• This record comes from PubMed

The Mitochondrial Permeability Transition Pore-Current Knowledge of Its Structure, Function, and Regulation, and Optimized Methods for Evaluating Its Functional State

. 2023 Apr 27 ; 12 (9) : . [epub] 20230427

Language English Country Switzerland Media electronic

Document type Journal Article, Review, Research Support, Non-U.S. Gov't

The mitochondrial permeability transition pore (MPTP) is a calcium-dependent, ion non-selective membrane pore with a wide range of functions. Although the MPTP has been studied for more than 50 years, its molecular structure remains unclear. Short-term (reversible) opening of the MPTP protects cells from oxidative damage and enables the efflux of Ca2+ ions from the mitochondrial matrix and cell signaling. However, long-term (irreversible) opening induces processes leading to cell death. Ca2+ ions, reactive oxygen species, and changes in mitochondrial membrane potential regulate pore opening. The sensitivity of the pore to Ca2+ ions changes as an organism ages, and MPTP opening plays a key role in the pathogenesis of many diseases. Most studies of the MPTP have focused on elucidating its molecular structure. However, understanding the mechanisms that will inhibit the MPTP may improve the treatment of diseases associated with its opening. To evaluate the functional state of the MPTP and its inhibitors, it is therefore necessary to use appropriate methods that provide reproducible results across laboratories. This review summarizes our current knowledge of the function and regulation of the MPTP. The latter part of the review introduces two optimized methods for evaluating the functional state of the pore under standardized conditions.

See more in PubMed

Hunter D.R., Haworth R.A., Southard J.H. Relationship between configuration, function, and permeability in calcium-treated mitochondria. J. Biol. Chem. 1976;251:5069–5077. doi: 10.1016/S0021-9258(17)33220-9. PubMed DOI

Raaflaub J. Swelling of isolated mitochondria of the liver and their susceptibility to physicochemical influences. Helvetica Physiol. Pharmacol. Acta. 1953;11:142–156. PubMed

Hunter F.E., Ford L. Inactivation of oxidative and phosphorylative systems in mitochondria by preincubation with phosphate and other ions. J. Biol. Chem. 1955;216:357–369. doi: 10.1016/S0021-9258(19)52312-2. PubMed DOI

Haworth R.A., Hunter D.R. The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch. Biochem. Biophys. 1979;195:460–467. doi: 10.1016/0003-9861(79)90372-2. PubMed DOI

Hunter D.R., Haworth R.A. The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch. Biochem. Biophys. 1979;195:453–459. doi: 10.1016/0003-9861(79)90371-0. PubMed DOI

Hunter D.R., Haworth R.A. The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. Arch. Biochem. Biophys. 1979;195:468–477. doi: 10.1016/0003-9861(79)90373-4. PubMed DOI

Kinnally K.W., Zorov D.B., Antonenko Y.N., Snyder S.H., McEnery M.W., Tedeschi H. Mitochondrial benzodiazepine receptor linked to inner membrane ion channels by nanomolar actions of ligands. Proc. Natl. Acad. Sci. USA. 1993;90:1374–1378. doi: 10.1073/pnas.90.4.1374. PubMed DOI PMC

McEnery M.W., Snowman A.M., Trifiletti R.R., Snyder S.H. Isolation of the mitochondrial benzodiazepine receptor: Association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc. Natl. Acad. Sci. USA. 1992;89:3170–3174. doi: 10.1073/pnas.89.8.3170. PubMed DOI PMC

Herick K., Krämer R., Lühring H. Patch clamp investigation into the phosphate carrier from Saccharomyces cerevisiae mitochondria. Biochim. Biophys. Acta (BBA) Bioenerg. 1997;1321:207–220. doi: 10.1016/S0005-2728(97)00050-9. PubMed DOI

Leung A.W., Varanyuwatana P., Halestrap A.P. The Mitochondrial Phosphate Carrier Interacts with Cyclophilin D and May Play a Key Role in the Permeability Transition. J. Biol. Chem. 2008;283:26312–26323. doi: 10.1074/jbc.M805235200. PubMed DOI PMC

Beutner G., Rück A., Riede B., Brdiczka D. Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim. Biophys. Acta (BBA) Biomembr. 1997;1368:7–18. doi: 10.1016/S0005-2736(97)00175-2. PubMed DOI

Baines C.P., Kaiser R.A., Sheiko T., Craigen W.J., Molkentin J.D. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nature. 2007;9:550–555. doi: 10.1038/ncb1575. PubMed DOI PMC

Gutiérrez-Aguilar M., Douglas D.L., Gibson A.K., Domeier T.L., Molkentin J.D., Baines C.P. Genetic manipulation of the cardiac mitochondrial phosphate carrier does not affect permeability transition. J. Mol. Cell. Cardiol. 2014;72:316–325. doi: 10.1016/j.yjmcc.2014.04.008. PubMed DOI PMC

