High diversity and sharing of strongylid nematodes in humans and great apes co-habiting an unprotected area in Cameroon
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37624869
PubMed Central
PMC10484444
DOI
10.1371/journal.pntd.0011499
PII: PNTD-D-22-01216
Knihovny.cz E-resources
- MeSH
- Ancylostoma * MeSH
- Animals, Wild MeSH
- Phylogeny MeSH
- Humans MeSH
- Pan troglodytes * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Cameroon epidemiology MeSH
Rapid increases in human populations and environmental changes of past decades have led to changes in rates of contact and spatial overlap with wildlife. Together with other historical, social and environmental processes, this has significantly contributed to pathogen transmission in both directions, especially between humans and non-human primates, whose close phylogenetic relationship facilitates cross-infections. Using high-throughput amplicon sequencing, we studied strongylid communities in sympatric western lowland gorillas, central chimpanzees and humans co-occurring in an unprotected area in the northern periphery of the Dja Faunal Reserve, Cameroon. At the genus level, we classified 65 strongylid ITS-2 amplicon sequencing variants (ASVs) in humans and great apes. Great apes exhibited higher strongylid diversity than humans. Necator and Oesophagostomum were the most prevalent genera, and we commonly observed mixed infections of more than one strongylid species. Human strongylid communities were dominated by the human hookworm N. americanus, while great apes were mainly infected with N. gorillae, O. stephanostomum and trichostrongylids. We were also able to detect rare strongylid taxa (such as Ancylostoma and Ternidens). We detected eight ASVs shared between humans and great apes (four N. americanus variants, two N. gorillae variants, one O. stephanostomum type I and one Trichostrongylus sp. type II variant). Our results show that knowledge of strongylid communities in primates, including humans, is still limited. Sharing the same habitat, especially outside protected areas (where access to the forest is not restricted), can enable mutual parasite exchange and can even override host phylogeny or conserved patterns. Such studies are critical for assessing the threats posed to all hosts by increasing human-wildlife spatial overlap. In this study, the term "contact" refers to physical contact, while "spatial overlap" refers to environmental contact.
Association de la Protection des Grands Singes Yaoundé Cameroon
Centre for Research and Conservation KMDA Antwerp Belgium
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Department of Zoology Faculty of Science Charles University Praha Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences Ceske Budejovice Czech Republic
Institute of Vertebrate Biology Czech Academy of Sciences Brno Czech Republic
See more in PubMed
Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit Vectors. 2014;7:37. doi: 10.1186/1756-3305-7-37 PubMed DOI PMC
Bundy DAP, Chan MS, Medley GF, Jamison D, Savioli L. Intestinal nematode infections. Global epidemiology of infectious disease. Geneva: World Health Organization. 2004. pp. 243–300.
Zajac AM. Gastrointestinal nematodes of small ruminants: Life cycle, anthelmintics, and diagnosis. Vet Clin North Am—Food Anim Pract. 2006;22:529–541. doi: 10.1016/j.cvfa.2006.07.006 PubMed DOI
Pafčo B, Kreisinger J, Čížková D, Pšenková-Profousová I, Shutt-Phillips K, Todd A, et al. Genetic diversity of primate strongylid nematodes: Do sympatric nonhuman primates and humans share their strongylid worms? Mol Ecol. 2019;28:4786–4797. doi: 10.1111/mec.15257 PubMed DOI
Metzger S. Gastrointestinal helminthic parasites of habituated wild chimpanzees
Anderson RC. Order Strongylida (the bursate nematodes). Nematode parasites of vertebrates, their development and transmission, second edition. Wallingford: C.A.B. International, Unversity Press; 2000. pp. 41–229.
Červená B, Vallo P, Pafčo B, Jirků K, Jirků M, Petrželková KJ, et al. Host specificity and basic ecology of PubMed DOI
Delano ML, Nischler SA, Underwood WJ. Biology and diseases of ruminants: Sheep, goats, and cattle. Laboratory Animal Medicine (Second Edition). Massachusetts: Academic Press; 2002. pp. 519–614.
