Temoporfin-Conjugated Upconversion Nanoparticles for NIR-Induced Photodynamic Therapy: Studies with Pancreatic Adenocarcinoma Cells In Vitro and In Vivo
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
1
CSRD VA - United States
PubMed
38140035
PubMed Central
PMC10748036
DOI
10.3390/pharmaceutics15122694
PII: pharmaceutics15122694
Knihovny.cz E-resources
- Keywords
- pancreatic tumor, photodynamic therapy, temoporfin, upconversion,
- Publication type
- Journal Article MeSH
Upconverting nanoparticles are interesting materials that have the potential for use in many applications ranging from solar energy harvesting to biosensing, light-triggered drug delivery, and photodynamic therapy (PDT). One of the main requirements for the particles is their surface modification, in our case using poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) and temoporfin (THPC) photosensitizer to ensure the colloidal and chemical stability of the particles in aqueous media and the formation of singlet oxygen after NIR irradiation, respectively. Codoping of Fe2+, Yb3+, and Er3+ ions in the NaYF4 host induced upconversion emission of particles in the red region, which is dominant for achieving direct excitation of THPC. Novel monodisperse PMVEMA-coated upconversion NaYF4:Yb3+,Er3+,Fe2+ nanoparticles (UCNPs) with chemically bonded THPC were found to efficiently transfer energy and generate singlet oxygen. The cytotoxicity of the UCNPs was determined in the human pancreatic adenocarcinoma cell lines Capan-2, PANC-01, and PA-TU-8902. In vitro data demonstrated enhanced uptake of UCNP@PMVEMA-THPC particles by rat INS-1E insulinoma cells, followed by significant cell destruction after excitation with a 980 nm laser. Intratumoral administration of these nanoconjugates into a mouse model of human pancreatic adenocarcinoma caused extensive necrosis at the tumor site, followed by tumor suppression after NIR-induced PDT. In vitro and in vivo results thus suggest that this nanoconjugate is a promising candidate for NIR-induced PDT of cancer.
See more in PubMed
Gunaydin G., Gedik M.E., Ayan S. Photodynamic therapy for the treatment and diagnosis of cancer—A review of the current clinical status. Front. Chem. 2021;9:686303. doi: 10.3389/fchem.2021.686303. PubMed DOI PMC
Del Valle C.A., Hirsch T., Marin M.J. Recent advances in near infrared upconverting nanomaterials for targeted photodynamic therapy of cancer. Methods Appl. Fluoresc. 2022;10:034003. doi: 10.1088/2050-6120/ac6937. PubMed DOI
Yanovsky R.L., Bartenstein D.W., Rogers G.S., Isakoff S.J., Chen S.T. Photodynamic therapy for solid tumors: A review of the literature. Photodermatol. Photoimmunol. Photomed. 2019;35:295–303. doi: 10.1111/phpp.12489. PubMed DOI
Koca B., Hamuryudan E., Catak S., Erdogmus A., Monari A., Aviyente V. Exploring the photophysics of polyfluorinated phthalocyanine derivatives as potential theranostic agents. J. Phys. Chem. C. 2019;123:24417–24425. doi: 10.1021/acs.jpcc.9b07053. DOI
Kliesch H., Weitemeyer A., Michelsen U., Shopova M., Wöhrle D. Naphthalocyanines as photosensitizers for PDT. In: Moser J.G., editor. Photodynamic Tumor Therapy. Harwood Academic Publishers; Amsterdam, The Netherlands: 1998. pp. 75–86.
