The Impact of Nutshell Biochar on the Environment as an Alternative Fuel or as a Soil Amendment
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
2022:31170/1312/3104
Czech University of Life Sciences Prague
PubMed
36903189
PubMed Central
PMC10004210
DOI
10.3390/ma16052074
PII: ma16052074
Knihovny.cz E-resources
- Keywords
- biochar, biofuel, biomass, calorific value, nut shells, phytotoxicity,
- Publication type
- Journal Article MeSH
Walnut, pistachio, and peanut nutshells were treated by pyrolysis to biochar and analyzed for their possible usage as fuels or soil fertilizers. All the samples were pyrolyzed to five different temperatures, i.e., 250 °C, 300 °C, 350 °C, 450 °C, and 550 °C. Proximate and elemental analyses were carried out for all the samples, as well as calorific value and stoichiometric analysis. For sample usage as a soil amendment, phytotoxicity testing was performed and the content of phenolics, flavonoids, tannin, juglone, and antioxidant activity were determined. To characterize the chemical composition of walnut, pistachio, and peanut shells, lignin, cellulose, holocellulose, hemicellulose, and extractives were determined. As a result, it was found that walnut shells and pistachio shells are best pyrolyzed at the temperature of 300 °C and peanut shells at the temperature of 550 °C for their use as alternative fuels. The highest measured net calorific value was in pistachio shells, which were biochar pyrolyzed at 550 °C, of 31.35 MJ kg-1. On the other hand, walnut biochar pyrolyzed at 550 °C had the highest ash share of 10.12% wt. For their use as soil fertilizers, peanut shells were the most suitable when pyrolyzed at 300 °C, walnut shells at 300 and 350 °C, and pistachio shells at 350 °C.
See more in PubMed
Okedu K., AlSenaidi A.S., Al Hajri I., Al Rashdi I., Al Salmani W. Real Time Dynamic Analysis of Solar PV Integration for Energy Optimization. Int. J. Smart Grid. 2020;4:68–79. doi: 10.20508/IJSMARTGRID.V4I2.100.G91. DOI
Espina R.U., Barroca R.B., Abundo M.L.S. Proximate Analysis of the Torrefied Coconut Shells. Int. J. Renew. Energy Res. IJRER. 2022;12:489–494. doi: 10.20508/IJRER.V12I1.12902.G8429. DOI
IEA IEA Technology Roadmap—Delivering Sustainable Bioenergy—Analysis. [(accessed on 1 September 2022)]; Available online: https://www.iea.org/reports/technology-roadmap-delivering-sustainable-bioenergy.
Garrido M.A., Conesa J.A., Garcia M.D. Characterization and Production of Fuel Briquettes Made from Biomass and Plastic Wastes. Energies. 2017;10:850. doi: 10.3390/en10070850. DOI
Lubwama M., Yiga V.A. Development of Groundnut Shells and Bagasse Briquettes as Sustainable Fuel Sources for Domestic Cooking Applications in Uganda. Renew. Energy. 2017;111:532–542. doi: 10.1016/j.renene.2017.04.041. DOI
Lubwama M., Yiga V.A. Characteristics of Briquettes Developed from Rice and Coffee Husks for Domestic Cooking Applications in Uganda. Renew. Energy. 2018;118:43–55. doi: 10.1016/j.renene.2017.11.003. DOI
Brunerová A., Roubík H., Brožek M. Bamboo Fiber and Sugarcane Skin as a Bio-Briquette Fuel. Energies. 2018;11:2186. doi: 10.3390/en11092186. DOI
Purohit P., Chaturvedi V. Biomass Pellets for Power Generation in India: A Techno-Economic Evaluation. Environ. Sci. Pollut. Res. 2018;25:29614–29632. doi: 10.1007/s11356-018-2960-8. PubMed DOI PMC
McCaffrey Z., Torres L., Chiou B.S., Ferreira S.R., Silva L.E., Wood D.F., Orts W.J. Torrefaction of Almond and Walnut Byproducts. Front. Energy Res. 2021;9:91. doi: 10.3389/fenrg.2021.643306. DOI
Almond Board of California Crop Reports Almond Almanac Report. [(accessed on 1 September 2022)]. Available online: https://www.almonds.com/tools-and-resources/crop-reports/almond-almanac.