Roeber F, Jex AR, Gasser RB. Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance—An Australian perspective. Parasit Vectors. 2013;6:1–13. doi: 10.1186/1756-3305-6-153 PubMed DOI PMC
Loukas A, Hotez PJ, Diemert D, Yazdanbakhsh M, McCarthy JS, Correa-Oliveira R, et al. Hookworm infection. Nat Rev Dis Prim. 2016;2: 1–18. doi: 10.1038/nrdp.2016.88 PubMed DOI
Modrý D, Pafčo B, Petrželková KJ, Hasegawa H. Parasites of Apes. An atlas of coproscopic diagnostics. Frankfurt an Main: Edition Chimaira; 2018.
Cibot M, Guillot J, Lafosse S, Bon C, Seguya A, Krief S. Nodular worm infections in wild non-human primates and humans living in the Sebitoli area (Kibale National Park, Uganda): Do high spatial proximity favor zoonotic transmission? PLoS Negl Trop Dis. 2015;9:1–17. doi: 10.1371/journal.pntd.0004133 PubMed DOI PMC
Ota N, Hasegawa H, McLennan MR, Kooriyama T, Sato H, Pebsworth PA, et al. Molecular identification of PubMed DOI PMC
Santos LL, Salgado JA, Drummond MG, Bastianetto E, Santos CP, Brasil BSAF, et al. Molecular method for the semiquantitative identification of gastrointestinal nematodes in domestic ruminants. Parasitol Res. 2020;119:529–543. doi: 10.1007/s00436-019-06569-3 PubMed DOI
Pafčo B. Molecular epidemiology and transmission of strongylid nematodes between non-human primates and humans. Veterinary and Pharmaceutical University, Brno. 2017.
Pafčo B, Čížková D, Kreisinger J, Hasegawa H, Vallo P, Shutt K, et al. Metabarcoding analysis of strongylid nematode diversity in two sympatric primate species. Sci Rep. 2018;8:1–11. doi: 10.1038/s41598-018-24126-3 PubMed DOI PMC
Aivelo T, Medlar A. Opportunities and challenges in metabarcoding approaches for helminth community identification in wild mammals. Parasitology. 2017;145:608–621. doi: 10.1017/S0031182017000610 PubMed DOI
Buckler ES, Ippolito A, Holtsford TP. The evolution of ribosomal DNA: Divergent paralogues and phylogenetic implications. Genetics. 1997;145:821–832. doi: 10.1093/genetics/145.3.821 PubMed DOI PMC
Valentini A, Pompanon F, Taberlet P. DNA barcoding for ecologists. Trends Ecol Evol. 2009;24:110–117. doi: 10.1016/j.tree.2008.09.011 PubMed DOI
Von Bubnoff A. Next-Generation Sequencing: The Race Is On. Cell. 2008;132:721–723. doi: 10.1016/j.cell.2008.02.028 PubMed DOI
Zhou HW, Li DF, Tam NFY, Jiang XT, Zhang H, Sheng HF, et al. BIPES, a cost-effective high-throughput method for assessing microbial diversity. ISME J. 2011;5:741–749. doi: 10.1038/ismej.2010.160 PubMed DOI PMC
Avramenko RW, Redman EM, Lewis R, Bichuette MA, Palmeira BM, Yazwinski TA, et al. The use of nemabiome metabarcoding to explore gastro-intestinal nematode species diversity and anthelmintic treatment effectiveness in beef calves. Int J Parasitol. 2017;47:893–902. doi: 10.1016/j.ijpara.2017.06.006 PubMed DOI
Lott MJ, Hose GC, Power ML. Parasitic nematode communities of the red kangaroo, PubMed DOI
Mason B, Petrzelkova KJ, Kreisinger J, Bohm T, Cervena B, Fairet E, et al. Gastrointestinal symbiont diversity in wild gorilla: A comparison of bacterial and strongylid communities across multiple localities. Mol Ecol. 2022;31:4127–4145 doi: 10.1111/mec.16558 PubMed DOI
