Bacterial Diversity on Historical Audio-Visual Materials and in the Atmosphere of Czech Depositories
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37428069
PubMed Central
PMC10434117
DOI
10.1128/spectrum.01176-23
Knihovny.cz E-zdroje
- Klíčová slova
- Illumina MiSeq, air contamination, audio-visual materials, bacterial contamination, cultural heritage,
- MeSH
- atmosféra MeSH
- Bacteria * genetika MeSH
- houby genetika MeSH
- mikrobiota * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Microbial contamination in cultural heritage storage facilities is undoubtedly still a huge problem and leads to the biodeterioration of historical objects and thus the loss of information for future generations. Most studies focus on fungi that colonize materials, which are the primary agents of biodeterioration. However, bacteria also play crucial roles in this process. Therefore, this study focuses on identifying bacteria that colonize audio-visual materials and those present in the air in the archives of the Czech Republic. For our purposes, the Illumina MiSeq amplicon sequencing method was used. Using this method, 18 bacterial genera with an abundance of higher than 1% were identified on audio-visual materials and in the air. We also evaluated some factors that were assumed to possibly influence the composition of bacterial communities on audio-visual materials, of which locality was shown to be significant. Locality also explained most of the variability in bacterial community structure. Furthermore, an association between genera colonizing materials and genera present in the air was demonstrated, and indicator genera were evaluated for each locality. IMPORTANCE The existing literature on microbial contamination of audio-visual materials has predominantly used culture-based methods to evaluate contamination and has overlooked the potential impact of environmental factors and material composition on microbial communities. Furthermore, previous studies have mainly focused on contamination by microscopic fungi, neglecting other potentially harmful microorganisms. To address these gaps in knowledge, our study is the first to provide a comprehensive analysis of bacterial communities present on historical audio-visual materials. Our statistical analyses demonstrate the critical importance of including air analysis in such studies, as airborne microorganisms can significantly contribute to the contamination of these materials. The insights gained from this study are not only valuable in developing effective preventive measures to mitigate contamination but also valuable in identifying targeted disinfection methods for specific types of microorganisms. Overall, our findings highlight the need for a more holistic approach to understanding microbial contamination in cultural heritage materials.
Zobrazit více v PubMed
Tepla B, Demnerova K, Stiborova H. 2020. History and microbial biodeterioration of audiovisual materials. J Cult Herit 44:218–228. doi:10.1016/j.culher.2019.12.009. DOI
Branysova T, Demnerova K, Durovic M, Stiborova H. 2022. Microbial biodeterioration of cultural heritage and identification of the active agents over the last two decades. J Cult Herit 55:245–260. doi:10.1016/j.culher.2022.03.013. DOI
Zhang GX, Gong CJ, Gu JG, Katayama Y, Someya T, Gu JD. 2019. Biochemical reactions and mechanisms involved in the biodeterioration of stone world cultural heritage under the tropical climate conditions. Int Biodeterior Biodegradation 143:104723. doi:10.1016/j.ibiod.2019.104723. DOI
Borrego S, Guiamet P, de Saravia SG, Batistini P, Garcia M, Lavin P, Perdomo I. 2010. The quality of air at archives and the biodeterioration of photographs. Int Biodeterior Biodegradation 64:139–145. doi:10.1016/j.ibiod.2009.12.005. DOI
Branysova T, Tepla B, Demnerova K, Stiborova H, Durovic M. 2021. Biodeterioration of audio-visual materials. Chem Listy 115:260–265.
Szulc J, Ruman T, Karbowska-Berent J, Kozielec T, Gutarowska B. 2020. Analyses of microorganisms and metabolites diversity on historic photographs using innovative methods. J Cult Herit 45:101–113. doi:10.1016/j.culher.2020.04.017. DOI
Sclocchi MC, Krakova L, Pinzari F, Colaizzi P, Bicchieri M, Sakova N, Pangallo D. 2017. Microbial life and death in a foxing stain: a suggested mechanism of photographic prints defacement. Microb Ecol 73:815–826. doi:10.1007/s00248-016-0913-7. PubMed DOI
Purkrtova S, Savicka D, Kadava J, Sykorova H, Kovacova N, Kalisova D, Nesporova T, Novakova M, Benetkova BM, Koukalova L, Boryskova S, Hnulikova B, Durovic M, Demnerova K. 2022. Microbial contamination of photographic and cinematographic materials in archival funds in the Czech Republic. Microorganisms 10:155. doi:10.3390/microorganisms10010155. PubMed DOI PMC
Borrego S, Molina A, Santana A. 2017. Fungi in archive repositories environments and the deterioration of the graphics documents. EC Microbiol 11:205–226.
