Surface Plasmon Resonance Imaging Sensor for Detection of Photolytically and Photocatalytically Degraded Glyphosate

. 2022 Nov 27 ; 22 (23) : . [epub] 20221127

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36501920

Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008419 Ministry of Education Youth and Sports
LM2018098 Ministry of Education Youth and Sports

Glyphosate is one of the most widely used pesticides, which, together with its primary metabolite aminomethylphosphonic acid, remains present in the environment. Many technologies have been developed to reduce glyphosate amounts in water. Among them, heterogeneous photocatalysis with titanium dioxide as a commonly used photocatalyst achieves high removal efficiency. Nevertheless, glyphosate is often converted to organic intermediates during its degradation. The detection of degraded glyphosate and emerging products is, therefore, an important element of research in terms of disposal methods. Attention is being paid to new sensors enabling the fast detection of glyphosate and its degradation products, which would allow the monitoring of its removal process in real time. The surface plasmon resonance imaging (SPRi) method is a promising technique for sensing emerging pollutants in water. The aim of this work was to design, create, and test an SPRi biosensor suitable for the detection of glyphosate during photolytic and photocatalytic experiments focused on its degradation. Cytochrome P450 and TiO2 were selected as the detection molecules. We developed a sensor for the detection of the target molecules with a low molecular weight for monitoring the process of glyphosate degradation, which could be applied in a flow-through arrangement and thus detect changes taking place in real-time. We believe that SPRi sensing could be widely used in the study of xenobiotic removal from surface water or wastewater.

Zobrazit více v PubMed

Myers J.P., Antoniou M.N., Blumberg B., Carroll L., Colborn T., Everett L.G., Hansen M., Landrigan P.J., Lanphear B.P., Mesnage R., et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environ. Health. 2016;15:1–13. doi: 10.1186/s12940-016-0117-0. PubMed DOI PMC

Xu J.W., Smith S., Smith G., Wang W.Q., Li Y.H. Glyphosate contamination in grains and foods: An overview. Food Control. 2019;106:106710. doi: 10.1016/j.foodcont.2019.106710. DOI

Guyton K.Z., Loomis D., Grosse Y., El Ghissassi F., Benbrahim-Tallaa L., Guha N., Scoccianti C., Mattock H., Straif K., International Agency for Research on Cancer Monograph Working Group Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncol. 2015;16:490–491. doi: 10.1016/S1470-2045(15)70134-8. PubMed DOI

De Roos A.J., Zahm S.H., Cantor K.P., Weisenburger D.D., Holmes F.F., Burmeister L.F., Blair A. Integrative assessment of multiple pesticides as risk factors for non-Hodgkin’s lymphoma among men. Occup. Environ. Med. 2003;60:e11. doi: 10.1136/oem.60.9.e11. PubMed DOI PMC

Eriksson M., Hardell L., Carlberg M., Akerman M. Pesticide exposure as risk factor for non-Hodgkin lymphoma including histopathological subgroup analysis. Int. J. Cancer. 2008;123:1657–1663. doi: 10.1002/ijc.23589. PubMed DOI

Feulefack J., Khan A., Forastiere F., Sergi C.M. Parental Pesticide Exposure and Childhood Brain Cancer: A Systematic Review and Meta-Analysis Confirming the IARC/WHO Monographs on Some Organophosphate Insecticides and Herbicides. Child. -Basel. 2021;8:1096. doi: 10.3390/children8121096. PubMed DOI PMC

Liao Y., Berthion J.M., Colet I., Merlo M., Nougadere A., Hu R.W. Validation and application of analytical method for glyphosate and glufosinate in foods by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A. 2018;1549:31–38. doi: 10.1016/j.chroma.2018.03.036. PubMed DOI

Martins H.A., Lebre D.T., Wang A.Y., Pires M.A.F., Bustillos O.V. An alternative and fast method for determination of glyphosate and aminomethylphosphonic acid (AMPA) residues in soybean using liquid chromatography coupled with tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2009;23:1029–1034. doi: 10.1002/rcm.3960. PubMed DOI

