HT1A receptor ligand. J. Med. Chem. 36, 3161–3165. 10.1021/jm00073a016 PubMed DOI
Zlotos D. P., Mohsen A. M. Y., Mandour Y. M., Marzouk M. A., Breitinger U., Villmann C., et al. (2019). 11-Aminostrychnine and N-(Strychnine-11-yl)propionamide: Synthesis, configuration, and pharmacological evaluation at Glycine receptors. J. Nat. Prod. 82, 2332–2336. 10.1021/acs.jnatprod.9b00180 PubMed DOI
Ztaou S., Amalric M. (2019). Contribution of cholinergic interneurons to striatal pathophysiology in Parkinson's disease. Neurochem. Int. 126, 1–10. 10.1016/j.neuint.2019.02.019 PubMed DOI