• This record comes from PubMed

Insights into IGH clonal evolution in BCP-ALL: frequency, mechanisms, associations, and diagnostic implications

. 2023 ; 14 () : 1125017. [epub] 20230418

Language English Country Switzerland Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

INTRODUCTION: The malignant transformation leading to a maturation arrest in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) occurs early in B-cell development, in a pro-B or pre-B cell, when somatic recombination of variable (V), diversity (D), and joining (J) segment immunoglobulin (IG) genes and the B-cell rescue mechanism of VH replacement might be ongoing or fully active, driving clonal evolution. In this study of newly diagnosed BCP-ALL, we sought to understand the mechanistic details of oligoclonal composition of the leukemia at diagnosis, clonal evolution during follow-up, and clonal distribution in different hematopoietic compartments. METHODS: Utilizing high-throughput sequencing assays and bespoke bioinformatics we identified BCP-ALL-derived clonally-related IGH sequences by their shared 'DNJ-stem'. RESULTS: We introduce the concept of 'marker DNJ-stem' to cover the entirety of, even lowly abundant, clonally-related family members. In a cohort of 280 adult patients with BCP-ALL, IGH clonal evolution at diagnosis was identified in one-third of patients. The phenomenon was linked to contemporaneous recombinant and editing activity driven by aberrant ongoing DH/VH-DJH recombination and VH replacement, and we share insights and examples for both. Furthermore, in a subset of 167 patients with molecular subtype allocation, high prevalence and high degree of clonal evolution driven by ongoing DH/VH-DJH recombination were associated with the presence of KMT2A gene rearrangements, while VH replacements occurred more frequently in Ph-like and DUX4 BCP-ALL. Analysis of 46 matched diagnostic bone marrow and peripheral blood samples showed a comparable clonal and clonotypic distribution in both hematopoietic compartments, but the clonotypic composition markedly changed in longitudinal follow-up analysis in select cases. Thus, finally, we present cases where the specific dynamics of clonal evolution have implications for both the initial marker identification and the MRD monitoring in follow-up samples. DISCUSSION: Consequently, we suggest to follow the marker DNJ-stem (capturing all family members) rather than specific clonotypes as the MRD target, as well as to follow both VDJH and DJH family members since their respective kinetics are not always parallel. Our study further highlights the intricacy, importance, and present and future challenges of IGH clonal evolution in BCP-ALL.

See more in PubMed

Alt FW, Yancopoulos GD, Blackwell TK, Wood C, Thomas E, Boss M, et al. . Ordered rearrangement of immunoglobulin heavy chain variable region segments. EMBO J (1984) 3:1209–19. doi: 10.1002/j.1460-2075.1984.tb01955.x PubMed DOI PMC

Alt FW, Oltz EM, Young F, Gorman J, Taccioli G, Chen J. VDJ recombination. Immunol Today (1992) 13:306–14. doi: 10.1016/0167-5699(92)90043-7 PubMed DOI

Alt FW, Baltimore D. Joining of immunoglobulin heavy chain gene segments: Implications from a chromosome with evidence of three d-J(H) fusions. Proc Natl Acad Sci USA (1982) 79:4118–22. doi: 10.1073/pnas.79.13.4118 PubMed DOI PMC

Tonegawa S. Somatic generation of antibody diversity. Nature (1983) 302:575–81. doi: 10.1038/302575a0 PubMed DOI

Beishuizen A, Verhoeven M, van Wering E, Hahlen K, Hooijkaas H, van Dongen J. Analysis of ig and T-cell receptor genes in 40 childhood acute lymphoblastic leukemias at diagnosis and subsequent relapse: Implications for the detection of minimal residual disease by polymerase chain reaction analysis. Blood (1994) 83:2238–47. doi: 10.1182/blood.V83.8.2238.2238 PubMed DOI

Beishuizen A, Hählen K, Hagemeijer A, Verhoeven MA, Hooijkaas H, Adriaansen HJ, et al. . Multiple rearranged immunoglobulin genes in childhood acute lymphoblastic leukemia of precursor b-cell. Leukemia (1991) 5(8):657–67. PubMed

Choi Y, Greenberg SJ, Du TL, Ward PM, Overturf PM, Brecher ML, et al. . Clonal evolution in b-lineage acute lymphoblastic leukemia by contemporaneous VH-VH gene replacements and VH-DJH gene rearrangements. Blood (1996) 87:2506–12. doi: 10.1182/blood.V87.6.2506.bloodjournal8762506 PubMed DOI