García-Díaz M., Sánchez-García D., Soriano J., Sagristà M.L., Mora M., Villanueva Á., Stockert J.C., Cañete M., Nonell S. Temocene: The porphycene analogue of temoporfin (Foscan®) MedChemComm. 2011;2:616–619. doi: 10.1039/c1md00065a. DOI
De Oliveira K.T., de Souza J.M., Gobo N.R.d.S., de Assis F.F., Brocksom T.J. Basic concepts and applications of porphyrins, chlorins and phthalocyanines as photosensitizers in photonic therapies. Rev. Virtual Quím. 2015;7:310–335. doi: 10.5935/1984-6835.20150016. DOI
Le N.A., Babu V., Kalt M., Schneider L., Schumer F., Spingler B. Photostable platinated bacteriochlorins as potent photodynamic agents. J. Med. Chem. 2021;64:6792–6801. doi: 10.1021/acs.jmedchem.1c00052. PubMed DOI
Xodo L.E., Rapozzi V., Zacchigna M., Drioli S., Zorzet S. The chlorophyll catabolite pheophorbide a as a photosensitizer for the photodynamic therapy. Curr. Med. Chem. 2012;19:99–807. doi: 10.2174/092986712799034879. PubMed DOI
Ormond A., Freeman H. Dye sensitizers for photodynamic therapy. Materials. 2013;6:817–840. doi: 10.3390/ma6030817. PubMed DOI PMC
Hamblin M.R. Photodynamic therapy for cancer: What’s past is prologue. Photochem. Photobiol. 2020;96:506–516. doi: 10.1111/php.13190. PubMed DOI PMC
Idris N.M., Jayakumar M.K., Bansal A., Zhang Y. Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chem. Soc. Rev. 2015;44:1449–1478. doi: 10.1039/C4CS00158C. PubMed DOI
Klohs J., Wunder A., Licha K. Near-infrared fluorescent probes for imaging vascular pathophysiology. Basic Res. Cardiol. 2008;103:144–151. doi: 10.1007/s00395-008-0702-7. PubMed DOI
Baskaran R., Lee J., Yang S.G. Clinical development of photodynamic agents and therapeutic applications. Biomater. Res. 2018;22:25. doi: 10.1186/s40824-018-0140-z. PubMed DOI PMC
Triesscheijn M., Ruevekamp M., Aalders M., Baas P., Stewart F.A. Outcome of mTHPC mediated photodynamic therapy is primarily determined by the vascular response. Photochem. Photobiol. 2005;81:1161–1167. doi: 10.1562/2005-04-04-RA-474. PubMed DOI
Wiehe A., Senge M.O. The photosensitizer temoporfin (mTHPC)—Chemical, pre-clinical and clinical developments in the last decade. Photochem. Photobiol. 2023;99:356–419. doi: 10.1111/php.13730. PubMed DOI
Senge M.O., Brandt J.C. Temoporfin (Foscan®, 5,10,15,20-tetra(m-hydroxyphenyl)chlorin)—A second-generation photosensitizer. Photochem. Photobiol. 2011;87:1240–1296. doi: 10.1111/j.1751-1097.2011.00986.x. PubMed DOI
Hamblin M.R. Upconversion in photodynamic therapy: Plumbing the depths. Dalton Trans. 2018;47:8571–8580. doi: 10.1039/C8DT00087E. PubMed DOI PMC
Qiu H., Tan M., Ohulchanskyy T.Y., Lovell J.F., Chen G. Recent progress in upconversion photodynamic therapy. Nanomaterials. 2018;8:344. doi: 10.3390/nano8050344. PubMed DOI PMC
Nahorniak M., Pop-Georgievski O., Velychkivska N., Filipová M., Rydvalová E., Gunár K., Matouš P., Kostiv U., Horák D. Rose Bengal-modified upconverting nanoparticles: Synthesis, characterization, and biological evaluation. Life. 2022;12:1383. doi: 10.3390/life12091383. PubMed DOI PMC
Kostiv U., Patsula V., Noculak A., Podhorodecki A., Větvička D., Poučková P., Sedláková Z., Horák D. Phthalocyanine-conjugated upconversion NaYF4: Yb3+/Er3+@SiO2 nanospheres for NIR-triggered photodynamic therapy in a tumor mouse model. ChemMedChem. 2017;12:2066–2073. doi: 10.1002/cmdc.201700508. PubMed DOI
Wang C., Tao H., Cheng L., Liu Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials. 2011;32:6145–6154. doi: 10.1016/j.biomaterials.2011.05.007. PubMed DOI
Wang H., Han R.-L., Yang L.-M., Shi J.-H., Liu Z.-J., Hu Y., Wang Y., Liu S.-J., Gan Y. Design and synthesis of core–shell–shell upconversion nanoparticles for NIR-induced drug release, photodynamic therapy, and cell imaging. ACS Appl. Mater. Interfaces. 2016;8:4416–4423. doi: 10.1021/acsami.5b11197. PubMed DOI