Kokoszka J.E., Waymire K.G., Levy S.E., Sligh J.E., Cai J., Jones D.P., MacGregor G.R., Wallace D.C. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature. 2004;427:461–465. doi: 10.1038/nature02229. PubMed DOI PMC

Šileikytė J., Blachly-Dyson E., Sewell R., Carpi A., Menabò R., Di Lisa F., Ricchelli F., Bernardi P., Forte M. Regulation of the Mitochondrial Permeability Transition Pore by the Outer Membrane Does Not Involve the Peripheral Benzodiazepine Receptor (Translocator Protein of 18 kDa (TSPO)) J. Biol. Chem. 2014;289:13769–13781. doi: 10.1074/jbc.M114.549634. PubMed DOI PMC

Karch J.M., Bround M.J., Khalil H., Sargent M.A., Latchman N., Terada N., Peixoto P.M., Molkentin J.D. Inhibition of mitochondrial permeability transition by deletion of the ANT family and CypD. Sci. Adv. 2019;5:eaaw4597. doi: 10.1126/sciadv.aaw4597. PubMed DOI PMC

Bernardi P., Di Lisa F., Fogolari F., Lippe G. From ATP to PTP and Back: A Dual Function for the Mitochondrial ATP Synthase. Circ Res. 2015;116:1850–1862. doi: 10.1161/CIRCRESAHA.115.306557. PubMed DOI PMC

Giorgio V., von Stockum S., Antoniel M., Fabbro A., Fogolari F., Forte M., Glick G.D., Petronilli V., Zoratti M., Szabó I., et al. Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc. Natl. Acad. Sci. USA. 2013;110:5887–5892. doi: 10.1073/pnas.1217823110. PubMed DOI PMC

Alavian K.N., Beutner G., Lazrove E., Sacchetti S., Park H.A., Licznerski P., Li P., Nabili P., Hockensmith K., George A.P., et al. An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc. Natl. Acad. Sci. USA. 2014;111:10580–10585. doi: 10.1073/pnas.1401591111. PubMed DOI PMC

Bonora M., Bononi A., De Marchi E., Giorgi C., Lebiedzinska M., Marchi S., Patergnani S., Rimessi A., Suski J.M., Wojtala A., et al. Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle. 2013;12:674–683. doi: 10.4161/cc.23599. PubMed DOI PMC

Bonora M., Morganti C., Morciano G., Pedriali G., Lebiedzinska-Arciszewska M., Aquila G., Giorgi C., Rizzo P., Campo G., Ferrari R., et al. Mitochondrial permeability transition involves dissociation of F1FO ATP synthase dimers and C-ring conformation. EMBO Rep. 2017;18:1077–1089. doi: 10.15252/embr.201643602. PubMed DOI PMC

Bonora M., Giorgi C., Pinton P. Molecular mechanisms and consequences of mitochondrial permeability transition. Nat. Rev. Mol. Cell Biol. 2021;23:266–285. doi: 10.1038/s41580-021-00433-y. PubMed DOI

Daum B., Walter A., Horst A., Osiewacz H.D., Kühlbrandt W. Age-dependent dissociation of ATP synthase dimers and loss of inner-membrane cristae in mitochondria. Proc. Natl. Acad. Sci. USA. 2013;110:15301–15306. doi: 10.1073/pnas.1305462110. PubMed DOI PMC

Panel M., Ghaleh B., Morin D. Mitochondria and aging: A role for the mitochondrial transition pore? Aging Cell. 2018;17:e12793. doi: 10.1111/acel.12793. PubMed DOI PMC

Carraro M., Giorgio V., Šileikytė J., Sartori G., Forte M., Lippe G., Zoratti M., Szabò I., Bernardi P. Channel Formation by Yeast F-ATP Synthase and the Role of Dimerization in the Mitochondrial Permeability Transition. J. Biol. Chem. 2014;289:15980–15985. doi: 10.1074/jbc.C114.559633. PubMed DOI PMC

Carroll J., He J., Ding S., Fearnley I.M., Walker J.E. Persistence of the permeability transition pore in human mitochondria devoid of an assembled ATP synthase. Proc. Natl. Acad. Sci. USA. 2019;116:12816–12821. doi: 10.1073/pnas.1904005116. PubMed DOI PMC

He J., Carroll J., Ding S., Fearnley I.M., Walker J.E. Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase. Proc. Natl. Acad. Sci. USA. 2017;114:9086–9091. doi: 10.1073/pnas.1711201114. PubMed DOI PMC

He J., Ford H.C., Carroll J., Ding S., Fearnley I.M., Walker J.E. Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase. Proc. Natl. Acad. Sci. USA. 2017;114:3409–3414. doi: 10.1073/pnas.1702357114. PubMed DOI PMC

Mnatsakanyan N., Llaguno M.C., Yang Y., Yan Y., Weber J., Sigworth F.J., Jonas E.A. A mitochondrial megachannel resides in monomeric F1FO ATP synthase. Nat. Commun. 2019;10:1–11. doi: 10.1038/s41467-019-13766-2. PubMed DOI PMC

