Effect of Virtual Reality Therapy on Quality of Life and Self-Sufficiency in Post-Stroke Patients
Language English Country Switzerland Media electronic
Document type Randomized Controlled Trial, Journal Article
Grant support
FW04020080
The Technology Agency of the Czech Republic.
PubMed
37763788
PubMed Central
PMC10536396
DOI
10.3390/medicina59091669
PII: medicina59091669
Knihovny.cz E-resources
- Keywords
- activities of daily living, quality of life, stroke, virtual reality,
- MeSH
- Stroke * complications therapy MeSH
- Quality of Life MeSH
- Middle Aged MeSH
- Humans MeSH
- Patients MeSH
- Self Care MeSH
- Dietary Supplements MeSH
- Aged MeSH
- Virtual Reality Exposure Therapy * MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Aged MeSH
- Publication type
- Journal Article MeSH
- Randomized Controlled Trial MeSH
Background and Objectives: The consequences of stroke have a significant impact on self-sufficiency and health-related quality of life (HRQoL). Virtual reality (VR)-based rehabilitation has the potential to impact these modalities, but information on timing, volume, and intensity is not yet available. The aim of this randomized controlled trial (1:1) was to evaluate the impact of conventional rehabilitation combined with VR on self-care and domains of HRQoL in patients ≤6 months post-stroke. Materials and Methods: The intervention group completed a total of 270 min of conventional VR + rehabilitation sessions. The control group underwent conventional rehabilitation only. Primary assessments with the WHO disability assessment schedule 2.0 (WHODAS 2) questionnaire were conducted before rehabilitation (T0), after completion of the intervention (T1), and at the 4-week follow-up (T2); secondary outcomes included self-sufficiency and balance assessments. Results: Fifty patients completed the study (mean age 61.2 ± 9.0 years, time since stroke 114.3 ± 39.4 days). There were no statistically significant differences between the groups in WHODAS 2, self-sufficiency, and balance scores (p > 0.05). Conclusions: In the experimental group, there was a statistically significant difference in WHODAS 2, assessment of self-sufficiency, and balance scores before and after therapy (p < 0.05). VR appears to be a suitable tool to supplement and modify rehabilitation in patients after stroke.
See more in PubMed
Laver K.E., Lange B., George S., Deutsch J.E., Saposnik G., Crotty M. Virtual reality for stroke rehabilitation. Stroke. 2018;49:e160–e161. doi: 10.1161/STROKEAHA.117.020275. PubMed DOI PMC
Ratnasabapathy Y., Chi-Lun Lee A., Feigin V., Anderson C. Blood pressure lowering interventions for preventing dementia in patients with cerebrovascular disease (Protocol) Cochrane Database Syst. Rev. 2009;2001:CD004034.
World Health Organization . World Health Statistics 2020. World Health Organization; Geneva, Switzerland: 2020.
