Chlorophyll biosynthesis under the control of arginine metabolism
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37864789
PubMed Central
PMC10783636
DOI
10.1016/j.celrep.2023.113265
PII: S2211-1247(23)01277-9
Knihovny.cz E-resources
- Keywords
- CP: Plants, Synechocystis, arginine metabolism, bilins, chlorophyll, genome-uncoupled-4, nitrogen homeostasis, tetrapyrrole biosynthesis,
- MeSH
- Arginine metabolism MeSH
- Chlorophyll metabolism MeSH
- Nitrogen MeSH
- Ornithine MeSH
- Synechocystis * metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Arginine MeSH
- Chlorophyll MeSH
- Nitrogen MeSH
- Ornithine MeSH
In natural environments, photosynthetic organisms adjust their metabolism to cope with the fluctuating availability of combined nitrogen sources, a growth-limiting factor. For acclimation, the dynamic degradation/synthesis of tetrapyrrolic pigments, as well as of the amino acid arginine, is pivotal; however, there has been no evidence that these processes could be functionally coupled. Using co-immunopurification and spectral shift assays, we found that in the cyanobacterium Synechocystis sp. PCC 6803, the arginine metabolism-related ArgD and CphB enzymes form protein complexes with Gun4, an essential protein for chlorophyll biosynthesis. Gun4 binds ArgD with high affinity, and the Gun4-ArgD complex accumulates in cells supplemented with ornithine, a key intermediate of the arginine pathway. Elevated ornithine levels restricted de novo synthesis of tetrapyrroles, which arrested the recovery from nitrogen deficiency. Our data reveal a direct crosstalk between tetrapyrrole biosynthesis and arginine metabolism that highlights the importance of balancing photosynthetic pigment synthesis with nitrogen homeostasis.
See more in PubMed
Zhang H., Liu Y., Nie X., Liu L., Hua Q., Zhao G.P., Yang C. The cyanobacterial ornithine-ammonia cycle involves an arginine dihydrolase. Nat. Chem. Biol. 2018;14:575–581. doi: 10.1038/s41589-018-0038-z. PubMed DOI
Watzer B., Forchhammer K. Cyanophycin synthesis optimizes nitrogen utilization in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Appl. Environ. Microbiol. 2018;84:e01298-18–e01218. doi: 10.1128/AEM.01298-18. PubMed DOI PMC
Görl M., Sauer J., Baier T., Forchhammer K. Nitrogen-starvation-induced chlorosis in Synechococcus PCC 7942: adaptation to long-term survival. Microbiology. 1998;144:2449–2458. doi: 10.1099/00221287-144-9-2449. ( Pt 9) PubMed DOI
Wase N., Black P.N., Stanley B.A., DiRusso C.C. Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling. J. Proteome Res. 2014;13:1373–1396. doi: 10.1021/pr400952z. PubMed DOI
Klotz A., Georg J., Bučinská L., Watanabe S., Reimann V., Januszewski W., Sobotka R., Jendrossek D., Hess W.R., Forchhammer K. Awakening of a dormant cyanobacterium from nitrogen chlorosis reveals a genetically determined program. Curr. Biol. 2016;26:2862–2872. doi: 10.1016/j.cub.2016.08.054. PubMed DOI
Brzezowski P., Richter A.S., Grimm B. Regulation and function of tetrapyrrole biosynthesis in plants and algae. Biochim. Biophys. Acta. 2015;1847:968–985. doi: 10.1016/j.bbabio.2015.05.007. PubMed DOI