Neginskaya M.A., Solesio M.E., Berezhnaya E.V., Amodeo G.F., Mnatsakanyan N., Jonas E.A., Pavlov E.V. ATP Synthase C-Subunit-Deficient Mitochondria Have a Small Cyclosporine A-Sensitive Channel, but Lack the Permeability Transition Pore. Cell Rep. 2019;26:11–17.e2. doi: 10.1016/j.celrep.2018.12.033. PubMed DOI PMC

Urbani A., Giorgio V., Carrer A., Franchin C., Arrigoni G., Jiko C., Abe K., Maeda S., Shinzawa-Itoh K., Bogers J.F.M., et al. Purified F-ATP synthase forms a Ca2+-dependent high-conductance channel matching the mitochondrial permeability transition pore. Nat. Commun. 2019;10:1–11. doi: 10.1038/s41467-019-12331-1. PubMed DOI PMC

Beutner G., Alavian K.N., Jonas E.A., Porter G.A. The Mitochondrial Permeability Transition Pore and ATP Synthase. Handb. Exp. Pharmacol. 2016;240:21–46. doi: 10.1007/164_2016_5. PubMed DOI PMC

Halestrap A.P. The C Ring of the F1Fo ATP Synthase Forms the Mitochondrial Permeability Transition Pore: A Critical Appraisal. Front. Oncol. 2014;4:234. doi: 10.3389/fonc.2014.00234. PubMed DOI PMC

Chen C., Ko Y., Delannoy M., Ludtke S.J., Chiu W., Pedersen P.L. Mitochondrial ATP synthasome: Three-dimensional structure by electron microscopy of the ATP synthase in complex formation with carriers for Pi and ADP/ATP. J. Biol. Chem. 2004;279:31761–31768. doi: 10.1074/jbc.M401353200. PubMed DOI

Chinopoulos C., Adam-Vizi V. Modulation of the mitochondrial permeability transition by cyclophilin D: Moving closer to F(0)-F(1) ATP synthase? Mitochondrion. 2012;12:41–45. doi: 10.1016/j.mito.2011.04.007. PubMed DOI

Ko Y.H., Delannoy M., Hullihen J., Chiu W., Pedersen P.L. Mitochondrial ATP synthasome. Cristae-enriched membranes and a multiwell detergent screening assay yield dispersed single complexes containing the ATP synthase and carriers for Pi and ADP/ATP. J. Biol. Chem. 2003;278:12305–12309. doi: 10.1074/jbc.C200703200. PubMed DOI

Panel M. Pharmacologie. Université Paris-Saclay; Paris, France: 2018. Étude de l’effet de nouveaux ligands de la cyclophiline D sur le pore de transition de perméabilité mitochondrial et de leur effet protecteur; p. 252.

Javadov S., Hunter J.C., Barreto-Torres G., Parodi-Rullan R. Targeting the Mitochondrial Permeability Transition: Cardiac Ischemia-Reperfusion Versus Carcinogenesis. Cell. Physiol. Biochem. 2011;27:179–190. doi: 10.1159/000327943. PubMed DOI

Paul M.K., Rajinder K., Mukhopadhyay A.K. Characterization of rat liver mitochondrial permeability transition pore by using mitochondrial swelling assay. Afr. J. Pharm. Pharmacol. 2008;2:14–21.

Bonora M., Patergnani S., Ramaccini D., Morciano G., Pedriali G., Kahsay A.E., Bouhamida E., Giorgi C., Wieckowski M.R., Pinton P. Physiopathology of the Permeability Transition Pore: Molecular Mechanisms in Human Pathology. Biomolecules. 2020;10:998. doi: 10.3390/biom10070998. PubMed DOI PMC

Ichas F., Jouaville L.S., Mazat J.-P. Mitochondria Are Excitable Organelles Capable of Generating and Conveying Electrical and Calcium Signals. Cell. 1997;89:1145–1153. doi: 10.1016/S0092-8674(00)80301-3. PubMed DOI

Cadenas S. Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim. Biophys. Acta (BBA) Bioenerg. 2018;1859:940–950. doi: 10.1016/j.bbabio.2018.05.019. PubMed DOI

Bernardi P. The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death. Biochim. Biophys. Acta (BBA) Bioenerg. 1996;1275:5–9. doi: 10.1016/0005-2728(96)00041-2. PubMed DOI

Kroemer G., Reed J.C. Mitochondrial control of cell death. Nat. Med. 2000;6:513–519. doi: 10.1038/74994. PubMed DOI

Zorov D.B., Juhaszova M., Yaniv Y., Nuss H.B., Wang S., Sollott S.J. Regulation and pharmacology of the mitochondrial permeability transition pore. Cardiovasc. Res. 2009;83:213–225. doi: 10.1093/cvr/cvp151. PubMed DOI PMC