Zhang W.D., Feng Y.R., Ma L., An J., Zhang H.Y., Cao M.S., Zhu H.J., Kang W.J., Lian K.Q. A method for determining glyphosate and its metabolite aminomethyl phosphonic acid by gas chromatography-flame photometric detection. J. Chromatogr. A. 2019;1589:116–121. doi: 10.1016/j.chroma.2018.12.039. PubMed DOI

Aydin Z., Keles M. A reaction-based system for the colorimetric detection of glyphosate in real samples. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2022;267:120501. doi: 10.1016/j.saa.2021.120501. PubMed DOI

De Goes R.E., Muller M., Fabris J.L. Spectroscopic Detection of Glyphosate in Water Assisted by Laser-Ablated Silver Nanoparticles. Sensors. 2017;17:954. doi: 10.3390/s17050954. PubMed DOI PMC

Xu M.L., Gao Y., Li Y.L., Li X.L., Zhang H.J., Han X.X., Zhao B., Su L. Indirect glyphosate detection based on ninhydrin reaction and surface-enhanced Raman scattering spectroscopy. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2018;197:78–82. doi: 10.1016/j.saa.2018.01.014. PubMed DOI

Crocoli L.C., Ortiz R.S., Moura S. Development and validation of a qNMR method for analyses of legal and illegal formulations of glyphosate. Anal. Methods. 2019;11:4052–4059. doi: 10.1039/C9AY00673G. DOI

Byer J.D., Struger J., Klawunn P., Todd A., Sverko E. Low cost monitoring of glyphosate in surface waters using the ELISA method: An evaluation. Environ. Sci. Technol. 2008;42:6052–6057. doi: 10.1021/es8005207. PubMed DOI

Rubio F., Veldhuis L.J., Clegg B.S., Fleeker J.R., Hall J.C. Comparison of a direct ELISA and an HPLC method for glyphosate determinations in water. J. Agric. Food Chem. 2003;51:691–696. doi: 10.1021/jf020761g. PubMed DOI

See H.H., Hauser P.C., Ibrahim W.A.W., Sanagi M.M. Rapid and direct determination of glyphosate, glufosinate, and aminophosphonic acid by online preconcentration CE with contactless conductivity detection. Electrophoresis. 2010;31:575–582. doi: 10.1002/elps.200900380. PubMed DOI

Csapó E., Juhász Á., Varga N., Sebők D., Hornok V., Janovák L., Dékány I. Thermodynamic and kinetic characterization of pH-dependent interactions between bovine serum albumin and ibuprofen in 2D and 3D systems. Colloids Surf. A Physicochem. Eng. Asp. 2016;504:471–478. doi: 10.1016/j.colsurfa.2016.05.090. DOI

Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008;108:462–493. doi: 10.1021/cr068107d. PubMed DOI

Hornok V., Juhasz A., Paragi G., Kovacs A.N., Csapo E. Thermodynamic and kinetic insights into the interaction of kynurenic acid with human serum albumin: Spectroscopic and calorimetric approaches. J. Mol. Liq. 2020;313:112869. doi: 10.1016/j.molliq.2020.112869. DOI

Ding X.K., Yang K.L. Development of an Oligopeptide Functionalized Surface Plasmon Resonance Biosensor for Online Detection of Glyphosate. Anal. Chem. 2013;85:5727–5733. doi: 10.1021/ac400273g. PubMed DOI

Do M.H., Dubreuil B., Peydecastaing J.M., Vaca-Medina G., Nhu-Trang T.T., Jaffrezic-Renault N., Behra P. Chitosan-Based Nanocomposites for Glyphosate Detection Using Surface Plasmon Resonance Sensor. Sensors. 2020;20:5942. doi: 10.3390/s20205942. PubMed DOI PMC