Branysova T, Kracmarova M, Durovic M, Demnerova K, Stiborova H. 2021. Factors influencing the fungal diversity on audio-visual materials. Microorganisms 9:2497. doi:10.3390/microorganisms9122497. PubMed DOI PMC
Kwiatkowska M, Ważny R, Turnau K, Wójcik A. 2016. Fungi as deterioration agents of historic glass plate negatives of Brandys family collection. Int Biodeterior Biodegradation 115:133–140. doi:10.1016/j.ibiod.2016.08.002. DOI
Puskarova A, Buckova M, Habalova B, Krakova L, Makova A, Pangallo D. 2016. Microbial communities affecting albumen photography heritage: a methodological survey. Sci Rep 6:20810. doi:10.1038/srep20810. PubMed DOI PMC
Buckova M, Puskarova A, Sclocchi MC, Bicchieri M, Colaizzi P, Pinzari F, Pangallo D. 2014. Co-occurrence of bacteria and fungi and spatial partitioning during photographic materials biodeterioration. Polym Degrad Stab 108:1–11. doi:10.1016/j.polymdegradstab.2014.05.025. DOI
Mazzoli R, Giuffrida MG, Pessione E. 2018. Back to the past: “find the guilty bug—microorganisms involved in the biodeterioration of archeological and historical artifacts”. Appl Microbiol Biotechnol 102:6393–6407. doi:10.1007/s00253-018-9113-3. PubMed DOI
Pyzik A, Ciuchcinski K, Dziurzynski M, Dziewit L. 2021. The bad and the good—microorganisms in cultural heritage environments—an update on biodeterioration and biotreatment approaches. Materials 14:177. doi:10.3390/ma14010177. PubMed DOI PMC
Abrusci C, Martin-Gonzalez A, Del Amo A, Catalina F, Collado J, Platas G. 2005. Isolation and identification of bacteria and fungi from cinematographic films. Int Biodeter Biodegradation 56:58–68. doi:10.1016/j.ibiod.2005.05.004. DOI
Guiamet P, Borrego S, Lavin P, Perdomo I, de Saravia SG. 2011. Biofouling and biodeterioration in materials stored at the Historical Archive of the Museum of La Plata, Argentine and at the National Archive of the Republic of Cuba. Colloids Surf B Biointerfaces 85:229–234. doi:10.1016/j.colsurfb.2011.02.031. PubMed DOI
Borrego S, Lavin P, Perdomo I, de Saravia SG, Guiamet P. 2012. Determination of indoor air quality in archives and biodeterioration of the documentary heritage. ISRN Microbiol 2012:680598. doi:10.5402/2012/680598. PubMed DOI PMC
Melo MJ, Otero V, Nabais P, Teixeira N, Pina F, Casanova C, Fragoso S, Sequeira SO. 2022. Iron-gall inks: a review of their degradation mechanisms and conservation treatments. Herit Sci 10:145. doi:10.1186/s40494-022-00779-2. DOI
Portier F, Teulon C, Nowacka-Perrin A, Guenneau F, Schanne-Klein MC, Mosser G. 2017. Stabilization of collagen fibrils by gelatin addition: a study of collagen/gelatin dense phases. Langmuir 33:12916–12925. doi:10.1021/acs.langmuir.7b02142. PubMed DOI
Abachi S, Lee S, Rupasinghe H. 2016. Molecular mechanisms of inhibition of Streptococcus species by phytochemicals. Molecules 21:215. doi:10.3390/molecules21020215. PubMed DOI PMC
Vrbovská V, Sedláček I, Zeman M, Švec P, Kovařovic V, Šedo O, Laichmanová M, Doškař J, Pantůček R. 2020. Characterization of Staphylococcus intermedius group isolates associated with animals from Antarctica and emended description of Staphylococcus delphini. Microorganisms 8:204. doi:10.3390/microorganisms8020204. PubMed DOI PMC
Liu L, Feng Y, Wei L, Zong Z. 2021. Genome-based taxonomy of Brevundimonas with reporting Brevundimonas huaxiensis sp. nov. Microbiol Spectr 9:e0011121. doi:10.1128/Spectrum.00111-21. PubMed DOI PMC
Tarsitani G, Moroni C, Cappitelli FGP, Maggi O. 2014. Microbiological analysis of surfaces of Leonardo Da Vinci’s Atlantic Codex: biodeterioration risk. Int J Microbiol 2014:214364. doi:10.1155/2014/214364. PubMed DOI PMC
Landy E, Mitchell JI, Hotchkiss S, Eaton RA. 2008. Bacterial diversity associated with archaeological waterlogged wood: ribosomal RNA clone libraries and denaturing gradient gel electrophoresis (DGGE). Int Biodeter Biodegradation 61:106–116. doi:10.1016/j.ibiod.2007.07.007. DOI