Calvignac-Spencer S, Leendertz SAJ, Gillespie TR, Leendertz FH. Wild great apes as sentinels and sources of infectious disease. Clin Microbiol Infect. 2012;18:521–527. doi: 10.1111/j.1469-0691.2012.03816.x PubMed DOI
Dunay E, Apakupakul K, Leard S, Palmer JL, Deem SL. Pathogen transmission from humans to great apes is a growing threat to primate conservation. Ecohealth. 2018;15:148–162. doi: 10.1007/s10393-017-1306-1 PubMed DOI
Barlow J, Lennox GD, Ferreira J, Berenguer E, Lees AC, Nally RM, et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature. 2016;535:144–147. doi: 10.1038/nature18326 PubMed DOI
Wolfe ND, Daszak P, Kilpatrick AM, Burke DS. Bushmeat hunting, deforestation, and prediction of zoonotic disease emergence. Emerg Infect Dis. 2005;11:1822–1827. doi: 10.3201/eid1112.040789 PubMed DOI PMC
Narat V, Alcayna-Stevens L, Rupp S, Giles-Vernick T. Rethinking human–nonhuman primate contact and pathogenic disease spillover. EcoHealth. Springer New York LLC; 2017. pp. 840–850. doi: 10.1007/s10393-017-1283-4 PubMed DOI
Goldberg TL, Gillespie TR, Rwego IB, Wheeler E, Estoff EL, Chapman CA. Patterns of gastrointestinal bacterial exchange between chimpanzees and humans involved in research and tourism in western Uganda. Biol Conserv. 2007;135:511–517. doi: 10.1016/j.biocon.2006.10.048 DOI
Schwitzer C, Mittermeier RA, Rylands AB, Chiozza F, Williamson EA, Byler D, et al. Primates in peril: the world’s 25 most endangered primates 2018–2020. Washington, DC; 2019.
Ghai RR, Chapman CA, Omeja PA, Davies TJ, Goldberg TL. Nodule worm infection in humans and wild primates in Uganda: Cryptic species in a newly identified region of human transmission. PLoS Negl Trop Dis. 2014;8:39. doi: 10.1371/journal.pntd.0002641 PubMed DOI PMC
Hasegawa H, Modrý D, Kitagawa M, Shutt KA, Todd A, Kalousová B, et al. Humans and great apes cohabiting the forest ecosystem in Central African Republic harbour the same hookworms. PLoS Negl Trop Dis. 2014;8:1–11. doi: 10.1371/journal.pntd.0002715 PubMed DOI PMC
Hasegawa H, Shigyo M, Yanai Y, McLennan MR, Fujita S, Makouloutou P, et al. Molecular features of hookworm larvae ( PubMed DOI
Willie J, Tagg N, Petre CA, Pereboom Z, Lens L. Plant selection for nest building by western lowland gorillas in Cameroon. Primates. 2014;55:41–49. doi: 10.1007/s10329-013-0363-5 PubMed DOI
Epanda MA, Donkeng RT, Nonga FN, Frynta D, Adi NN, Willie J, et al. Contribution of non-timber forest product valorisation to the livelihood assets of local people in the northern periphery of the Dja Faunal Reserve, East Cameroon. Forests. 2020;11:1019. doi: 10.3390/F11091019 DOI
Arlet ME, Molleman F. Farmers’ perceptions of the impact of wildlife on small-scale cacao cultivation at the northern periphery of Dja Faunal Reserve, Cameroon. African Primates. 2010;7:27–34.
Ávila E, Tagg N, Willie J, Mbohli D, Farfán MÁ, Vargas JM, et al. Interpreting long-term trends in bushmeat harvest in southeast Cameroon. Acta Oecologica. 2019;94:57–65. doi: 10.1016/j.actao.2017.09.007 DOI
Tagg N, Maddison N, Dupain J, Mcgilchrist L, Mouamfon M, Mccabe G, et al. A zoo-led study of the great ape bushmeat commodity chain in Cameroon. Int Zoo Yearb. 2018;52:182–193. doi: 10.1111/izy.12175 DOI
Betti JL. Impact of forest logging in the Dja Biosphere Reserve, Cameroon. Unpubl Context study report, Minist Environ For Cameroon. 2004;1–13.