Feng D., Soric A., Boutin O. Treatment technologies and degradation pathways of glyphosate: A critical review. Sci. Total Environ. 2020;742:140559. doi: 10.1016/j.scitotenv.2020.140559. PubMed DOI

Dosnon-Olette R., Couderchet M., Oturan M.A., Oturan N., Eullaffroy P. Potential use of lemna minor for the phytoremediation of isoproturon and glyphosate. Int. J. Phytoremediation. 2011;13:601–612. doi: 10.1080/15226514.2010.525549. PubMed DOI

Zhan H., Feng Y.M., Fan X.H., Chen S.H. Recent advances in glyphosate biodegradation. Appl. Microbiol. Biotechnol. 2018;102:5033–5043. doi: 10.1007/s00253-018-9035-0. PubMed DOI

Vera M.S., Lagomarsino L., Sylvester M., Perez G.L., Rodriguez P., Mugni H., Sinistro R., Ferraro M., Bonetto C., Zagarese H., et al. New evidences of Roundup(A (R)) (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems. Ecotoxicology. 2010;19:710–721. doi: 10.1007/s10646-009-0446-7. PubMed DOI

Song J.F., Li X.M., Figoli A., Huang H., Pan C., He T., Jiang B. Composite hollow fiber nanofiltration membranes for recovery of glyphosate from saline wastewater. Water Res. 2013;47:2065–2074. doi: 10.1016/j.watres.2013.01.032. PubMed DOI

Yuan J., Duan J.M., Saint C.P., Mulcahy D. Removal of glyphosate and aminomethylphosphonic acid from synthetic water by nanofiltration. Environ. Technol. 2018;39:1384–1392. doi: 10.1080/09593330.2017.1329356. PubMed DOI

Pereira H.A., Hernandes P.R.T., Netto M.S., Reske G.D., Vieceli V., Oliveira L.F.S., Dotto G.L. Adsorbents for glyphosate removal in contaminated waters: A review. Environ. Chem. Lett. 2021;19:1525–1543. doi: 10.1007/s10311-020-01108-4. DOI

Li F., Wang Y.F., Yang Q.Z., Evans D.G., Forano C., Duan X. Study on adsorption of glyphosate (N-phosphonomethyl glycine) pesticide on MgAl-layered double hydroxides in aqueous solution. J. Hazard. Mater. 2005;125:89–95. doi: 10.1016/j.jhazmat.2005.04.037. PubMed DOI

Manassero A., Passalia C., Negro A.C., Cassano A.E., Zalazar C.S. Glyphosate degradation in water employing the H2O2/UVC process. Water Res. 2010;44:3875–3882. doi: 10.1016/j.watres.2010.05.004. PubMed DOI

Balci B., Oturan M.A., Oturan N., Sires I. Decontamination of Aqueous Glyphosate, (Aminomethyl) phosphonic Acid, and Glufosinate Solutions by Electro-Fenton-like Process with Mn2+ as the Catalyst. J. Agric. Food Chem. 2009;57:4888–4894. doi: 10.1021/jf900876x. PubMed DOI

Echavia G.R.M., Matzusawa F., Negishi N. Photocatalytic degradation of organophosphate and phosphonoglycine pesticides using TiO2 immobilized on silica gel. Chemosphere. 2009;76:595–600. doi: 10.1016/j.chemosphere.2009.04.055. PubMed DOI

Rubi-Juarez H., Cotillas S., Saez C., Canizares P., Barrera-Diaz C., Rodrigo M.A. Removal of herbicide glyphosate by conductive-diamond electrochemical oxidation. Appl. Catal. B-Environ. 2016;188:305–312. doi: 10.1016/j.apcatb.2016.02.006. DOI

Samsel A., Seneff S. Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases. Entropy. 2013;15:1416–1463. doi: 10.3390/e15041416. DOI

Nguyen H.H., Park J., Kang S., Kim M. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors. 2015;15:10481–10510. doi: 10.3390/s150510481. PubMed DOI PMC