Sarró MI, García AM, Rivalta VM, Moreno DA, Arroyo I. 2006. Biodeterioration of the Lions Fountain at the Alhambra Palace, Granada (Spain). Building and Environment 41:1811–1820. doi:10.1016/j.buildenv.2005.07.029. DOI
Elhagrassy AF. 2018. Isolation and characterization of Actinomycetes from Mural paintings of Snu-Sert-Ankh tomb, their antimicrobial activity, and their biodeterioration. Microbiol Res 216:47–55. doi:10.1016/j.micres.2018.08.005. PubMed DOI
Abellan-Schneyder I, Matchado MS, Reitmeier S, Sommer A, Sewald Z, Baumbach J, List M, Neuhaus K. 2021. Primer, pipelines, parameters: issues in 16S rRNA gene sequencing. mSphere 6:e01202-20. doi:10.1128/mSphere.01202-20. PubMed DOI PMC
Varliero G, Lebre PH, Stevens MI, Czechowski P, Makhalanyane T, Cowan DA. 2023. The use of different 16S rRNA gene variable regions in biogeographical studies. Environ Microbiol Rep 15:216–228. doi:10.1111/1758-2229.13145. PubMed DOI PMC
Liu G, Xiao M, Zhang X, Gal C, Chen X, Liu L, Pan S, Wu J, Tang L, Clements-Croome D. 2017. A review of air filtration technologies for sustainable and healthy building ventilation. Sustain Cities and Soc 32:375–396. doi:10.1016/j.scs.2017.04.011. DOI
De Cáceres M, Legendre P, Wiser SK, Brotons L. 2012. Using species combinations in indicator value analysis. Methods Ecol Evol 3:973–982. doi:10.1111/j.2041-210X.2012.00246.x. DOI
Li X, Dong X, Zhao C, Chen Z, Chen F. 2003. Isolation and some properties of cellulose-degrading Vibrio sp. LX-3 with agar-liquefying ability from soil. World J Microbiol Biotechnol 19:375–379. doi:10.1023/A:1023949022203. DOI
Jellouli K, Bougatef A, Manni L, Agrebi R, Siala R, Younes I, Nasri M. 2009. Molecular and biochemical characterization of an extracellular serine-protease from Vibrio metschnikovii J1. J Ind Microbiol Biotechnol 36:939–948. doi:10.1007/s10295-009-0572-5. PubMed DOI
Goswami K, DekaBoruah HP, Saikia R. 2022. Production of cellulase by Novosphingobium sp. Cm1 and its potential application in lignocellulosic waste hydrolysis. Prep Biochem Biotechnol 52:724–735. doi:10.1080/10826068.2021.1989698. PubMed DOI
Bassil NM, Lloyd JR. 2019. Anaerobacillus isosaccharinicus sp. nov., an alkaliphilic bacterium which degrades isosaccharinic acid. Int J Syst Evol Microbiol 69:3666–3671. doi:10.1099/ijsem.0.002721. PubMed DOI
Szulc J, Otlewska A, Ruman T, Kubiak K, Karbowska-Berent J, Kozielec T, Gutarowska B. 2018. Analysis of paper foxing by newly available omics techniques. Int Biodeter Biodegradation 132:157–165. doi:10.1016/j.ibiod.2018.03.005. DOI
Kracmarova M, Karpiskova J, Uhlik O, Strejcek M, Szakova J, Balik J, Demnerova K, Stiborova H. 2020. Microbial communities in soils and endosphere of Solanum tuberosum L. and their response to long-term fertilization. Microorganisms 8:1377. doi:10.3390/microorganisms8091377. PubMed DOI PMC
R Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. doi:10.1038/nmeth.3869. PubMed DOI PMC
Callahan BJ. 2018. Silva taxonomic training data formatted for DADA2 (Silva version 132) Zenodo. doi:10.5281/zenodo.1172783. DOI
Oksanen J, Blanchet FG, Kindlt R, Legendre P, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. 2019. vegan: community ecology package. R-package version 2.5-7. https://cran.r-project.org/web/packages/vegan/index.html. Accessed 26 October 2021.
McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi:10.1371/journal.pone.0061217. PubMed DOI PMC
Cáceres M, Jansen F. 2016. Package “indicspecies”: relationship between species and groups of sites (version 1.7.6). https://cran.r-project.org/web/packages/indicspecies/indicspecies.pdf. Accessed 15 November 2022.