California Avocado Commission California Agricultural Statistics Review. 2021. [(accessed on 1 September 2022)]. Available online: https://www.californiaavocadogrowers.com/articles/2021-california-agricultural-statistics-review-available-online.
Ujjinappa S., Sreepathi L.K. Production and Quality Testing of Fuel Briquettes Made from Pongamia and Tamarind Shell. Sadhana Acad. Proc. Eng. Sci. 2018;43:58. doi: 10.1007/s12046-018-0836-8. DOI
Gürdil G.A.K., Selvi K.C., Malaták J., Pinar Y. Biomass Utilization for Thermal Energy. AMA Agric. Mech. Asia Afr. Lat. Am. 2009;20:80–85.
Wang Y., Yin R., Liu R. Characterization of Biochar from Fast Pyrolysis and Its Effect on Chemical Properties of the Tea Garden Soil. J. Anal. Appl. Pyrolysis. 2014;110:375–381. doi: 10.1016/j.jaap.2014.10.006. DOI
Ma Z., Zhang Y., Shen Y., Wang J., Yang Y., Zhang W., Wang S. Oxygen Migration Characteristics during Bamboo Torrefaction Process Based on the Properties of Torrefied Solid, Gaseous, and Liquid Products. Biomass Bioenergy. 2019;128:105300. doi: 10.1016/j.biombioe.2019.105300. DOI
Fang S., Yu Z., Lin Y., Hu S., Liao Y., Ma X. Thermogravimetric Analysis of the Co-Pyrolysis of Paper Sludge and Municipal Solid Waste. Energy Convers. Manag. 2015;101:626–631. doi: 10.1016/j.enconman.2015.06.026. DOI
Gunasee S.D., Carrier M., Gorgens J.F., Mohee R. Pyrolysis and Combustion of Municipal Solid Wastes: Evaluation of Synergistic Effects Using TGA-MS. J. Anal. Appl. Pyrolysis. 2016;121:50–61. doi: 10.1016/j.jaap.2016.07.001. DOI
Peng N., Liu Z., Liu T., Gai C. Emissions of Polycyclic Aromatic Hydrocarbons (PAHs) during Hydrothermally Treated Municipal Solid Waste Combustion for Energy Generation. Appl. Energy. 2016;184:396–403. doi: 10.1016/j.apenergy.2016.10.028. DOI
Ding K., Zhong Z., Wang J., Zhang B., Fan L., Liu S., Wang Y., Liu Y., Zhong D., Chen P., et al. Improving Hydrocarbon Yield from Catalytic Fast Co-Pyrolysis of Hemicellulose and Plastic in the Dual-Catalyst Bed of CaO and HZSM-5. Bioresour. Technol. 2018;261:86–92. doi: 10.1016/j.biortech.2018.03.138. PubMed DOI
Fan Y., Cai Y., Li X., Jiao L., Xia J., Deng X. Effects of the Cellulose, Xylan and Lignin Constituents on Biomass Pyrolysis Characteristics and Bio-Oil Composition Using the Simplex Lattice Mixture Design Method. Energy Convers. Manag. 2017;138:106–118. doi: 10.1016/j.enconman.2017.01.075. DOI
Bożym M., Gendek A., Siemiątkowski G., Aniszewska M., Malaťák J. Assessment of the Composition of Forest Waste in Terms of Its Further Use. Materials. 2021;14:973. doi: 10.3390/ma14040973. PubMed DOI PMC
Malaták J., Jevic P., Gürdil G.A.K., Selvi K.Ç. Biomass Heat-Emission Characteristics of Energy Plants. AMA Agric. Mech. Asia Afr. Lat. Am. 2008;39:9–13.