Lincoln N., Majid M., Weyman N. Cognitive rehabilitation for attention deficits following stroke. Cochrane Database Syst. Rev. 2000:CD002842. PubMed
Wiley E., Khattab S., Tang A. Examining the effect of virtual reality therapy on cognition post-stroke: A systematic review and meta-analysis. Disabil. Rehabil. Assist. Technol. 2022;17:50–60. doi: 10.1080/17483107.2020.1755376. PubMed DOI
Pollock A., Baer G., Campbell P., Choo P.L., Forster A., Morris J., Pomeroy V.M., Langhorne P. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst. Rev. 2014;2014:CD001920. PubMed PMC
Kelly-Hayes M., Beiser A., Kase C.S., Scaramucci A., D’Agostino R.B., Wolf P.A. The influence of gender and age on disability following ischemic stroke: The Framingham study. J. Stroke Cerebrovasc. Dis. 2003;12:119–126. doi: 10.1016/S1052-3057(03)00042-9. PubMed DOI
Luque-Moreno C., Jiménez-Blanco A., Cano-Bravo F., Paniagua-Monrobel M., Zambrano-García E., Moral-Munoz J.A. Effectiveness of visual feedback and postural balance treatment of post-stroke pusher syndrome. A systematic review. Rev. Científica Soc. Enfermería Neurológica Engl. Ed. 2021;53:16–24. doi: 10.1016/j.sedeng.2019.12.001. DOI
Coutts S.B., Wein T.H., Lindsay M.P., Buck B., Cote R., Ellis P., Foley N., Hill M.D., Jaspers S., Jin A.Y. Canadian Stroke Best Practice Recommendations: Secondary prevention of stroke guidelines, update 2014. Int. J. Stroke. 2015;10:282–291. doi: 10.1111/ijs.12439. PubMed DOI
Langhorne P., Coupar F., Pollock A. Motor recovery after stroke: A systematic review. Lancet Neurol. 2009;8:741–754. doi: 10.1016/S1474-4422(09)70150-4. PubMed DOI
Pulman J., Buckley E. Assessing the efficacy of different upper limb hemiparesis interventions on improving health-related quality of life in stroke patients: A systematic review. Top. Stroke Rehabil. 2013;20:171–188. doi: 10.1310/tsr2002-171. PubMed DOI
Landi F., Cesari M., Onder G., Tafani A., Zamboni V., Cocchi A. Effects of an occupational therapy program on functional outcomes in older stroke patients. Gerontology. 2006;52:85–91. doi: 10.1159/000090953. PubMed DOI
Duncan P.W., Horner R.D., Reker D.M., Samsa G.P., Hoenig H., Hamilton B., LaClair B.J., Dudley T.K. Adherence to postacute rehabilitation guidelines is associated with functional recovery in stroke. Stroke. 2002;33:167–178. doi: 10.1161/hs0102.101014. PubMed DOI
Chen C.-J., Ding D., Starke R.M., Mehndiratta P., Crowley R.W., Liu K.C., Southerland A.M., Worrall B.B. Endovascular vs medical management of acute ischemic stroke. Neurology. 2015;85:1980–1990. doi: 10.1212/WNL.0000000000002176. PubMed DOI PMC
Zielina M., Šmahaj J., Raudenská J., Javůrková A. Využívání a vytváření terapeutických her ve virtuální realitě a model hráč/hra/terapie. Ceskoslov. Psychol. 2022;66:332–348. doi: 10.51561/cspsych.66.3.332. DOI
Levin M.F., Weiss P.L., Keshner E.A. Emergence of virtual reality as a tool for upper limb rehabilitation: Incorporation of motor control and motor learning principles. Phys. Ther. 2015;95:415–425. doi: 10.2522/ptj.20130579. PubMed DOI PMC
Khan A., Podlasek A., Somaa F. Virtual reality in post-stroke neurorehabilitation–a systematic review and meta-analysis. Top. Stroke Rehabil. 2023;30:53–72. doi: 10.1080/10749357.2021.1990468. PubMed DOI
Bedwell W.L., Pavlas D., Heyne K., Lazzara E.H., Salas E. Toward a taxonomy linking game attributes to learning: An empirical study. Simul. Gaming. 2012;43:729–760. doi: 10.1177/1046878112439444. DOI
Lee Y., Won M. Mediating effects of rehabilitation motivation between social support and health-related quality of life among patients with stroke. Int. J. Environ. Res. Public Health. 2022;19:15274. doi: 10.3390/ijerph192215274. PubMed DOI PMC
Lee J.-H., Kim E.-J. The Effect of Diagonal Exercise Training for Neurorehabilitation on Functional Activity in Stroke Patients: A Pilot Study. Brain Sci. 2023;13:799. doi: 10.3390/brainsci13050799. PubMed DOI PMC