Gawad C, Pepin F, Carlton VEH, Klinger M, Logan AC, Miklos DB, et al. . Massive evolution of the immunoglobulin heavy chain locus in children with b precursor acute lymphoblastic leukemia. Blood (2012) 120:4407–17. doi: 10.1182/blood-2012-05-429811 PubMed DOI PMC

Theunissen PMJ, van Zessen D, Stubbs AP, Faham M, Zwaan CM, van Dongen JJM, et al. . Antigen receptor sequencing of paired bone marrow samples shows homogeneous distribution of acute lymphoblastic leukemia subclones. Haematologica (2017) 102:1869–77. doi: 10.3324/haematol.2017.171454 PubMed DOI PMC

Safonova Y, Pevzner PA. V(DD)J recombination is an important and evolutionarily conserved mechanism for generating antibodies with unusually long CDR3s. Genome Res (2020) 30:1547–58. doi: 10.1101/gr.259598.119 PubMed DOI PMC

Meek KD, Hasemann CA, Capra JD. Novel rearrangements at the immunoglobulin d locus. inversions and fusions add to IgH somatic diversity. J Exp Med (1989) 170:39–57. doi: 10.1084/jem.170.1.39 PubMed DOI PMC

Reth M, Gehrmann P, Petrac E, Wiese P. A novel VH to VHDJH joining mechanism in heavy-chain-negative (null) pre-b cells results in heavy-chain production. Nature (1986) 322:840–2. doi: 10.1038/322840a0 PubMed DOI

Kleinfield R, Hardy RR, Tarlinton D, Dangl J, Herzenberg LA, Weigert M. Recombination between an expressed immunoglobulin heavy-chain gene and a germline variable gene segment in a ly 1+ b-cell lymphoma. Nature (1986) 322:843–6. doi: 10.1038/322843a0 PubMed DOI

Steenbergen EJ, Verhagen OJHM, van Leeuwen EF, von dem Borne AEGK, van der Schoot CE. Distinct ongoing ig heavy chain rearrangement processes in childhood b- precursor acute lymphoblastic leukemia. Blood (1993) 82:581–9. doi: 10.1182/blood.V82.2.581.581 PubMed DOI

Zhang Z. VH replacement in mice and humans. Trends Immunol (2007) 28:132–7. doi: 10.1016/j.it.2007.01.003 PubMed DOI

Zhang Z, Zemlin M, Wang YH, Munfus D, Huye LE, Findley HW, et al. . Contribution of VH gene replacement to the primary b cell repertoire. Immunity (2003) 19:21–31. doi: 10.1016/S1074-7613(03)00170-5 PubMed DOI

Bassan R, Brüggemann M, Radcliffe HS, Hartfield E, Kreuzbauer G, Wetten S. A systematic literature review and meta-analysis of minimal residual disease as a prognostic indicator in adult b-cell acute lymphoblastic leukemia. Haematologica (2019) 104:2028–39. doi: 10.3324/haematol.2018.201053 PubMed DOI PMC

Bassan R, Spinelli O, Oldani E, Intermesoli T, Tosi M, Peruta B, et al. . Improved risk classification for risk-specific therapy based on the molecular study of minimal residual disease (MRD) in adult acute lymphoblastic leukemia (ALL). Blood (2009) 113:4153–62. doi: 10.1182/blood-2008-11-185132 PubMed DOI

Beldjord K, Chevret S, Asnafi V, Huguet F, Boulland ML, Leguay T, et al. . Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia. Blood (2014) 123:3739–49. doi: 10.1182/blood-2014-01-547695 PubMed DOI

Berry DA, Zhou S, Higley H, Mukundan L, Fu S, Reaman GH, et al. . Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: A meta-analysis. JAMA Oncol (2017) 3(7):e170580. doi: 10.1001/jamaoncol.2017.0580 PubMed DOI PMC

Gökbuget N, Kneba M, Raff T, Trautmann H, Bartram CR, Arnold R, et al. . Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. Blood (2012) 120:1868–76. doi: 10.1182/blood-2011-09-377713 PubMed DOI