Tagg N, Willie J, Duarte J, Petre CA, Fa JE. Conservation research presence protects: A case study of great ape abundance in the Dja region, Cameroon. Anim Conserv. 2015;18:489–498. doi: 10.1111/acv.12212 DOI
Jiang H, Lei R, Ding SW, Zhu S. Skewer: A fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics. 2014;15:1–12. doi: 10.1186/1471-2105-15-182 PubMed DOI PMC
Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30:614–620. doi: 10.1093/bioinformatics/btt593 PubMed DOI PMC
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13: 581–583. doi: 10.1038/nmeth.3869 PubMed DOI PMC
Chamberlain SA, Szöcs E. Taxize: Taxonomic search and retrieval in R. F1000Research. 2013;2:1–30. doi: 10.12688/f1000research.2-191.v2 PubMed DOI PMC
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–5267. doi: 10.1128/AEM.00062-07 PubMed DOI PMC
Wang Y, Naumann U, Wright ST, Warton DI. Mvabund—an R package for model-based analysis of multivariate abundance data. Methods Ecol Evol. 2012;3:471–474. doi: 10.1111/j.2041-210X.2012.00190.x DOI
Queiroz C, Levy M, Avramenko R, Redman E, Kearns K, Swain L, et al. The use of ITS-2 rDNA nemabiome metabarcoding to enhance anthelmintic resistance diagnosis and surveillance of ovine gastrointestinal nematodes. Int J Parasitol Drugs Drug Resist. 2020;14:105–117. doi: 10.1016/j.ijpddr.2020.09.003 PubMed DOI PMC
Sirima C, Bizet C, Hamou H, Červená B, Lemarcis T, Esteban A, et al. Soil-transmitted helminth infections in free-ranging non-human primates from Cameroon and Gabon. Parasit Vectors. 2021;14. doi: 10.1186/s13071-021-04855-7 PubMed DOI PMC
Narat V, Guillot J, Pennec F, Lafosse S, Grüner AC, Simmen B, et al. Intestinal helminths of wild bonobos in forest-savanna mosaic: risk assessment of cross-species transmission with local people in the Democratic Republic of the Congo. Ecohealth. 2015;12:621–633. doi: 10.1007/s10393-015-1058-8 PubMed DOI
Hotez PJ, Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, et al. Hookworm: “The great infection of mankind”. PLoS Med. 2005;2. doi: 10.1371/journal.pmed.0020067 PubMed DOI PMC
Vlčková K, Kreisinger J, Pafčo B, Čížková D, Tagg N, Hehl AB, et al. Diversity of PubMed DOI
Perry GH. Parasites and human evolution. Evol Anthropol Issues, News, Rev. 2014;23:218–228. doi: 10.1002/evan.21427 PubMed DOI
Maizels RM. Parasitic helminth infections and the control of human allergic and autoimmune disorders. Clin Microbiol Infect. 2016;22:481–486. doi: 10.1016/j.cmi.2016.04.024 PubMed DOI
Barelli C, Pafčo B, Manica M, Rovero F, Rosà R, Modrý D, et al. Loss of protozoan and metazoan intestinal symbiont biodiversity in wild primates living in unprotected forests. Sci Rep. 2020;10:1–12. doi: 10.1038/s41598-020-67959-7 PubMed DOI PMC
Cummins SL. The anatomy and life-history of a DOI
Gedoelst L. Note sur la faune parasitaire du Congo Belge. Rev Zool Africaine. 1916;5:1–90. Available: https://ci.nii.ac.jp/naid/10014821688/
Noda R., Yamada H. On two species of nematodes,
Kalousová B, Hasegawa H, Petrželková KJ, Sakamaki T, Kooriyma T, Modrý D. Adult hookworms ( PubMed DOI PMC
Orihel TC. Necator americanus Infection in Primates. J Parasitol. 1971;57:117–121. PubMed
Ziem JB, Magnussen P, Olsen A, Horton J, Asigri VLL, Polderman AM. Impact of repeated mass treatment on human Oesophagostomum and hookworm infections in northern Ghana. Trop Med Int Heal. 2006;11:1764–1772. doi: 10.1111/j.1365-3156.2006.01729.x PubMed DOI