Webster D., Celik O. Systematic review of Kinect applications in elderly care and stroke rehabilitation. J. Neuroeng. Rehabil. 2014;11:108. doi: 10.1186/1743-0003-11-108. PubMed DOI PMC
Wingham J., Adie K., Turner D., Schofield C., Pritchard C. Participant and caregiver experience of the Nintendo Wii SportsTM after stroke: Qualitative study of the trial of WiiTM in stroke (TWIST) Clin. Rehabil. 2015;29:295–305. doi: 10.1177/0269215514542638. PubMed DOI
Broeren J., Rydmark M., Sunnerhagen K.S. Virtual reality and haptics as a training device for movement rehabilitation after stroke: A single-case study. Arch. Phys. Med. Rehabil. 2004;85:1247–1250. doi: 10.1016/j.apmr.2003.09.020. PubMed DOI
Leng Y., Lo W.L.A., Mao Y.R., Bian R., Zhao J.L., Xu Z., Li L., Huang D.F. The impact of cognitive function on virtual reality intervention for upper extremity rehabilitation of patients with subacute stroke: Prospective randomized controlled trial with 6-month follow-up. JMIR Serious Games. 2022;10:e33755. doi: 10.2196/33755. PubMed DOI PMC
Bour A., Rasquin S., Boreas A., Limburg M., Verhey F. How predictive is the MMSE for cognitive performance after stroke? J. Neurol. 2010;257:630–637. doi: 10.1007/s00415-009-5387-9. PubMed DOI PMC
Mehrholz J., Wagner K., Rutte K., Meiβner D., Pohl M. Predictive validity and responsiveness of the functional ambulation category in hemiparetic patients after stroke. Arch. Phys. Med. Rehabil. 2007;88:1314–1319. doi: 10.1016/j.apmr.2007.06.764. PubMed DOI
Green J., Young J. A test-retest reliability study of the Barthel Index, the Rivermead Mobility Index, the Nottingham Extended Activities of Daily Living Scale and the Frenchay Activities Index in stroke patients. Disabil. Rehabil. 2001;23:670–676. doi: 10.1080/09638280110045382. PubMed DOI
0th Revision of the International Classification of Diseases. Institute of Health Information and Statistics of the Czech Republic [Online]. Prague. [(accessed on 1 November 2022)]. Available online: https://mkn10.uzis.cz/
Cohen-Inbar O., Soustiel J.F., Zaaroor M. Meningiomas in the elderly, the surgical benefit and a new scoring system. Acta Neurochir. 2010;152:87–97. doi: 10.1007/s00701-009-0552-6. PubMed DOI
Mahoney F.I., Barthel D.W. Functional evaluation: The Barthel Index: A simple index of independence useful in scoring improvement in the rehabilitation of the chronically ill. Md. State Med. J. 1965;14:61–65. PubMed
Richards S.H., Peters T.J., Coast J., Gunnell D.J., Darlow M.-A., Pounsford J. Inter-rater reliability of the Barthel ADL index: How does a researcher compare to a nurse? Clin. Rehabil. 2000;14:72–78. doi: 10.1191/026921500667059345. PubMed DOI
Quinn T.J., Langhorne P., Stott D.J. Barthel index for stroke trials: Development, properties, and application. Stroke. 2011;42:1146–1151. doi: 10.1161/STROKEAHA.110.598540. PubMed DOI
Prosiegel M., Böttger S., Schenk T., König N., Marolf M., Vaney C., Garner C., Yassouridis A. Der erweiterte Barthel-Index (EBI)–eine neue Skala zur Erfassung von Fähigkeitsstörungen bei neurologischen Patienten. Neurol. Rehabil. 1996;1:7–13.
Wee J.Y., Bagg S.D., Palepu A. The Berg balance scale as a predictor of length of stay and discharge destination in an acute stroke rehabilitation setting. Arch. Phys. Med. Rehabil. 1999;80:448–452. doi: 10.1016/S0003-9993(99)90284-8. PubMed DOI
De Oliveira C.B., De Medeiros I., Frota N., Greters M.E., Conforto A.B. Balance control in hemiparetic stroke patients: Main tools for evaluation. J. Rehabil. Res. Dev. 2008;45:1215–1226. doi: 10.1682/JRRD.2007.09.0150. PubMed DOI
Lima C., Ricci N., Nogueira E., Perracini M.R. The Berg Balance Scale as a clinical screening tool to predict fall risk in older adults: A systematic review. Physiotherapy. 2018;104:383–394. doi: 10.1016/j.physio.2018.02.002. PubMed DOI
Üstün T.B., Kostanjesek N., Chatterji S., Rehm J., World Health Organization . In: Measuring Health and Disability: Manual for WHO Disability Assessment Schedule (WHODAS 2.0) Üstün T.B., Kostanjsek N., Chatterji S., Rehm J., editors. World Health Organization; Geneva, Switzerland: 2010.