Papenbrock J., Mishra S., Mock H.P., Kruse E., Schmidt E.K., Petersmann A., Braun H.P., Grimm B. Impaired expression of the plastidic ferrochelatase by antisense RNA synthesis leads to a necrotic phenotype of transformed tobacco plants. Plant J. 2001;28:41–50. doi: 10.1046/j.1365-313x.2001.01126.x. PubMed DOI
Vavilin D., Brune D.C., Vermaas W. N-15-labeling to determine chlorophyll synthesis and degradation in Synechocystis sp. PCC 6803 strains lacking one or both photosystems. Biochim. Biophys. Acta. 2005;1708:91–101. doi: 10.1016/j.bbabio.2004.12.011. PubMed DOI
Wang P., Ji S., Grimm B. Post-translational regulation of metabolic checkpoints in plant tetrapyrrole biosynthesis. J. Exp. Bot. 2022;73:4624–4636. doi: 10.1093/jxb/erac1203. 10.1093/jxb/erac203. PubMed DOI PMC
Davison P.A., Schubert H.L., Reid J.D., Iorg C.D., Heroux A., Hill C.P., Hunter C.N. Structural and biochemical characterization of Gun4 suggests a mechanism for its role in chlorophyll biosynthesis. Biochemistry. 2005;44:7603–7612. doi: 10.1021/bi050240x. PubMed DOI
Verdecia M.A., Larkin R.M., Ferrer J.L., Riek R., Chory J., Noel J.P. Structure of the Mg-chelatase cofactor GUN4 reveals a novel hand-shaped fold for porphyrin binding. PLoS Biol. 2005;3:e151. doi: 10.1371/journal.pbio.0030151. PubMed DOI PMC
Adhikari N.D., Orler R., Chory J., Froehlich J.E., Larkin R.M. Porphyrins promote the association of GENOMES UNCOUPLED 4 and a Mg-chelatase subunit with chloroplast membranes. J. Biol. Chem. 2009;284:24783–24796. doi: 10.1074/jbc.M109.025205. PubMed DOI PMC
Chen X., Pu H., Wang X., Long W., Lin R., Liu L. Crystal Structures of GUN4 in Complex with Porphyrins. Mol. Plant. 2015;8:1125–1127. doi: 10.1016/j.molp.2015.04.013. PubMed DOI
Adams N.B.P., Brindley A.A., Hunter C.N., Reid J.D. The catalytic power of magnesium chelatase: a benchmark for the AAA+ ATPases. FEBS Lett. 2016;590:1687–1693. doi: 10.1002/1873-3468.12214. PubMed DOI PMC
Hu J.H., Chang J.W., Xu T., Wang J., Wang X., Lin R., Duanmu D., Liu L. Structural basis of bilin binding by the chlorophyll biosynthesis regulator GUN4. Protein Sci. 2021;30:2083–2091. doi: 10.1002/pro.4164. PubMed DOI PMC
Zhang W., Willows R.D., Deng R., Li Z., Li M., Wang Y., Guo Y., Shi W., Fan Q., Martin S.S., et al. Bilin-dependent regulation of chlorophyll biosynthesis by GUN4. Proc. Natl. Acad. Sci. USA. 2021;118 doi: 10.1073/pnas.2104443118. PubMed DOI PMC
Fölsche V., Großmann C., Richter A.S. Impact of porphyrin binding to GENOMES UNCOUPLED 4 on tetrapyrrole biosynthesis in planta. Front. Plant Sci. 2022;13 doi: 10.3389/fpls.2022.850504. PubMed DOI PMC
Wilde A., Mikolajczyk S., Alawady A., Lokstein H., Grimm B. The gun4 gene is essential for cyanobacterial porphyrin metabolism. FEBS Lett. 2004;571:119–123. doi: 10.1016/j.febslet.2004.06.063. PubMed DOI
Adhikari N.D., Froehlich J.E., Strand D.D., Buck S.M., Kramer D.M., Larkin R.M. GUN4-porphyrin complexes bind the ChlH/GUN5 subunit of Mg-chelatase and promote chlorophyll biosynthesis in Arabidopsis. Plant Cell. 2011;23:1449–1467. doi: 10.1105/tpc.110.082503. PubMed DOI PMC
Kopečná J., Cabeza de Vaca I., Adams N.B.P., Davison P.A., Brindley A.A., Hunter C.N., Guallar V., Sobotka R. Porphyrin binding to Gun4 protein, facilitated by a flexible loop, controls metabolite flow through the chlorophyll biosynthetic pathway. J. Biol. Chem. 2015;290:28477–28488. doi: 10.1074/jbc.M115.664987. PubMed DOI PMC