Zhang H., Chen Y.F., Wang H., Hu S.Q., Xia K., Xiong X., Huang W.J., Lu H.H., Yu J.H., Guan H.Y., et al. Titanium dioxide nanoparticle modified plasmonic interface for enhanced refractometric and biomolecular sensing. Opt. Express. 2018;26:33226–33237. doi: 10.1364/OE.26.033226. PubMed DOI

Scarano S., Mascini M., Turner A.P.F., Minunni M. Surface plasmon resonance imaging for affinity-based biosensors. Biosens. Bioelectron. 2010;25:957–966. doi: 10.1016/j.bios.2009.08.039. PubMed DOI

Nebert D.W., Wikvall K., Miller W.L. Human cytochromes P450 in health and disease. Philos. Trans. R. Soc. B-Biol. Sci. 2013;368:20120431. doi: 10.1098/rstb.2012.0431. PubMed DOI PMC

Karamanska R., Clarke J., Blixt O., MacRae J.I., Zhang J.Q.Q., Crocker P.R., Laurent N., Wright A., Flitsch S.L., Russell D.A., et al. Surface plasmon resonance imaging for real-time, label-free analysis of protein interactions with carbohydrate microarrays. Glycoconj. J. 2008;25:69–74. doi: 10.1007/s10719-007-9047-y. PubMed DOI

Papagiannaki D., Medana C., Binetti R., Calza P., Roslev P. Effect of UV-A, UV-B and UV-C irradiation of glyphosate on photolysis and mitigation of aquatic toxicity. Sci. Rep. 2020;10:20247. doi: 10.1038/s41598-020-76241-9. PubMed DOI PMC

Law W.-C., Yong K.-T., Baev A., Hu R., Prasad P.N. Nanoparticle enhanced surface plasmon resonance biosensing: Application of gold nanorods. Opt. Express. 2009;17:19041–19046. doi: 10.1364/OE.17.019041. PubMed DOI

Park J.-H., Cho Y.-W., Kim T.-H. Recent Advances in Surface Plasmon Resonance Sensors for Sensitive Optical Detection of Pathogens. Biosensors. 2022;12:180. doi: 10.3390/bios12030180. PubMed DOI PMC

Luo Y.Q., Yu F., Zare R.N. Microfluidic device for immunoassays based on surface plasmon resonance imaging. Lab A Chip. 2008;8:694–700. doi: 10.1039/b800606g. PubMed DOI

Nafisah S., Morsin M., Jumadi N.A., Nayan N., Shah N.S.M., Razali N.L., An’Nisa N.Z. Improved Sensitivity and Selectivity of Direct Localized Surface Plasmon Resonance Sensor Using Gold Nanobipyramids for Glyphosate Detection. Ieee Sens. J. 2020;20:2378–2389. doi: 10.1109/JSEN.2019.2953928. DOI

Li M.C., Chen K.R., Kuo C.C., Lin Y.X., Su L.C. A Simple Phase-Sensitive Surface Plasmon Resonance Sensor Based on Simultaneous Polarization Measurement Strategy. Sensors. 2021;21:7615. doi: 10.3390/s21227615. PubMed DOI PMC

Balciunas D., Plausinaitis D., Ratautaite V., Ramanaviciene A., Ramanavicius A. Towards electrochemical surface plasmon resonance sensor based on the molecularly imprinted polypyrrole for glyphosate sensing. Talanta. 2022;241:123252. doi: 10.1016/j.talanta.2022.123252. PubMed DOI

Steiner G. Surface plasmon resonance imaging. Anal. Bioanal. Chem. 2004;379:328–331. doi: 10.1007/s00216-004-2636-8. PubMed DOI

Ouellet E., Lausted C., Lin T., Yang C.W.T., Hood L., Lagally E.T. Parallel microfluidic surface plasmon resonance imaging arrays. Lab A Chip. 2010;10:581–588. doi: 10.1039/b920589f. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...