Oldfield T.L., Sikirica N., Mondini C., López G., Kuikman P.J., Holden N.M. Biochar, Compost and Biochar-Compost Blend as Options to Recover Nutrients and Sequester Carbon. J. Environ. Manag. 2018;218:465–476. doi: 10.1016/j.jenvman.2018.04.061. PubMed DOI
Yu K.L., Show P.L., Ong H.C., Ling T.C., Chi-Wei Lan J., Chen W.H., Chang J.S. Microalgae from Wastewater Treatment to Biochar—Feedstock Preparation and Conversion Technologies. Energy Convers. Manag. 2017;150:1–13. doi: 10.1016/j.enconman.2017.07.060. DOI
Sang F., Yin Z., Wang W., Almatrafi E., Wang Y., Zhao B., Gong J., Zhou C., Zhang C., Zeng G., et al. Degradation of Ciprofloxacin Using Heterogeneous Fenton Catalysts Derived from Natural Pyrite and Rice Straw Biochar. J. Clean. Prod. 2022;378:134459. doi: 10.1016/j.jclepro.2022.134459. DOI
Wang W., Niu Q., Zeng G., Zhang C., Huang D., Shao B., Zhou C., Yang Y., Liu Y., Guo H., et al. 1D Porous Tubular G-C3N4 Capture Black Phosphorus Quantum Dots as 1D/0D Metal-Free Photocatalysts for Oxytetracycline Hydrochloride Degradation and Hexavalent Chromium Reduction. Appl. Catal. B. 2020;273:119051. doi: 10.1016/j.apcatb.2020.119051. DOI
Wang Z., Xie L., Liu K., Wang J., Zhu H., Song Q., Shu X. Co-Pyrolysis of Sewage Sludge and Cotton Stalks. Waste Manag. 2019;89:430–438. doi: 10.1016/j.wasman.2019.04.033. PubMed DOI
Tao M.L., Guan H.Y., Wang X.H., Liu Y.C., Louh R.F. Fabrication of Sulfonated Carbon Catalyst from Biomass Waste and Its Use for Glycerol Esterification. Fuel Process. Technol. 2015;138:355–360. doi: 10.1016/j.fuproc.2015.06.021. DOI
Ellis N., Masnadi M.S., Roberts D.G., Kochanek M.A., Ilyushechkin A.Y. Mineral Matter Interactions during Co-Pyrolysis of Coal and Biomass and Their Impact on Intrinsic Char Co-Gasification Reactivity. Chem. Eng. J. 2015;279:402–408. doi: 10.1016/j.cej.2015.05.057. DOI
Qin Y.H., Han Q.Q., Zhao Z.B., Du Z.Y., Feng J., Li W.Y., Vassilev S.V., Vassileva C.G. Impact of Biomass Addition on Organic Structure and Mineral Matter of Char during Coal-Biomass Co-Gasification under CO2 Atmosphere. Fuel. 2017;202:556–562. doi: 10.1016/j.fuel.2017.04.072. DOI
Ma Z., Yang Y., Ma Q., Zhou H., Luo X., Liu X., Wang S. Evolution of the Chemical Composition, Functional Group, Pore Structure and Crystallographic Structure of Bio-Char from Palm Kernel Shell Pyrolysis under Different Temperatures. J. Anal. Appl. Pyrolysis. 2017;127:350–359. doi: 10.1016/j.jaap.2017.07.015. DOI
Malaťák J., Vaculík P. Biomasa pro Výrobu Energie—Google Books. [(accessed on 30 September 2022)]. Available online: https://books.google.com.pa/books/about/Biomasa_pro_v%C3%BDrobu_energie.html?id=uJAKYAAACAAJ&redir_esc=y.
Nhuchhen D.R., Afzal M.T. HHV Predicting Correlations for Torrefied Biomass Using Proximate and Ultimate Analyses. Bioengineering. 2017;4:7. doi: 10.3390/bioengineering4010007. PubMed DOI PMC
Medic D., Darr M., Shah A., Potter B., Zimmerman J. Effects of Torrefaction Process Parameters on Biomass Feedstock Upgrading. Fuel. 2012;91:147–154. doi: 10.1016/j.fuel.2011.07.019. DOI
Wilk M., Magdziarz A. Hydrothermal Carbonization, Torrefaction and Slow Pyrolysis of Miscanthus Giganteus. Energy. 2017;140:1292–1304. doi: 10.1016/j.energy.2017.03.031. DOI
Wang G.J., Luo Y.H., Deng J., Kuang J.H., Zhang Y.L. Pretreatment of Biomass by Torrefaction. Chin. Sci. Bull. 2011;56:1442–1448. doi: 10.1007/s11434-010-4143-y. DOI
Prins M.J., Ptasinski K.J., Janssen F.J.J.G. More Efficient Biomass Gasification via Torrefaction. Energy. 2006;31:3458–3470. doi: 10.1016/j.energy.2006.03.008. DOI