Formighieri C., Ceol M., Bonente G., Rochaix J.D., Bassi R. Retrograde signaling and photoprotection in a gun4 mutant of Chlamydomonas reinhardtii. Mol. Plant. 2012;5:1242–1262. doi: 10.1093/mp/sss051. PubMed DOI
Li R.-Q., Jiang M., Liu Y.-H., Zheng Y.-C., Huang J.-Z., Wu J.-M., Shu Q.-Y. The xantha marker trait is associated with altered tetrapyrrole biosynthesis and deregulated transcription of PhANGs in rice. Front. Plant Sci. 2017;8:901. doi: 10.3389/fpls.2017.00901. PubMed DOI PMC
Mochizuki N., Tanaka R., Tanaka A., Masuda T., Nagatani A. The steady-state level of Mg-protoporphyrin IX is not a determinant of plastid-to-nucleus signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2008;105:15184–15189. doi: 10.1073/pnas.0803245105. PubMed DOI PMC
Larkin R.M., Alonso J.M., Ecker J.R., Chory J. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science. 2003;299:902–906. doi: 10.1126/science.1079978. PubMed DOI
Sobotka R., Dühring U., Komenda J., Peter E., Gardian Z., Tichý M., Grimm B., Wilde A. Importance of the cyanobacterial GUN4 protein for chlorophyll metabolism and assembly of photosynthetic complexes. J. Biol. Chem. 2008;283:25794–25802. doi: 10.1074/jbc.M803787200. PubMed DOI PMC
Richter R., Hejazi M., Kraft R., Ziegler K., Lockau W. Cyanophycinase, a peptidase degrading the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartic acid (cyanophycin): molecular cloning of the gene of Synechocystis sp. PCC 6803, expression in Escherichia coli, and biochemical characterization of the purified enzyme. Eur. J. Biochem. 1999;263:163–169. doi: 10.1046/j.1432-1327.1999.00479.x. PubMed DOI
Li H., Sherman D.M., Bao S., Sherman L.A. Pattern of cyanophycin accumulation in nitrogen-fixing and non-nitrogen-fixing cyanobacteria. Arch. Microbiol. 2001;176:9–18. doi: 10.1007/s002030100281. PubMed DOI
Quintero M.J., Muro-Pastor A.M., Herrero A., Flores E. Arginine catabolism in the cyanobacterium Synechocystis sp. strain PCC 6803 involves the urea cycle and arginase pathway. J. Bacteriol. 2000;182:1008–1015. doi: 10.1128/jb.182.4.1008-1015.2000. PubMed DOI PMC
Flores E., Arévalo S., Burnat M. Cyanophycin and arginine metabolism in cyanobacteria. Algal Res. 2019;42 doi: 10.1016/j.algal.2019.101577. DOI
Sobotka R. Making proteins green; biosynthesis of chlorophyll-binding proteins in cyanobacteria. Photosynth. Res. 2014;119:223–232. doi: 10.1007/s11120-013-9797-2. PubMed DOI
Koskela M.M., Skotnicová P., Kiss É., Sobotka R. Purification of protein-complexes from the cyanobacterium Synechocystis sp. PCC 6803 using FLAG-affinity chromatography. Bio. Protoc. 2020;10 doi: 10.21769/BioProtoc.3616. PubMed DOI PMC
Li Z.-M., Bai F., Wang X., Xie C., Wan Y., Li Y., Liu J., Li Z. Kinetic characterization and catalytic mechanism of N-acetylornithine aminotransferase encoded by slr1022 gene from Synechocystis sp. PCC 6803. Int. J. Mol. Sci. 2023;24:5853. doi: 10.3390/ijms24065853. PubMed DOI PMC
Baers L.L., Breckels L.M., Mills L.A., Gatto L., Deery M.J., Stevens T.J., Howe C.J., Lilley K.S., Lea-Smith D.J. Proteome mapping of a cyanobacterium reveals distinct compartment organization and cell-dispersed metabolism. Plant Physiol. 2019;181:1721–1738. doi: 10.1104/pp.19.00897. PubMed DOI PMC