Reiter A, Schrappe M, Ludwig WD, Hiddemann W, Sauter S, Henze G, et al. . Chemotherapy in 998 unselected childhood acute lymphoblastic leukemia patients. results and conclusions of the multicenter trial ALL-BFM 86. Blood (1994) 84:3122–33. doi: 10.1182/blood.V84.9.3122.3122 PubMed DOI

Ribera JM, Oriol A, Morgades M, Montesinos P, Sarrà J, González-Campos J, et al. . Treatment of high-risk Philadelphia chromosome-negative acute lymphoblastic leukemia in adolescents and adults according to early cytologic response and minimal residual disease after consolidation assessed by flow cytometry: Final results of the PETHEMA ALL-AR-03 trial. J Clin Oncol (2014) 32:1595–604. doi: 10.1200/JCO.2013.52.2425 PubMed DOI

Kotrova M, Darzentas N, Pott C, Baldus CD, Brüggemann M. Immune gene rearrangements: Unique signatures for tracing physiological lymphocytes and leukemic cells. Genes (Basel) (2021) 12:979. doi: 10.3390/genes12070979 PubMed DOI PMC

Bystry V, Reigl T, Krejci A, Demko M, Hanakova B, Grioni A, et al. . ARResT/Interrogate: An interactive immunoprofiler for IG/TR NGS data. Bioinformatics (2017) 33:435–7. doi: 10.1093/bioinformatics/btw634 PubMed DOI

Bastian L, Hartmann AM, Beder T, Hänzelmann S, Kässens J, Bultmann M, et al. . UBTF::ATXN7L3 gene fusion defines novel b cell precursor ALL subtype with CDX2 expression and need for intensified treatment. Leukemia (2022) 36(6):1676–80. doi: 10.1038/s41375-022-01557-6 PubMed DOI PMC

Brüggemann M, Kotrová M, Knecht H, Bartram J, Boudjogrha M, Bystry V, et al. . Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study. Leukemia (2019) 33:2241–53. doi: 10.1038/s41375-019-0496-7 PubMed DOI PMC

Knecht H, Reigl T, Kotrová M, Appelt F, Stewart P, Bystry V, et al. . Quality control and quantification in IG/TR next-generation sequencing marker identification: protocols and bioinformatic functionalities by EuroClonality-NGS. Leukemia (2019) 33:2254–65. doi: 10.1038/s41375-019-0499-4 PubMed DOI PMC

Lefranc MP. IMGT, the international ImMunoGeneTics database. Nucleic Acids Res (2001) 29:207–9. doi: 10.1093/nar/29.1.207 PubMed DOI PMC

Kotrova M, Knecht H, Herrmann D, Schwarz M, Olsen K, Trautmann H, et al. . The IG/TR next generation marker screening developed within euroclonality-NGS consortium is successful in 94% of acute lymphoblastic leukemia samples. Blood (2018) 132:2830. doi: 10.1182/blood-2018-99-112828 DOI

Szczepański T, Willemse MJ, Brinkhof B, Van Wering ER, van der Burg M, Van Dongen JJM. Comparative analysis of ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B–ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood (2002) 99:2315–23. doi: 10.1182/blood.V99.7.2315 PubMed DOI

Hansen TØ, Lange AB, Barington T. Sterile DJ h rearrangements reveal that distance between gene segments on the human ig h chain locus influences their ability to rearrange. J Immunol (2015) 194:973–82. doi: 10.4049/jimmunol.1401443 PubMed DOI

Levy G, Kicinski M, van der Straeten J, Uyttebroeck A, Ferster A, de Moerloose B, et al. . Immunoglobulin heavy chain high-throughput sequencing in pediatric b-precursor acute lymphoblastic leukemia: Is the clonality of the disease at diagnosis related to its prognosis? Front Pediatr (2022) 10:874771. doi: 10.3389/fped.2022.874771 PubMed DOI PMC

Rosenquist R, Thunberg U, Li AH, Forestier E, Lönnerholm G, Lindh J, et al. . Clonal evolution as judged by immunoglobulin heavy chain gene rearrangements in relapsing precursor-b acute lymphoblastic leukemia. Eur J Haematol (1999) 63:171–9. doi: 10.1111/j.1600-0609.1999.tb01765.x PubMed DOI

Theunissen PMJ, de Bie M, van Zessen D, de Haas V, Stubbs AP, van der Velden VHJ. Next-generation antigen receptor sequencing of paired diagnosis and relapse samples of b-cell acute lymphoblastic leukemia: Clonal evolution and implications for minimal residual disease target selection. Leuk Res (2019) 76:98–104. doi: 10.1016/j.leukres.2018.10.009 PubMed DOI