Arnsfeld S., Senk D., Gudenau H.W. The Qualification of Torrefied Wooden Biomass and Agricultural Wastes Products for Gasification Processes. J. Anal. Appl. Pyrolysis. 2014;107:133–141. doi: 10.1016/j.jaap.2014.02.013. DOI
Chen D., Gao A., Cen K., Zhang J., Cao X., Ma Z. Investigation of Biomass Torrefaction Based on Three Major Components: Hemicellulose, Cellulose, and Lignin. Energy Convers. Manag. 2018;169:228–237. doi: 10.1016/j.enconman.2018.05.063. DOI
Hakkou M., Pétrissans M., Gérardin P., Zoulalian A. Investigations of the Reasons for Fungal Durability of Heat-Treated Beech Wood. Polym. Degrad. Stab. 2006;91:393–397. doi: 10.1016/j.polymdegradstab.2005.04.042. DOI
Arias B., Pevida C., Fermoso J., Plaza M.G., Rubiera F., Pis J.J. Influence of Torrefaction on the Grindability and Reactivity of Woody Biomass. Fuel Process. Technol. 2008;89:169–175. doi: 10.1016/j.fuproc.2007.09.002. DOI
Uslu A., Faaij A.P.C., Bergman P.C.A. Pre-Treatment Technologies, and Their Effect on International Bioenergy Supply Chain Logistics. Techno-Economic Evaluation of Torrefaction, Fast Pyrolysis and Pelletisation. Energy. 2008;33:1206–1223. doi: 10.1016/j.energy.2008.03.007. DOI
Mohd Fuad M.A.H., Hasan M.F., Ani F.N. Microwave Torrefaction for Viable Fuel Production: A Review on Theory, Affecting Factors, Potential and Challenges. Fuel. 2019;253:512–526. doi: 10.1016/j.fuel.2019.04.151. DOI
Yan B., Jiao L., Li J., Zhu X., Ahmed S., Chen G. Investigation on Microwave Torrefaction: Parametric Influence, TG-MS-FTIR Analysis, and Gasification Performance. Energy. 2021;220:119794. doi: 10.1016/j.energy.2021.119794. DOI
Chiou B.S., Valenzuela-Medina D., Bilbao-Sainz C., Klamczynski A.P., Avena-Bustillos R.J., Milczarek R.R., Du W.X., Glenn G.M., Orts W.J. Torrefaction of Almond Shells: Effects of Torrefaction Conditions on Properties of Solid and Condensate Products. Ind. Crops Prod. 2016;86:40–48. doi: 10.1016/j.indcrop.2016.03.030. DOI
Chiou B.S., Valenzuela-Medina D., Bilbao-Sainz C., Klamczynski A.K., Avena-Bustillos R.J., Milczarek R.R., Du W.X., Glenn G.M., Orts W.J. Torrefaction of Pomaces and Nut Shells. Bioresour. Technol. 2015;177:58–65. doi: 10.1016/j.biortech.2014.11.071. PubMed DOI
Barskov S., Zappi M., Buchireddy P., Dufreche S., Guillory J., Gang D., Hernandez R., Bajpai R., Baudier J., Cooper R., et al. Torrefaction of Biomass: A Review of Production Methods for Biocoal from Cultured and Waste Lignocellulosic Feedstocks. Renew. Energy. 2019;142:624–642. doi: 10.1016/j.renene.2019.04.068. DOI
Zhu X., Luo Z., Diao R., Zhu X. Combining Torrefaction Pretreatment and Co-Pyrolysis to Upgrade Biochar Derived from Bio-Oil Distillation Residue and Walnut Shell. Energy Convers. Manag. 2019;199:111970. doi: 10.1016/j.enconman.2019.111970. DOI
El Mashad H.M., Edalati A., Zhang R., Jenkins B.M. Production and Characterization of Biochar from Almond Shells. Clean Technol. 2022;4:854–864. doi: 10.3390/cleantechnol4030053. DOI
Magdziarz A., Wilk M., Straka R. Combustion Process of Torrefied Wood Biomass. J. Therm. Anal. Calorim. 2017;127:1339–1349. doi: 10.1007/s10973-016-5731-0. DOI
Malat’áková J., Jankovský M., Malat’Ák J., Velebil J., Tamelová B., Gendek A., Aniszewska M. Evaluation of Small-Scale Gasification for CHP for Wood from Salvage Logging in the Czech Republic. Forests. 2021;12:1448. doi: 10.3390/f12111448. DOI
Irawan A., Latifah Upe S., Meity Dwi I.P. Effect of Torrefaction Process on the Coconut Shell Energy Content for Solid Fuel. AIP Conf. Proc. 2017;1826:020010. doi: 10.1063/1.4979226. DOI