Lemasters J.J., Qian T., He L., Kim J.-S., Elmore S.P., Cascio W.E., Brenner D.A., Chen K.-H., Lin B.-R., Chien C.-T., et al. Role of Mitochondrial Inner Membrane Permeabilization in Necrotic Cell Death, Apoptosis, and Autophagy. Antioxid. Redox Signal. 2002;4:769–781. doi: 10.1089/152308602760598918. PubMed DOI

Szabo I., Zoratti M. Mitochondrial Channels: Ion Fluxes and More. Physiol. Rev. 2014;94:519–608. doi: 10.1152/physrev.00021.2013. PubMed DOI

Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 1999;341:233–249. doi: 10.1042/bj3410233. PubMed DOI PMC

Kroemer G., Galluzzi L., Brenner C. Mitochondrial Membrane Permeabilization in Cell Death. Physiol. Rev. 2007;87:99–163. doi: 10.1152/physrev.00013.2006. PubMed DOI

Leist M., Single B., Castoldi A.F., Kühnle S., Nicotera P. Intracellular Adenosine Triphosphate (ATP) Concentration: A Switch in the Decision Between Apoptosis and Necrosis. J. Exp. Med. 1997;185:1481–1486. doi: 10.1084/jem.185.8.1481. PubMed DOI PMC

Desagher S., Martinou J.-C. Mitochondria as the central control point of apoptosis. Trends Cell Biol. 2000;10:369–377. doi: 10.1016/S0962-8924(00)01803-1. PubMed DOI

Mammucari C., Raffaello A., Reane D.V., Gherardi G., De Mario A., Rizzuto R. Mitochondrial calcium uptake in organ physiology: From molecular mechanism to animal models. Pflug. Arch. 2018;470:1165–1179. doi: 10.1007/s00424-018-2123-2. PubMed DOI PMC

Biasutto L., Azzolini M., Szabò I., Zoratti M. The mitochondrial permeability transition pore in AD 2016: An update. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2016;1863:2515–2530. doi: 10.1016/j.bbamcr.2016.02.012. PubMed DOI

Ichas F., Mazat J.-P. From calcium signaling to cell death: Two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim. Biophys. Acta (BBA) Bioenerg. 1998;1366:33–50. doi: 10.1016/S0005-2728(98)00119-4. PubMed DOI

Zorov D.B., Kinnally K.W., Perini S., Tedeschi H. Multiple conductance levels in rat heart inner mitochondrial membranes studied by patch clamping. Biochim. Biophys. Acta. 1992;1105:263–270. PubMed

Boyman L., Coleman A.K., Zhao G., Wescott A.P., Joca H.C., Greiser B.M., Karbowski M., Ward C.W., Lederer W. Dynamics of the mitochondrial permeability transition pore: Transient and permanent opening events. Arch. Biochem. Biophys. 2019;666:31–39. doi: 10.1016/j.abb.2019.03.016. PubMed DOI PMC

Giorgio V., Guo L., Bassot C., Petronilli V., Bernardi P. Calcium and regulation of the mitochondrial permeability transition. Cell Calcium. 2018;70:56–63. doi: 10.1016/j.ceca.2017.05.004. PubMed DOI

Zorov D.B., Kinnally K.W., Perini S., Tedeschi H. Reactive oxygen species (ROS)-induced ROS release: A new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J. Exp. Med. 2000;192:1001–1014. doi: 10.1084/jem.192.7.1001. PubMed DOI PMC

Jang S., Lewis T.S., Powers C., Khuchua Z., Baines C.P., Wipf P., Javadov S. Elucidating Mitochondrial Electron Transport Chain Supercomplexes in the Heart During Ischemia–Reperfusion. Antioxid. Redox Signal. 2017;27:57–69. doi: 10.1089/ars.2016.6635. PubMed DOI PMC

Batandier C., Leverve X., Fontaine E. Opening of the Mitochondrial Permeability Transition Pore Induces Reactive Oxygen Species Production at the Level of the Respiratory Chain Complex I. J. Biol. Chem. 2004;279:17197–17204. doi: 10.1074/jbc.M310329200. PubMed DOI

Rottenberg H., Hoek J.B. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging Cell. 2017;16:943–955. doi: 10.1111/acel.12650. PubMed DOI PMC

Mattson M.P. Calcium and neurodegeneration. Aging Cell. 2007;6:337–350. doi: 10.1111/j.1474-9726.2007.00275.x. PubMed DOI

Rottenberg H., Hoek J.B. The Mitochondrial Permeability Transition: Nexus of Aging, Disease and Longevity. Cells. 2021;10:79. doi: 10.3390/cells10010079. PubMed DOI PMC

Tsai H., Hewitt C., Buchholz J., Duckles S. Intracellular Calcium Buffering Declines in Aging Adrenergic Nerves. Neurobiol. Aging. 1997;18:229–233. doi: 10.1016/S0197-4580(97)00005-5. PubMed DOI