Fries C, Lee LW, Devidas M, Dai Y, Rabin KR, Gupta S, et al. . Prognostic impact of pretreatment immunoglobulin clonal composition in pediatric b-lymphoblastic leukemia. Haematologica (2023) 108:900–4. doi: 10.3324/haematol.2022.281146 PubMed DOI PMC

Szczepanski T, Willemse M, Wering EV, Weerden JFV, Kamps W, Dongen JV. Precursor-B-ALL with d-H-J(H) gene rearrangements have an immature immunogenotype with a high frequency of oligoclonality and hyperdiploidy of chromosome 14. Leukemia (2001) 15:1415–23. doi: 10.1038/sj.leu.2402206 PubMed DOI

Kotrova M, Volland A, Kehden B, Trautmann H, Ritgen M, Wäsch R, et al. . Comparison of minimal residual disease levels in bone marrow and peripheral blood in adult acute lymphoblastic leukemia. Leukemia (2019) 34:1154–7. doi: 10.1038/s41375-019-0599-1 PubMed DOI

Jackson KJL, Gaeta B, Sewell W, Collins AM. Exonuclease activity and p nucleotide addition in the generation of the expressed immunoglobulin repertoire. BMC Immunol (2004) 5:19. doi: 10.1186/1471-2172-5-19 PubMed DOI PMC

Kurosawa Y, Tonegawa S. Organization, structure, and assembly of immunoglobulin heavy chain diversity DNA segments. J Exp Med (1982) 155:201–18. doi: 10.1084/jem.155.1.201 PubMed DOI PMC

Tsakou E, Agathagelidis A, Boudjoghra M, Raff T, Dagklis A, Chatzouli M, et al. . Partial versus productive immunoglobulin heavylocus rearrangements in chronic lymphocytic leukemia: Implications for b-cell receptor stereotypy. Mol Med (2012) 18:138–45. doi: 10.2119/molmed.2011.00216 PubMed DOI PMC

Sen R, Oltz E. Genetic and epigenetic regulation of IgH gene assembly. Curr Opin Immunol (2006) 18:237–42. doi: 10.1016/j.coi.2006.03.008 PubMed DOI

Hesslein DGT, Pflugh DL, Chowdhury D, Bothwell ALM, Sen R, Schatz DG. Pax5 is required for recombination of transcribed, acetylated, 5′ IgH V gene segments. Genes Dev (2003) 17:37–42. doi: 10.1101/gad.1031403 PubMed DOI PMC

Fuxa M, Skok J, Souabni A, Salvagiotto G, Roldan E, Busslinger M. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev (2004) 18:411–22. doi: 10.1101/gad.291504 PubMed DOI PMC

Darzentas F, Szczepanowski M, Kotrová M, Kelm M, Hartmann A, Beder T, et al. . IGH rearrangement evolution in adult KMT2A-rearranged b-cell precursor ALL: implications for cell-of-origin and MRD monitoring. Hemasphere (2022) 7(1):e820. doi: 10.1097/HS9.0000000000000820 PubMed DOI PMC

Stutterheim J, van der Sluis IM, de Lorenzo P, Alten J, Ancliffe P, Attarbaschi A, et al. . Clinical implications of minimal residual disease detection in infants with KMT2A-rearranged acute lymphoblastic leukemia treated on the interfant-06 protocol. J Clin Oncol (2021) 39:652–62. doi: 10.1200/JCO.20.02333 PubMed DOI PMC

Steenbergen EJ, Verhagen OJHM, van den Berg H, van Leeuwen EF, Behrendt H, Slater RR, et al. . Rearrangement status of the malignant cell determines type of secondary IgH rearrangement (V-replacement or V to DJ joining) in childhood b precursor acute lymphoblastic leukemia. Leukemia (1997) 11:1258–65. doi: 10.1038/sj.leu.2400720 PubMed DOI

Salmoiraghi S, Cavagna R, Montalvo MLG, Ubiali G, Tosi M, Peruta B, et al. . Immature immunoglobulin gene rearrangements are recurrent in b precursor adult acute lymphoblastic leukemia carrying TP53 molecular alterations. Genes (Basel) (2020) 11:960. doi: 10.3390/genes11090960 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...