Tumuluru J.S., Sokhansanj S., Wright C.T., Boardman R.D. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development. Idaho National Lab.; Idaho Falls, ID, USA: 2010. DOI
Dinesha P., Kumar S., Rosen M.A. Biomass Briquettes as an Alternative Fuel: A Comprehensive Review. Energy Technol. 2019;7:1801011. doi: 10.1002/ente.201801011. DOI
Chungcharoen T., Srisang N. Preparation and Characterization of Fuel Briquettes Made from Dual Agricultural Waste: Cashew Nut Shells and Areca Nuts. J. Clean. Prod. 2020;256:120434. doi: 10.1016/j.jclepro.2020.120434. DOI
Ujjinappa S., Sreepathi L.K. Evaluation of Physico-Mechanical-Combustion Characteristics of Fuel Briquettes Made from Blends of Areca Nut Husk, Simarouba Seed Shell and Black Liquor. Int. J. Renew. Energy Dev. 2018;7:131–137. doi: 10.14710/ijred.7.2.131-137. DOI
Eurostat . Eurostat Energy, Transport and Environment Indicators. 2018th ed. Office for Official Publications of the European Communities; Luxembourg: 2018. p. 232.
McGranahan G., Leslie C. Walnut. Fruit Breed. Springer; Berlin/Heidelberg, Germany: 2012. pp. 827–846. DOI
Padulosi S., Hadj- Hassan A. Towards a Comprehensive Documentation and Use of Pistacia Genetic Diversity in Central and West Asia, North Africa and Europe; Proceedings of the IPGRI Workshop; Irbid, Jordan. 14–17 December 1998; p. 105.
Mandalari G., Barreca D., Gervasi T., Roussell M.A., Klein B., Feeney M.J., Carughi A. Pistachio Nuts (Pistacia vera L.): Production, Nutrients, Bioactives and Novel Health Effects. Plants. 2021;11:18. doi: 10.3390/plants11010018. PubMed DOI PMC
Smith B.W. Arachis hypogaea. Aerial Flower and Subterranean Fruit. Am. J. Bot. 1950;37:802–815. doi: 10.1002/j.1537-2197.1950.tb11073.x. DOI
Estelle L., Loko Y., David M., Joelle T., Dieudonné G., Alexandre D. Farmers’ Management of Peanut (Arachis hypogaea L.) Diversity, Their Varietal Preference Traits and Uses in Southern and Central Benin. J. Crop Sci. Biotechnol. 2020;23:259–272. doi: 10.21203/rs.3.rs-17298/v1. DOI
Malaťák J., Passian L. Heat-Emission Analysis of Small Combustion Equipments for Biomass. Res. Agric. Eng. 2011;57:37–50. doi: 10.17221/28/2010-RAE. DOI
ČSN ISO 1928 (441352) Stanovení Spalného Tepla. [(accessed on 26 August 2022)]. Available online: https://www.technicke-normy-csn.cz/csn-iso-1928-441352-205351.html.
Tunklová B., Jeníček L., Malaťák J., Neškudla M., Velebil J., Hnilička F. Properties of Biochar Derived from Tea Waste as an Alternative Fuel and Its Effect on Phytotoxicity of Seed Germination for Soil Applications. Materials. 2022;15:8709. doi: 10.3390/ma15248709. PubMed DOI PMC
Singleton V.L., Rossi J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965;16:144–158.
Tsantili E. Quality Attributes and Their Relations in Fresh Black Ripe ‘Kalamon’ Olives (Olea europaea L.) for Table Use—Phenolic Compounds and Total Antioxidant Capacity. Int. J. Food Sci. Technol. 2014;49:657–665. doi: 10.1111/ijfs.12356. DOI
Chang C.C., Yang M.H., Wen H.M., Chern J.C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colometric Methods. J. Food Drug Anal. 2002;10:3. doi: 10.38212/2224-6614.2748. DOI
Prieto P., Pineda M., Aguilar M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999;269:337–341. doi: 10.1006/abio.1999.4019. PubMed DOI
Ci K.C., Indira G. Quantitative Estimation of Total Phenolic, Flavonoids, Tannin and Chlorophyll Content of Leaves of Strobilanthes Kunthiana (Neelakurinji) J. Med. Plants Stud. 2016;4:282–286.