Chabi B., Ljubicic V., Menzies K.J., Huang J.H., Saleem A., Hood D.A. Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell. 2007;7:2–12. doi: 10.1111/j.1474-9726.2007.00347.x. PubMed DOI

Kwak H.B., Song W., Lawler J.M. Exercise training attenuates age-induced elevation in Bax/Bcl-2 ratio, apoptosis, and remodeling in the rat heart. FASEB J. 2006;20:791–793. doi: 10.1096/fj.05-5116fje. PubMed DOI

Hurst S., Hoek J., Sheu S.-S. Mitochondrial Ca2+ and regulation of the permeability transition pore. J. Bioenerg. Biomembr. 2017;49:27–47. doi: 10.1007/s10863-016-9672-x. PubMed DOI PMC

Drahota Z., Endlicher R., Kučera O., Rychtrmoc D., Červinková Z. Factors Affecting the Function of the Mitochondrial Membrane Permeability Transition Pore and Their Role in Evaluation of Calcium Retention Capacity Values. Physiol. Res. 2020;69:491–499. doi: 10.33549/physiolres.934391. PubMed DOI PMC

Endlicher R., Drahota Z., Červinková Z. In vitro and in vivo activation of mitochondrial membrane permeability transition pore using triiodothyronine. Physiol. Res. 2016;65:321–331. doi: 10.33549/physiolres.933041. PubMed DOI

Drahota Z., Endlicher R., Staňková P., Rychtrmoc D., Milerová M., Červinková Z. Characterization of calcium, phosphate and peroxide interactions in activation of mitochondrial swelling using derivative of the swelling curves. J. Bioenerg. Biomembr. 2012;44:309–315. doi: 10.1007/s10863-012-9443-2. PubMed DOI

Endlicher R., Drahota Z., Červinková Z. Modification of calcium retention capacity of rat liver mitochondria by phosphate and tert-butyl hydroperoxide. Physiol. Res. 2019;68:59–65. doi: 10.33549/physiolres.933912. PubMed DOI

Crompton M., Virji S., Ward J.M. Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur. J. Biochem. 1998;258:729–735. doi: 10.1046/j.1432-1327.1998.2580729.x. PubMed DOI

Woodfield K., Rück A., Brdiczka D., Halestrap A.P. Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. Biochem. J. 1998;336:287–290. doi: 10.1042/bj3360287. PubMed DOI PMC

Endlicher R., Drahota Z., Stejskalová M., Kalous M., Ryba L., Rychtrmoc D., Červinková Z. Mitochondriální pór přechodné propustnosti a jeho podíl na rozvoji patologických procesů. Ceskoslov. Fyziologie. 2018;67:13–21.

Tajeddine N. How do reactive oxygen species and calcium trigger mitochondrial membrane permeabilisation? Biochim. Biophys. Acta. 2016;1860:1079–1088. doi: 10.1016/j.bbagen.2016.02.013. PubMed DOI

Baev A.Y., Vinokurov A.Y., Novikova I.N., Dremin V.V., Potapova E.V., Abramov A.Y. Interaction of Mitochondrial Calcium and ROS in Neurodegeneration. Cells. 2022;11:706. doi: 10.3390/cells11040706. PubMed DOI PMC

McCormack J.G., Halestrap A., Denton R.M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 1990;70:391–425. doi: 10.1152/physrev.1990.70.2.391. PubMed DOI

Grijalba M.T., Vercesi A.E., Schreier S. Ca2+-induced increased lipid packing and domain formation in submitochondrial particles. A possible early step in the mechanism of Ca2+-stimulated generation of reactive oxygen species by the respiratory chain. Biochemistry. 1999;38:13279–13287. doi: 10.1021/bi9828674. PubMed DOI

Angelova P.R., Abramov A.Y. Functional role of mitochondrial reactive oxygen species in physiology. Free. Radic. Biol. Med. 2016;100:81–85. doi: 10.1016/j.freeradbiomed.2016.06.005. PubMed DOI

Brookes P., Yoon Y., Robotham J.L., Anders M.W., Sheu S.-S. Calcium, ATP, and ROS: A mitochondrial love-hate triangle. Am. J. Physiol. Physiol. 2004;287:C817–C833. doi: 10.1152/ajpcell.00139.2004. PubMed DOI

Görlach A., Bertram K., Hudecova S., Krizanova O. Calcium and ROS: A mutual interplay. Redox Biol. 2015;6:260–271. doi: 10.1016/j.redox.2015.08.010. PubMed DOI PMC

Peng T.-I., Jou M.-J. Oxidative stress caused by mitochondrial calcium overload. Ann. N. Y. Acad. Sci. 2010;1201:183–188. doi: 10.1111/j.1749-6632.2010.05634.x. PubMed DOI