Quintero M.J., Montesinos M.L., Herrero A., Flores E. Identification of genes encoding amino acid permeases by inactivation of selected ORFs from the Synechocystis genomic sequence. Genome Res. 2001;11:2034–2040. doi: 10.1101/gr.196301. PubMed DOI PMC
Cunin R., Glansdorff N., Piérard A., Stalon V. Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev. 1986;50:314–352. doi: 10.1128/mr.50.3.314-352.1986. PubMed DOI PMC
Abadjieva A., Pauwels K., Hilven P., Crabeel M. A new yeast metabolon involving at least the two first enzymes of arginine biosynthesis: acetylglutamate synthase activity requires complex formation with acetylglutamate kinase. J. Biol. Chem. 2001;276:42869–42880. doi: 10.1074/jbc.M103732200. PubMed DOI
Chen G.E., Hitchcock A., Mareš J., Gong Y., Tichý M., Pilný J., Kovářová L., Zdvihalová B., Xu J., Hunter C.N., Sobotka R. Evolution of Ycf54-independent chlorophyll biosynthesis in cyanobacteria. Proc. Natl. Acad. Sci. USA. 2021;118 doi: 10.1073/pnas.2024633118. PubMed DOI PMC
Schriek S., Rückert C., Staiger D., Pistorius E.K., Michel K.-P. Bioinformatic evaluation of L-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of L-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803. BMC Genom. 2007;8:437. doi: 10.1186/1471-2164-8-437. PubMed DOI PMC
Xiong W., Brune D., Vermaas W.F.J. The γ-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp. PCC 6803. Mol. Microbiol. 2014;93:786–796. doi: 10.1111/mmi.12699. PubMed DOI
Adams N.B.P., Marklew C.J., Qian P., Brindley A.A., Davison P.A., Bullough P.A., Hunter C.N. Structural and functional consequences of removing the N-terminal domain from the magnesium chelatase ChlH subunit of Thermosynechococcus elongatus. Biochem. J. 2014;464:315–322. doi: 10.1042/bj20140463. PubMed DOI PMC
Jackson P.J., Hitchcock A., Brindley A.A., Dickman M.J., Hunter C.N. Absolute quantification of cellular levels of photosynthesis-related proteins in Synechocystis sp. PCC 6803. Photosynth. Res. 2023;155:219–245. doi: 10.1007/s11120-022-00990-z. PubMed DOI PMC
Papenbrock J., Mock H.P., Tanaka R., Kruse E., Grimm B. Role of magnesium chelatase activity in the early steps of the tetrapyrrole biosynthetic pathway. Plant Physiol. 2000;122:1161–1169. doi: 10.1104/pp.122.4.1161. PubMed DOI PMC
Richter A.S., Hochheuser C., Fufezan C., Heinze L., Kuhnert F., Grimm B. Phosphorylation of GENOMES UNCOUPLED 4 alters stimulation of Mg chelatase activity in angiosperms. Plant Physiol. 2016;172:1578–1595. doi: 10.1104/pp.16.01036. PubMed DOI PMC
Peter E., Grimm B. GUN4 is required for posttranslational control of plant tetrapyrrole biosynthesis. Mol. Plant. 2009;2:1198–1210. doi: 10.1093/mp/ssp072. PubMed DOI
Brzezowski P., Schlicke H., Richter A., Dent R.M., Niyogi K.K., Grimm B. The GUN4 protein plays a regulatory role in tetrapyrrole biosynthesis and chloroplast-to-nucleus signalling in Chlamydomonas reinhardtii. Plant J. 2014;79:285–298. doi: 10.1111/tpj.12560. PubMed DOI
Wang P., Richter A.S., Kleeberg J.R.W., Geimer S., Grimm B. Post-translational coordination of chlorophyll biosynthesis and breakdown by BCMs maintains chlorophyll homeostasis during leaf development. Nat. Commun. 2020;11:1254. doi: 10.1038/s41467-020-14992-9. PubMed DOI PMC