Kocaçaliskan I., Turan E., Ertürk Ü., Demir Y., Terzi I. Varietal and Time Dependent Differences in Juglone and Total Phenolic Contents of the Walnut (Juglans regia L.) Leaves. Prog. Nutr. 2020;22:193–198. doi: 10.23751/PN.V22I1.7949. DOI
TAPPI . TAPPI Standards: Regulations and Style Guidelines. TAPPI; Peachtree Corners, GA, USA: 2018. Standard & Test Methods.
Seifert K. Uber Ein Neues Verfahren Zur Schnellbestimmung der Rein-Cellulose. Das Pap. 1956;10:301–306.
Wise L.E., Murphy M., Adieco A.A.D. A Chlorite Holocellulose, Its Fractionation and Bearing on Summative Wood Analysis and Studies on the Hemicelluloses. Pap. Trade J. 1946;122:35–43.
Malaťák J., Velebil J., Malaťáková J., Passian L., Bradna J., Tamelová B., Gendek A., Aniszewska M. Reducing Emissions from Combustion of Grape Residues in Mixtures with Herbaceous Biomass. Materials. 2022;15:7288. doi: 10.3390/ma15207288. PubMed DOI PMC
Bradna J., Malaťák J., Hájek D. The Properties of Wheat Straw Combustion and Use of Fly Ash as a Soil Amendment. Agron. Res. 2016;14:1257–1265.
Malaták J., Velebil J., Bradna J., Gendek A., Tamelová B. Evaluation of Co and NoxEmissions in Real-Life Operating Conditions of Herbaceous Biomass Briquettes Combustion. Acta Technol. Agric. 2020;23:53–59. doi: 10.2478/ATA-2020-0009. DOI
Jenicek L., Neskudla M., Malatak J., Velebil J., Passian L. Spruce and Barley Elemental and Stochiometric Analysis Affected by the Impact of Pellet Production and Torrefaction. Acta Technol. Agric. 2021;24:166–172. doi: 10.2478/ATA-2021-0028. DOI
Jeníček L., Tunklová B., Malat’ák J., Neškudla M., Velebil J. Use of Spent Coffee Ground as an Alternative Fuel and Possible Soil Amendment. Materials. 2022;15:6722. doi: 10.3390/ma15196722. PubMed DOI PMC
Tamelová B., Malaťák J., Velebil J., Gendek A., Aniszewska M. Energy Utilization of Torrefied Residue from Wine Production. Materials. 2021;14:1610. doi: 10.3390/ma14071610. PubMed DOI PMC
Karimi M., Aminzadehsarikhanbeglou E., Vaferi B. Robust Intelligent Topology for Estimation of Heat Capacity of Biochar Pyrolysis Residues. Measurement. 2021;183:109857. doi: 10.1016/j.measurement.2021.109857. DOI
Dupont C., Chiriac R., Gauthier G., Toche F. Heat Capacity Measurements of Various Biomass Types and Pyrolysis Residues. Fuel. 2014;115:644–651. doi: 10.1016/j.fuel.2013.07.086. DOI
Matok H., Leszczynski B., Chrzanowski G., Sempruch C. Effects of Walnut Phenolics on Germination of Dandelion Seeds. Allelopath. J. 2009;24:177–182.