Nicolli A., Basso E., Petronilli V., Wenger R.M., Bernardi P. Interactions of Cyclophilin with the Mitochondrial Inner Membrane and Regulation of the Permeability Transition Pore, a Cyclosporin A-sensitive Channel. J. Biol. Chem. 1996;271:2185–2192. doi: 10.1074/jbc.271.4.2185. PubMed DOI

Crompton M., Barksby E., Johnson N., Capano M. Mitochondrial intermembrane junctional complexes and their involvement in cell death. Biochimie. 2002;84:143–152. doi: 10.1016/S0300-9084(02)01368-8. PubMed DOI

Giorgio V., Bisetto E., Soriano M.E., Dabbeni-Sala F., Basso E., Petronilli V., Forte M.A., Bernardi P., Lippe G. Cyclophilin D Modulates Mitochondrial F0F1-ATP Synthase by Interacting with the Lateral Stalk of the Complex. J. Biol. Chem. 2009;284:33982–33988. doi: 10.1074/jbc.M109.020115. PubMed DOI PMC

Baines C.P., Kaiser R.A., Purcell N.H., Blair N.S., Osinska H., Hambleton M.A., Brunskill E.W., Sayen M.R., Gottlieb R.A., Dorn G.W., II, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434:658–662. doi: 10.1038/nature03434. PubMed DOI

Lam C.K., Zhao W., Liu G.-S., Cai W.-F., Gardner G., Adly G., Kranias E.G. HAX-1 regulates cyclophilin-D levels and mitochondria permeability transition pore in the heart. Proc. Natl. Acad. Sci. USA. 2015;112:E6466–E6475. doi: 10.1073/pnas.1508760112. PubMed DOI PMC

Basso E., Fante L., Fowlkes J., Petronilli V., Forte M.A., Bernardi P. Properties of the Permeability Transition Pore in Mitochondria Devoid of Cyclophilin D. J. Biol. Chem. 2005;280:18558–18561. doi: 10.1074/jbc.C500089200. PubMed DOI

Shum L.C., White N.S., Nadtochiy S.M., Bentley K.L.D.M., Brookes P.S., Jonason J.H., Eliseev R.A. Cyclophilin D Knock-Out Mice Show Enhanced Resistance to Osteoporosis and to Metabolic Changes Observed in Aging Bone. PLoS ONE. 2016;11:e0155709. doi: 10.1371/journal.pone.0155709. PubMed DOI PMC

Crompton M., Ellinger H., Costi A. Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem. J. 1988;255:357–360. PubMed PMC

Altschuld R.A., Hohl C.M., Castillo L.C., Garleb A.A., Starling R.C., Brierley G.P. Cyclosporin inhibits mitochondrial calcium efflux in isolated adult rat ventricular cardiomyocytes. Am. J. Physiol. Circ. Physiol. 1992;262:H1699–H1704. doi: 10.1152/ajpheart.1992.262.6.H1699. PubMed DOI

Clarke S.J., McStay G.P., Halestrap A.P. Sanglifehrin A Acts as a Potent Inhibitor of the Mitochondrial Permeability Transition and Reperfusion Injury of the Heart by Binding to Cyclophilin-D at a Different Site from Cyclosporin A. J. Biol. Chem. 2002;277:34793–34799. doi: 10.1074/jbc.M202191200. PubMed DOI

Javadov S.A., Lim K.H., Kerr P.M., Suleiman M.-S., Angelini G., Halestrap A.P. Protection of hearts from reperfusion injury by propofol is associated with inhibition of the mitochondrial permeability transition. Cardiovasc. Res. 2000;45:360–369. doi: 10.1016/S0008-6363(99)00365-X. PubMed DOI

Sztark F., Ichas F., Ouhabi R., Dabadie P., Mazat J.-P. Effects of the anaesthetic propofol on the calcium-induced permeability transition of rat heart mitochondria: Direct pore inhibition and shift of the gating potential. FEBS Lett. 1995;368:101–104. doi: 10.1016/0014-5793(95)00610-L. PubMed DOI

Nesci S., Ventrella V., Trombetti F., Pirini M., Pagliarani A. Mini-review. Nitrite as novel pore-shutter: Hints from the preferential inhibition of the mitochondrial ATP-ase when activated by Ca2+ Biochimica. 2017;44:57–63.

Ryba L. Mitochondriální pór Přechodné Propustnosti a Jeho Role v Kardioprotekci. Univerzita Karlova, Přírodovědecká Fakulta; Praha, Czech Republic: 2015. p. 38.