Khaydukov E., Mironova K., Semchishen V., Generalova A.N., Nechaev A.V., Khochenkov D.A., Stepanova E.V., Lebedev O.I., Zvyagin A.V., Deyev S.M., et al. Riboflavin photoactivation by upconversion nanoparticles for cancer treatment. Sci. Rep. 2016;6:35103. doi: 10.1038/srep35103. PubMed DOI PMC
Liu X., Zheng M., Kong X., Zhang Y., Zeng Q., Sun Z., Buma W., Zhang H. Separately doped upconversion-C-60 nanoplatform for NIR imaging-guided photodynamic therapy of cancer cells. Chem. Commun. 2013;49:3224–3226. doi: 10.1039/C3CC41013G. PubMed DOI
Yu Q., Rodriguez E.M., Naccache R., Forgione P., Lamoureux G., Sanz-Rodriguez F., Scheglmann D., Capobianco J.A. Chemical modification of temoporfin—A second generation photosensitizer activated using upconverting nanoparticles for singlet oxygen generation. Chem. Commun. 2014;50:12150–12153. doi: 10.1039/C4CC05867D. PubMed DOI
Shapoval O., Brandmeier J.C., Nahorniak M., Oleksa V., Makhneva E., Gorris H.H., Farka Z., Horák D. PMVEMA-coated upconverting nanoparticles for upconversion-linked immunoassay of cardiac troponin. Talanta. 2022;244:123400. doi: 10.1016/j.talanta.2022.123400. PubMed DOI
Kirejev V., Goncalves A.R., Aggelidou C., Manet I., Mårtensson J., Yannakopoulou K., Ericson M.B. Photophysics and ex vivo biodistribution of β-cyclodextrin-meso-tetra(m-hydroxyphenyl)porphyrin conjugate for biomedical applications. Photochem. Photobiol. Sci. 2014;13:1185–1191. doi: 10.1039/c4pp00088a. PubMed DOI
Rogers L., Burke-Murphy E., Senge M.O. Simple porphyrin desymmetrization: 5,10,15,20-Tetrakis(3-hydroxyphenyl)-porphyrin (mTHPP) as a gateway molecule for peripheral functionalization. Eur. J. Org. Chem. 2014;2014:4283–4294. doi: 10.1002/ejoc.201402433. DOI
Shapoval O., Engstová H., Jirák D., Drahokoupil J., Sulková K., Berková Z., Pop-Georgievski O., Holendová B., Ježek P., Horák D. Poly(4-styrenesulfonic acid-co-maleic anhydride)-coated NaGdF4:Yb,Tb,Nd nanoparticles with luminescence and magnetic properties for imaging of pancreatic islets and β-cells. ACS Appl. Mater. Interfaces. 2022;14:18233–18247. doi: 10.1021/acsami.2c04274. PubMed DOI
Muniz F.T.L., Miranda M.A.R., Santos C.M., Sasaki J.M. The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr. A Found. Adv. 2016;72:385–390. doi: 10.1107/S205327331600365X. PubMed DOI
Gomes A., Fernandes E., Lima J.L. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods. 2005;65:45–80. doi: 10.1016/j.jbbm.2005.10.003. PubMed DOI
Vera V.T., Mendez-Gonzalez D., Ramos-Ramos D.J., Igalla A., Laurenti M., Contreras-Caceres R., Lopez-Cabarcos E., Díaz E., Rubio-Retama J., Melle S., et al. The effects of dopant concentration and excitation intensity on the upconversion and downconversion emission processes of β-NaYF4:Yb3+,Er3+ nanoparticles. J. Mater. Chem. C. 2021;9:8902–8911. doi: 10.1039/D1TC01419F. DOI
Luo X., Chen Q., Guo H., Zhang H., He X., Zhao W. One-step hydrothermal synthesis of Cit-NaYbF4:Er3+ nanocrystals with enhanced red upconversion emission for in vivo fluorescence molecular tomography. J. Rare Earths. 2022. in press . DOI
Ramasamy P., Chandra P., Rhee S.W., Kim J. Enhanced upconversion luminescence in NaGdF4:Yb,Er nanocrystals by Fe3+ doping and their application in bioimaging. Nanoscale. 2013;5:8711–8717. doi: 10.1039/c3nr01608k. PubMed DOI
Kamimura M., Omoto A., Chiu H.-C., Soga K. Enhanced red upconversion emission of NaYF4:Yb3+,Er3+,Mn2+ nanoparticles for near-infrared-induced photodynamic therapy and fluorescence imaging. Chem. Lett. 2017;46:1076–1078. doi: 10.1246/cl.170322. DOI
Tang J., Chen L., Li J., Wang Z., Zhang J.H., Zhang L.G., Luo Y.S., Wang X.J. Selectively enhanced red upconversion luminescence and phase/size manipulation via Fe3+ doping in NaYF4:Yb,Er nanocrystals. Nanoscale. 2015;7:14752. doi: 10.1039/C5NR04125B. PubMed DOI