Sládková P., Svěcená K. Dotazník WHODAS 2.0 a možnosti jeho využití nejen v posudkové činnosti. Revis. Assess. Med./Reviz. A Posudkove Lek. 2023;25:55–59.
Federici S., Bracalenti M., Meloni F., Luciano J.V. World Health Organization disability assessment schedule 2.0: An international systematic review. Disabil. Rehabil. 2017;39:2347–2380. doi: 10.1080/09638288.2016.1223177. PubMed DOI
Howard M.C., Davis M.M. A meta-analysis and systematic literature review of mixed reality rehabilitation programs: Investigating design characteristics of augmented reality and augmented virtuality. Comput. Hum. Behav. 2022;130:107197. doi: 10.1016/j.chb.2022.107197. DOI
Peruzzi A., Cereatti A., Mirelman A., Della Croce U. Feasibility and acceptance of a virtual reality system for gait training of individuals with multiple sclerosis. Eur. Int. J. Sci. Technol. 2013;2:171–181.
Feigin V. Global and regional burden of stroke in 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet. 2013;382:1. doi: 10.1016/S0140-6736(13)61953-4. PubMed DOI PMC
Gurcay E., Bal A., Cakci A. Health-related quality of life in first-ever stroke patients. Ann. Saudi Med. 2009;29:36–40. doi: 10.4103/0256-4947.51814. PubMed DOI PMC
Johnson L., Bird M.-L., Muthalib M., Teo W.-P. An Innovative STRoke Interactive Virtual thErapy (STRIVE) online platform for community-dwelling stroke survivors: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2020;101:1131–1137. doi: 10.1016/j.apmr.2020.03.011. PubMed DOI
Luengo-Fernandez R., Gray A.M., Bull L., Welch S., Cuthbertson F., Rothwell P.M. Quality of life after TIA and stroke: Ten-year results of the Oxford Vascular Study. Neurology. 2013;81:1588–1595. doi: 10.1212/WNL.0b013e3182a9f45f. PubMed DOI PMC
Zhang Q., Fu Y., Lu Y., Zhang Y., Huang Q., Yang Y., Zhang K., Li M. Impact of virtual reality-based therapies on cognition and mental health of stroke patients: Systematic review and meta-analysis. J. Med. Internet Res. 2021;23:e31007. doi: 10.2196/31007. PubMed DOI PMC
Gao Y., Ma L., Lin C., Zhu S., Yao L., Fan H., Gong J., Yan X., Wang T. Effects of virtual reality-based intervention on cognition, motor function, mood, and activities of daily living in patients with chronic stroke: A systematic review and meta-analysis of randomized controlled trials. Front. Aging Neurosci. 2021;13:766525. doi: 10.3389/fnagi.2021.766525. PubMed DOI PMC
Wurzinger E.H., Abzhandadze T., Rafsten L., Sunnerhagen K.S. Dependency in activities of daily living during the first year after stroke. Front. Neurol. 2021;12:736684. doi: 10.3389/fneur.2021.736684. PubMed DOI PMC
Sulter G., Steen C., De Keyser J. Use of the Barthel index and modified Rankin scale in acute stroke trials. Stroke. 1999;30:1538–1541. doi: 10.1161/01.STR.30.8.1538. PubMed DOI
Hu H.Y., Chi W.C., Chang K.H., Yen C.F., Escorpizo R., Liao H.F., Huang S.W., Liou T.H. The World Health Organization Disability Assessment Schedule 2.0 can predict the institutionalization of patients with stroke. Eur. J. Phys. Rehabil. Med. 2017;53:856–862. doi: 10.23736/S1973-9087.17.04615-9. PubMed DOI