Yellon D., Alkhulaifi A., Pugsley W. Preconditioning the human myocardium. Lancet. 1993;342:276–277. doi: 10.1016/0140-6736(93)91819-8. PubMed DOI

Haleckova A., Benek O., Zemanová L., Dolezal R., Musilek K. Small-molecule inhibitors of cyclophilin D as potential therapeutics in mitochondria-related diseases. Med. Res. Rev. 2022;42:1822–1855. doi: 10.1002/med.21892. PubMed DOI

Chen D.F., Wang C.H. The relationship between the opening of mitochondrial permeability transition pores of cultured hepatocytes with their apoptoses in a non-alcoholic fatty liver disease model. Zhonghua Gan Zang Bing Za Zhi. 2007;15:837–839. PubMed

Teodoro J.S., Rolo A.P., Duarte F.V., Simões A.M., Palmeira C.M. Differential alterations in mitochondrial function induced by a choline-deficient diet: Understanding fatty liver disease progression. Mitochondrion. 2008;8:367–376. doi: 10.1016/j.mito.2008.07.008. PubMed DOI

Brustovetsky N., Klingenberg M. Mitochondrial ADP/ATP Carrier Can Be Reversibly Converted into a Large Channel by Ca2+ Biochemistry. 1996;35:8483–8488. doi: 10.1021/bi960833v. PubMed DOI

Hoffmann B., Stöckl A., Schlame M., Beyer K., Klingenberg M. The reconstituted ADP/ATP carrier activity has an absolute requirement for cardiolipin as shown in cysteine mutants. J. Biol. Chem. 1994;269:1940–1944. doi: 10.1016/S0021-9258(17)42117-X. PubMed DOI

Pestana C.R., Silva C.H., Pardo-Andreu G.L., Rodrigues F.P., Santos A.C., Uyemura S.A., Curti C. Ca2+ binding to c-state of adenine nucleotide translocase (ANT)-surrounding cardiolipins enhances (ANT)-Cys56 relative mobility: A computational-based mitochondrial permeability transition study. Biochim. Biophys. Acta (BBA) Bioenerg. 2009;1787:176–182. doi: 10.1016/j.bbabio.2008.12.013. PubMed DOI

Pfeiffer K., Gohil V., Stuart R.A., Hunte C., Brandt U., Greenberg M.L., Schägger H. Cardiolipin Stabilizes Respiratory Chain Supercomplexes. J. Biol. Chem. 2003;278:52873–52880. doi: 10.1074/jbc.M308366200. PubMed DOI

Montero J., Mari M., Colell A., Morales A., Basañez G., Garcia-Ruiz C., Fernández-Checa J.C. Cholesterol and peroxidized cardiolipin in mitochondrial membrane properties, permeabilization and cell death. Biochim. Biophys. Acta (BBA) Bioenerg. 2010;1797:1217–1224. doi: 10.1016/j.bbabio.2010.02.010. PubMed DOI PMC

Schönfeld P., Bohnensack R. Fatty acid-promoted mitochondrial permeability transition by membrane depolarization and binding to the ADP/ATP carrier. FEBS Lett. 1997;420:167–170. doi: 10.1016/S0014-5793(97)01511-1. PubMed DOI

Belosludtsev K.N., Dubinin M.V., Belosludtseva N.V., Mironova G.D. Mitochondrial Ca2+ Transport: Mechanisms, Molecular Structures, and Role in Cells. Biochemistry. 2019;84:593–607. doi: 10.1134/S0006297919060026. PubMed DOI

Zoratti M., Szabo I., De Marchi U. Mitochondrial permeability transitions: How many doors to the house? Biochim. Biophys. Acta. 2005;1706:40–52. doi: 10.1016/j.bbabio.2004.10.006. PubMed DOI

Paradies G., Paradies V., Ruggiero F.M., Petrosillo G. Role of Cardiolipin in Mitochondrial Function and Dynamics in Health and Disease: Molecular and Pharmacological Aspects. Cells. 2019;8:728. doi: 10.3390/cells8070728. PubMed DOI PMC

Petrosillo G., Casanova G., Matera M., Ruggiero F.M., Paradies G. Interaction of peroxidized cardiolipin with rat-heart mitochondrial membranes: Induction of permeability transition and cytochrome c release. FEBS Lett. 2006;580:6311–6316. doi: 10.1016/j.febslet.2006.10.036. PubMed DOI

Antoniel M., Jones K., Antonucci S., Spolaore B., Fogolari F., Petronilli V., Giorgio V., Carraro M., Di Lisa F., Forte M., et al. The unique histidine in OSCP subunit of F-ATP synthase mediates inhibition of the permeability transition pore by acidic pH. EMBO Rep. 2017;19:257–268. doi: 10.15252/embr.201744705. PubMed DOI PMC

Sorgato M.C., Keller B.U., Stühmer W. Patch-clamping of the inner mitochondrial membrane reveals a voltage-dependent ion channel. Nature. 1987;330:498–500. doi: 10.1038/330498a0. PubMed DOI

Bonora M., Morganti C., Morciano G., Giorgi C., Wieckowski M.R., Pinton P. Comprehensive analysis of mitochondrial permeability transition pore activity in living cells using fluorescence-imaging-based techniques. Nat. Protoc. 2016;11:1067–1080. doi: 10.1038/nprot.2016.064. PubMed DOI