Makouloutou P, Mbehang Nguema PP, Fujita S, Takenoshita Y, Hasegawa H, Yanagida T, et al. Prevalence and genetic diversity of DOI
Gasser RB, De Gruijter JM, Polderman AM. Insights into the epidemiology and genetic make-up of PubMed DOI
Schindler AR, De Gruijter JM, Polderman AM, Gasser RB. Definition of genetic markers in nuclear ribosomal DNA for a neglected parasite of primates, PubMed DOI
Durette-Desset MC, Chabaud AG, Ashford RW, Butynski T, Reid GDF. Two new species of the Trichostrongylidae (Nematoda: Trichostrongyloidea), parasitic in Gorilla gorilla beringei in Uganda. Syst Parasitol. 1992;23:159–166. doi: 10.1007/BF00010868 DOI
McLennan MR, Hasegawa H, Bardi M, Huffman MA. Gastrointestinal parasite infections and selfmedication in wild chimpanzees surviving in degraded forest fragments within an agricultural landscape mosaic in Uganda. PLoS One. 2017;12:1–29. doi: 10.1371/journal.pone.0180431 PubMed DOI PMC
Hastings BE. Parasites of free-ranging mountain gorillas: survey and epidemiological factors. Proc Jt Conf Am Assoc Zoo Vet Am Assoc Wildl Vet. 1992;301–302. https://ci.nii.ac.jp/naid/10015211197/
Phosuk I, Intapan PM, Sanpool O, Janwan P, Thanchomnang T, Sawanyawisuth K, et al. Short report: Molecular evidence of PubMed DOI PMC
Souza RP, Souza JN, Menezes JF, Alcântara LM, Soares NM, Teixeira MCA. Human infection by PubMed DOI
Vanderpool D, Minh BQ, Lanfear R, Hughes D, Murali S, Alan Harris R, et al. Primate phylogenomics uncovers multiple rapid radiations and ancient interspecific introgression. PLoS Biol. 2020;18: e3000954. doi: 10.1371/journal.pbio.3000954 PubMed DOI PMC
Mann AE, Mazel F, Lemay MA, Morien E, Billy V, Kowalewski M, et al. Biodiversity of protists and nematodes in the wild nonhuman primate gut. ISME J. 2020;14:609–622. doi: 10.1038/s41396-019-0551-4 PubMed DOI PMC
Sharma AK, Davison S, Pafco B, Clayton JB, Rothman JM, McLennan MR, et al. The primate gut mycobiome-bacteriome interface is impacted by environmental and subsistence factors. npj Biofilms Microbiomes. 2022;8:1–11. doi: 10.1038/s41522-022-00274-3 PubMed DOI PMC
Gomez A, Petrzelkova KJ, Burns MB, Yeoman CJ, Amato KR, Vlckova K, et al. Gut microbiome of coexisting BaAka Pygmies and Bantu reflects gradients of traditional subsistence patterns. Cell Rep. 2016;14:2142–2153. doi: 10.1016/j.celrep.2016.02.013 PubMed DOI
Petrželková KJ, Uwamahoro C, Pafčo B, Červená B, Samaš P, Mudakikwa A, et al. Heterogeneity in patterns of helminth infections across populations of mountain gorillas ( PubMed DOI PMC
Tudge SJ, Brittain S, Kentatchime F, Kamogne Tagne CT, Rowcliffe JM. The impacts of human activity on mammals in a community forest near the Dja Biosphere Reserve in Cameroon. ORYX. 2022;1–9. doi: 10.1017/S0030605321000806 DOI
Blom A, van Zalinge R, Mbea E, Heitkonig IMA, Prins HHT. Human impact on wildlife populations within a protected Central African forest. Afr J Ecol. 2004;42:23–31. doi: 10.1111/j.0141-6707.2004.00441.x DOI
Kamiss A. Recensement de la population des villages de la Reserve Spécial de Dzanga-Sangha: Anne 2005. Rapp d’Enquête, Coopération Tech Allemande (GTZ/GFA), Bangui, Cent African Republic. 2006.
Carvalho JS, Graham B, Bocksberger G, Maisels F, Williamson EA, Wich S, et al. Predicting range shifts of African apes under global change scenarios. Divers Distrib. 2021;27:1663–1679. doi: 10.1111/ddi.13358 DOI