Nahorniak M., Patsula V., Mareková D., Matouš P., Shapoval O., Oleksa V., Vosmanská M., Machová Urdzíková L., Jendelová P., Herynek V., et al. Chemical and colloidal stability of polymer-coated NaYF4:Yb,Er nanoparticles in aqueous media and viability of cells: The effect of a protective coating. Int. J. Mol. Sci. 2023;24:2724. doi: 10.3390/ijms24032724. PubMed DOI PMC
Hu P., Wu T., Fan W., Chen L., Liu Y., Ni D., Bu W., Shi J. Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy. Biomaterials. 2017;141:86–95. doi: 10.1016/j.biomaterials.2017.06.035. PubMed DOI
Fang F., Wang S., Song Y., Sun M., Chen W.-C., Zhao D., Zhang J. Continuous spatiotemporal therapy of a full-API nanodrug via multi-step tandem endogenous biosynthesis. Nat. Commun. 2023;14:1660. doi: 10.1038/s41467-023-37315-0. PubMed DOI PMC
Friedmann A.J., Krysko D.V., Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat. Rev. Cancer. 2019;19:405–414. doi: 10.1038/s41568-019-0149-1. PubMed DOI
Ding B., Shao S., Xiao H., Sun C., Cai X., Jiang F., Zhao X., Ma P.A., Lin J. MnFe2O4-decorated large-pore mesoporous silica-coated upconversion nanoparticles for near-infrared light-induced and O2 self-sufficient photodynamic therapy. Nanoscale. 2019;11:14654. doi: 10.1039/C9NR04858H. PubMed DOI
Idris N.M., Gnanasammandhan M.K., Zhang J., Ho P.C., Mahendran R., Zhang Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 2012;18:1580–1585. doi: 10.1038/nm.2933. PubMed DOI
Yan S., Zeng X., Tang Y.A., Liu B.F., Wang Y., Liu X. Activating antitumor immunity and antimetastatic effect through polydopamine-encapsulated core–shell upconversion nanoparticles. Adv. Mater. 2019;31:e1905825. doi: 10.1002/adma.201905825. PubMed DOI
Li Y., Chen G. Upconversion nanoparticles for cancer therapy. Adv. NanoBiomed Res. 2022;2:2200092. doi: 10.1002/anbr.202270113. DOI
Park Y.I., Kim H.M., Kim J.H., Moon K.C., Yoo B., Lee K.T., Lee N., Choi Y., Park W., Ling D., et al. Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy. Adv. Mater. 2012;24:5755–5761. doi: 10.1002/adma.201202433. PubMed DOI
Cui S., Chen H., Zhu H., Tian J., Chi X., Qian Z., Achilefu S., Gu Y. Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light. J. Mater. Chem. 2012;22:4861–4873. doi: 10.1039/c2jm16112e. DOI
Punjabi A., Wu X., Tokatli-Apollon A., El-Rifai M., Lee H., Zhang Y., Wang C., Liu Z., Chan E.M., Duan C., et al. Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy. ACS Nano. 2014;8:10621–10630. doi: 10.1021/nn505051d. PubMed DOI PMC
Thanasekaran P., Chu C.-H., Wang S.-B., Chen K.-Y., Gao H.-D., Lee M.M., Sun S.-S., Li J.-P., Chen J.-Y., Chen J.-K., et al. Lipid-wrapped upconversion nanoconstruct/photosensitizer complex for near-infrared light-mediated photodynamic therapy. ACS Appl. Mater. Interfaces. 2019;11:84–95. doi: 10.1021/acsami.8b07760. PubMed DOI
Chen C.W., Chan Y.C., Hsiao M., Liu R.S. Plasmon-enhanced photodynamic cancer therapy by upconversion nanoparticles conjugated with Au nanorods. ACS Appl. Mater. Interfaces. 2016;8:32108. doi: 10.1021/acsami.6b07770. PubMed DOI
Li Y., Zhang X., Zhang Y., Zhang Y., He Y., Liu Y., Ju H. Activatable photodynamic therapy with therapeutic effect prediction based on a self-correction upconversion nanoprobe. ACS Appl. Mater. Interfaces. 2020;12:19313. doi: 10.1021/acsami.0c03432. PubMed DOI
Zhao N., Wu B., Hu X., Xing D. NIR-triggered high-efficient photodynamic and chemo-cascade therapy using caspase-3 responsive functionalized upconversion nanoparticles. Biomaterials. 2017;141:40. doi: 10.1016/j.biomaterials.2017.06.031. PubMed DOI
Tsai Y.C., Vijayaraghavan P., Chiang W.H., Chen H.H., Liu T.I., Shen M.Y., Omoto A., Kamimura M., Soga K., Chiu H.C. Targeted delivery of functionalized upconversion nanoparticles for externally triggered photothermal/photodynamic therapies of brain glioblastoma. Theranostics. 2018;8:1435–1448. doi: 10.7150/thno.22482. PubMed DOI PMC