Stanier R.Y., Kunisawa R., Mandel M., Cohen-Bazire G. Purification and properties of unicellular blue-green algae (order Chroococcales) Bacteriol. Rev. 1971;35:171–205. doi: 10.1128/br.35.2.171-205.1971. PubMed DOI PMC
Tichý M., Bečková M., Kopečná J., Noda J., Sobotka R., Komenda J. Strain of Synechocystis PCC 6803 with aberrant assembly of photosystem II contains tandem duplication of a large chromosomal region. Front. Plant Sci. 2016;7:648. doi: 10.3389/fpls.2016.00648. PubMed DOI PMC
Chidgey J.W., Linhartová M., Komenda J., Jackson P.J., Dickman M.J., Canniffe D.P., Koník P., Pilný J., Hunter C.N., Sobotka R. A cyanobacterial chlorophyll synthase-HliD complex associates with the Ycf39 protein and the YidC/Alb3 insertase. Plant Cell. 2014;26:1267–1279. doi: 10.1105/tpc.114.124495. PubMed DOI PMC
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat Meth. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Spät P., Klotz A., Rexroth S., Maček B., Forchhammer K. Chlorosis as a developmental program in cyanobacteria: the proteomic fundament for survival and awakening. Mol. Cell. Proteomics. 2018;17:1650–1669. doi: 10.1074/mcp.RA118.000699. PubMed DOI PMC
Hollingshead S., Kopecná J., Jackson P.J., Canniffe D.P., Davison P.A., Dickman M.J., Sobotka R., Hunter C.N. Conserved chloroplast open-reading frame ycf54 is required for activity of the magnesium protoporphyrin monomethylester oxidative cyclase in Synechocystis PCC 6803. J. Biol. Chem. 2012;287:27823–27833. doi: 10.1074/jbc.M112.352526. PubMed DOI PMC
Kiss É., Knoppová J., Aznar G.P., Pilný J., Yu J., Halada P., Nixon P.J., Sobotka R., Komenda J. A photosynthesis-specific rubredoxin-like protein is required for efficient association of the D1 and D2 proteins during the initial steps of photosystem II assembly. Plant Cell. 2019;31:2241–2258. doi: 10.1105/tpc.19.00155. PubMed DOI PMC
Komenda J. Autotrophic cells of the Synechocystis psbH deletion mutant are deficient in synthesis of CP47 and accumulate inactive PSII core complexes. Photosynth. Res. 2005;85:161–167. doi: 10.1007/s11120-005-1294-9. PubMed DOI
Bučinská L., Kiss É., Konik P., Knoppová J., Komenda J., Sobotka R. The ribosome-bound protein Pam68 promotes insertion of chlorophyll into the CP47 subunit of Photosystem II. Plant Physiol. 2018;4:2931–2942. doi: 10.1104/pp.18.00061. PubMed DOI PMC
Pilný J., Kopečná J., Noda J., Sobotka R. Detection and quantification of heme and chlorophyll precursors using a High Performance Liquid Chromatography (HPLC) system equipped with two fluorescence detectors. Bio-protocol. 2015;5 doi: 10.21769/BioProtoc.1390. DOI
Ritchie R.J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 2006;89:27–41. doi: 10.1007/s11120-006-9065-9. PubMed DOI
Opekar S., Kvíčala J., Moos M., Pejchal V., Šimek P. Mechanism of alkyl chloroformate-mediated esterification of carboxylic acids in aqueous media. J. Org. Chem. 2021;86:16293–16299. doi: 10.1021/acs.joc.1c01546. PubMed DOI
Langer A., Bartoschik T., Cehlar O., Duhr S., Baaske P., Streicher W. A new spectral shift-based method to characterize molecular interactions. Assay Drug Dev. Technol. 2022;20:83–94. doi: 10.1089/adt.2021.133. PubMed DOI PMC