Griffiths E.J., Halestrap A. Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem. J. 1995;307:93–98. doi: 10.1042/bj3070093. PubMed DOI PMC

Crofts A.R., Chappell J.B. Calcium Ion Accumulation and Volume Changes of Isolated Liver Mitochondria. Reversal of Calcium Ion-Induced Swelling. Biochem. J. 1965;95:387–392. doi: 10.1042/bj0950387. PubMed DOI PMC

Chappell J.B., Crofts A.R. Calcium Ion Accumulation and Volume Changes of Isolated Liver Mitochondria. Calcium Ion-Induced Swelling. Biochem. J. 1965;95:378–386. doi: 10.1042/bj0950378. PubMed DOI PMC

Endlicher R., Křiváková P., Lotková H., Milerová M., Drahota Z., Červinková Z. Tissue Specific Sensitivity of Mitochondrial Permeability Transition Pore to Ca2+ Ions. Acta Med. (Hradec Kralove) 2009;52:69–72. doi: 10.14712/18059694.2016.107. PubMed DOI

Drahota Z., Milerová M., Endlicher R., Rychtrmoc D., Červinková Z., Ošťádal B. Developmental Changes of the Sensitivity of Cardiac and Liver Mitochondrial Permeability Transition Pore to Calcium Load and Oxidative Stress. Physiol. Res. 2012;61((Suppl. S1)):S165–S172. doi: 10.33549/physiolres.932377. PubMed DOI

Endlicher R., Drahota Z., Kučera O., Červinková Z. Age-Dependent Changes in the Function of Mitochondrial Membrane Permeability Transition Pore in Rat Liver Mitochondria. Physiol. Res. 2021;70:905–911. doi: 10.33549/physiolres.934734. PubMed DOI PMC

Milerová M., Drahota Z., Chytilová A., Tauchmannová K., Houštěk J., Ošťádal B. Sex difference in the sensitivity of cardiac mitochondrial permeability transition pore to calcium load. Mol. Cell. Biochem. 2015;412:147–154. doi: 10.1007/s11010-015-2619-4. PubMed DOI

Milerova M., Charvatova Z., Skarka L., Ostadalova I., Drahota Z., Fialova M., Ostadal B. Neonatal cardiac mitochondria and ischemia/reperfusion injury. Mol. Cell. Biochem. 2009;335:147–153. doi: 10.1007/s11010-009-0251-x. PubMed DOI

Drahota Z., Palenickova E., Endlicher R., Milerova M., Brejchova J., Vosahlikova M., Svoboda P., Kazdova L., Kalous M., Červinková Z., et al. Biguanides Inhibit Complex I, II and IV of Rat Liver Mitochondria and Modify Their Functional Properties. Physiol. Res. 2014;63:1–11. doi: 10.33549/physiolres.932600. PubMed DOI

Belosludtsev K.N., Dubinin M.V., Talanov E.Y., Starinets V.S., Tenkov K.S., Zakharova N.M., Belosludtseva N.V. Transport of Ca2+ and Ca2+-Dependent Permeability Transition in the Liver and Heart Mitochondria of Rats with Different Tolerance to Acute Hypoxia. Biomolecules. 2020;10:114. doi: 10.3390/biom10010114. PubMed DOI PMC

Fedotcheva T., Shimanovsky N., Fedotcheva N. Involvement of Multidrug Resistance Modulators in the Regulation of the Mitochondrial Permeability Transition Pore. Membranes. 2022;12:890. doi: 10.3390/membranes12090890. PubMed DOI PMC

Fontaine E., Ichas F., Bernardi P. A Ubiquinone-binding Site Regulates the Mitochondrial Permeability Transition Pore. J. Biol. Chem. 1998;273:25734–25740. doi: 10.1074/jbc.273.40.25734. PubMed DOI

Jang S., Chapa-Dubocq X.R., Fossati S., Javadov S. Analysis of Mitochondrial Calcium Retention Capacity in Cultured Cells: Permeabilized Cells Versus Isolated Mitochondria. Front. Physiol. 2021;12:773839. doi: 10.3389/fphys.2021.773839. PubMed DOI PMC

Mezera V., Endlicher R., Kucera O., Sobotka O., Drahota Z., Cervinkova Z. Effects of Epigallocatechin Gallate on Tert-Butyl Hydroperoxide-Induced Mitochondrial Dysfunction in Rat Liver Mitochondria and Hepatocytes. Oxidative Med. Cell. Longev. 2016;2016:1–8. doi: 10.1155/2016/7573131. PubMed DOI PMC

Pardo A.C., Rinaldi G.J., Mosca S.M. Mitochondrial calcium handling in normotensive and spontaneously hypertensive rats: Correlation with systolic blood pressure levels. Mitochondrion. 2015;20:75–81. doi: 10.1016/j.mito.2014.12.003. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Czech Footprints in the Bioenergetics Research

. 2024 May 31 ; 73 (Suppl 1) : S23-S33. [epub] 20240531

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...