Cosmulescu S., Trandafir I., Achim G., Baciu A. Juglone Content in Leaf and Green Husk of Five Walnut (Juglans regia L.) Cultivars. Not. Bot. Horti Agrobot. 2011;39:237–240. doi: 10.15835/nbha3915728. DOI
Ramezani N., Raji F., Rezakazemi M., Younas M. Juglone Extraction from Walnut (Juglans regia L.) Green Husk by Supercritical CO2: Process Optimization Using Taguchi Method. J. Environ. Chem. Eng. 2020;8:103776. doi: 10.1016/j.jece.2020.103776. DOI
Uslu O.S., Babur E., Alma M.H., Solaiman Z.M. Walnut Shell Biochar Increases Seed Germination and Early Growth of Seedlings of Fodder Crops. Agriculture. 2020;10:427. doi: 10.3390/agriculture10100427. DOI
Deenik J.L., Diarra A., Uehara G., Campbell S., Sumiyoshi Y., Antal M.J., Jr. Charcoal Ash and Volatile Matter Effects on Soil Properties and Plant Growth in an Acid Ultisol. Soil Sci. 2011;176:336–345. doi: 10.1097/SS.0b013e31821fbfea. DOI
Buss W., Mašek O. Mobile Organic Compounds in Biochar—A Potential Source of Contamination−phytotoxic Effects on Cress Seed (Lepidium sativum) Germination. J. Environ. Manag. 2014;137:111–119. doi: 10.1016/j.jenvman.2014.01.045. PubMed DOI
Fetjah D., Ainlhout L.F.E., Ihssane B., Houari A., Idardare Z., Bouqbis L. Biological, Physico-Chemical and Morphological Analyses of Four Biochars Derived from Agricultural Waste. J. Ecol. Eng. 2021;22:36–46. doi: 10.12911/22998993/133964. DOI
Solaiman Z.M., Murphy D.V., Abbott L.K. Biochars Influence Seed Germination and Early Growth of Seedlings. Plant Soil. 2012;353:273–287. doi: 10.1007/s11104-011-1031-4. DOI
Yang J., Liu R.H., Halim L. Antioxidant and Antiproliferative Activities of Common Edible Nut Seeds. LWT Food Sci. Technol. 2009;42:1–8. doi: 10.1016/j.lwt.2008.07.007. DOI
Jalili A. Reducing Power and Radical Scavenging Activities of Phenolic Extracts from Juglans Regia Hulls and Shells. Afr. J. Biotechnol. 2012;11:9040. doi: 10.5897/AJB11.1489. DOI
Han H., Wang S., Rakita M., Wang Y., Han Q., Xu Q., Han H., Wang S., Rakita M., Wang Y., et al. Effect of Ultrasound-Assisted Extraction of Phenolic Compounds on the Characteristics of Walnut Shells. Food Nutr. Sci. 2018;9:1034–1045. doi: 10.4236/fns.2018.98076. DOI
Queirós C.S.G.P., Cardoso S., Lourenço A., Ferreira J., Miranda I., Lourenço M.J.V., Pereira H. Characterization of Walnut, Almond, and Pine Nut Shells Regarding Chemical Composition and Extract Composition. Biomass Convers. Biorefin. 2020;10:175–188. doi: 10.1007/s13399-019-00424-2. DOI
Soto-Maldonado C., Caballero-Valdés E., Santis-Bernal J., Jara-Quezada J., Fuentes-Viveros L., Zúñiga-Hansen M.E. Potential of Solid Wastes from the Walnut Industry: Extraction Conditions to Evaluate the Antioxidant and Bioherbicidal Activities. Electron. J. Biotechnol. 2022;58:25–36. doi: 10.1016/j.ejbt.2022.04.005. DOI
Sadat K., Dolatabadi M., Dehghan G., Hosseini S., Esfahlan A.J. Effect of Five Year Storage on Total Phenolic Content and Antioxidant Capacity of Almond (Amygdalus communis L.) Hull and Shell from Different Genotypes. Avicenna J. Phytomed. 2015;5:26. PubMed PMC
Rubin E.M. Genomics of Cellulosic Biofuels. Nature. 2008;454:841–845. doi: 10.1038/nature07190. PubMed DOI
Waters C.L., Janupala R.R., Mallinson R.G., Lobban L.L. Staged Thermal Fractionation for Segregation of Lignin and Cellulose Pyrolysis Products: An Experimental Study of Residence Time and Temperature Effects. J. Anal. Appl. Pyrolysis. 2017;126:380–389. doi: 10.1016/j.jaap.2017.05.008. DOI
Seehra M.S., Pyapalli S.K., Poston J., Atta-Obeng E., Dawson-Andoh B. Hydrothermal Conversion of Commercial Lignin to Carbonaceous Materials. J. Indian Acad. Wood Sci. 2015;12:29–36. doi: 10.1007/s13196-015-0141-7. DOI
Pyrolyzed Agro-Food By-Products: A Sustainable Alternative to Coal
Substituting Solid Fossil Fuels with Torrefied Timber Products