• This record comes from PubMed

Temoporfin-Conjugated Upconversion Nanoparticles for NIR-Induced Photodynamic Therapy: Studies with Pancreatic Adenocarcinoma Cells In Vitro and In Vivo

. 2023 Nov 28 ; 15 (12) : . [epub] 20231128

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
1 CSRD VA - United States

Links

PubMed 38140035
PubMed Central PMC10748036
DOI 10.3390/pharmaceutics15122694
PII: pharmaceutics15122694
Knihovny.cz E-resources

Upconverting nanoparticles are interesting materials that have the potential for use in many applications ranging from solar energy harvesting to biosensing, light-triggered drug delivery, and photodynamic therapy (PDT). One of the main requirements for the particles is their surface modification, in our case using poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) and temoporfin (THPC) photosensitizer to ensure the colloidal and chemical stability of the particles in aqueous media and the formation of singlet oxygen after NIR irradiation, respectively. Codoping of Fe2+, Yb3+, and Er3+ ions in the NaYF4 host induced upconversion emission of particles in the red region, which is dominant for achieving direct excitation of THPC. Novel monodisperse PMVEMA-coated upconversion NaYF4:Yb3+,Er3+,Fe2+ nanoparticles (UCNPs) with chemically bonded THPC were found to efficiently transfer energy and generate singlet oxygen. The cytotoxicity of the UCNPs was determined in the human pancreatic adenocarcinoma cell lines Capan-2, PANC-01, and PA-TU-8902. In vitro data demonstrated enhanced uptake of UCNP@PMVEMA-THPC particles by rat INS-1E insulinoma cells, followed by significant cell destruction after excitation with a 980 nm laser. Intratumoral administration of these nanoconjugates into a mouse model of human pancreatic adenocarcinoma caused extensive necrosis at the tumor site, followed by tumor suppression after NIR-induced PDT. In vitro and in vivo results thus suggest that this nanoconjugate is a promising candidate for NIR-induced PDT of cancer.

See more in PubMed

Gunaydin G., Gedik M.E., Ayan S. Photodynamic therapy for the treatment and diagnosis of cancer—A review of the current clinical status. Front. Chem. 2021;9:686303. doi: 10.3389/fchem.2021.686303. PubMed DOI PMC

Del Valle C.A., Hirsch T., Marin M.J. Recent advances in near infrared upconverting nanomaterials for targeted photodynamic therapy of cancer. Methods Appl. Fluoresc. 2022;10:034003. doi: 10.1088/2050-6120/ac6937. PubMed DOI

Yanovsky R.L., Bartenstein D.W., Rogers G.S., Isakoff S.J., Chen S.T. Photodynamic therapy for solid tumors: A review of the literature. Photodermatol. Photoimmunol. Photomed. 2019;35:295–303. doi: 10.1111/phpp.12489. PubMed DOI

Koca B., Hamuryudan E., Catak S., Erdogmus A., Monari A., Aviyente V. Exploring the photophysics of polyfluorinated phthalocyanine derivatives as potential theranostic agents. J. Phys. Chem. C. 2019;123:24417–24425. doi: 10.1021/acs.jpcc.9b07053. DOI

Kliesch H., Weitemeyer A., Michelsen U., Shopova M., Wöhrle D. Naphthalocyanines as photosensitizers for PDT. In: Moser J.G., editor. Photodynamic Tumor Therapy. Harwood Academic Publishers; Amsterdam, The Netherlands: 1998. pp. 75–86.

García-Díaz M., Sánchez-García D., Soriano J., Sagristà M.L., Mora M., Villanueva Á., Stockert J.C., Cañete M., Nonell S. Temocene: The porphycene analogue of temoporfin (Foscan®) MedChemComm. 2011;2:616–619. doi: 10.1039/c1md00065a. DOI

De Oliveira K.T., de Souza J.M., Gobo N.R.d.S., de Assis F.F., Brocksom T.J. Basic concepts and applications of porphyrins, chlorins and phthalocyanines as photosensitizers in photonic therapies. Rev. Virtual Quím. 2015;7:310–335. doi: 10.5935/1984-6835.20150016. DOI

Le N.A., Babu V., Kalt M., Schneider L., Schumer F., Spingler B. Photostable platinated bacteriochlorins as potent photodynamic agents. J. Med. Chem. 2021;64:6792–6801. doi: 10.1021/acs.jmedchem.1c00052. PubMed DOI

Xodo L.E., Rapozzi V., Zacchigna M., Drioli S., Zorzet S. The chlorophyll catabolite pheophorbide a as a photosensitizer for the photodynamic therapy. Curr. Med. Chem. 2012;19:99–807. doi: 10.2174/092986712799034879. PubMed DOI

Ormond A., Freeman H. Dye sensitizers for photodynamic therapy. Materials. 2013;6:817–840. doi: 10.3390/ma6030817. PubMed DOI PMC

Hamblin M.R. Photodynamic therapy for cancer: What’s past is prologue. Photochem. Photobiol. 2020;96:506–516. doi: 10.1111/php.13190. PubMed DOI PMC

Idris N.M., Jayakumar M.K., Bansal A., Zhang Y. Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chem. Soc. Rev. 2015;44:1449–1478. doi: 10.1039/C4CS00158C. PubMed DOI

Klohs J., Wunder A., Licha K. Near-infrared fluorescent probes for imaging vascular pathophysiology. Basic Res. Cardiol. 2008;103:144–151. doi: 10.1007/s00395-008-0702-7. PubMed DOI

Baskaran R., Lee J., Yang S.G. Clinical development of photodynamic agents and therapeutic applications. Biomater. Res. 2018;22:25. doi: 10.1186/s40824-018-0140-z. PubMed DOI PMC

Triesscheijn M., Ruevekamp M., Aalders M., Baas P., Stewart F.A. Outcome of mTHPC mediated photodynamic therapy is primarily determined by the vascular response. Photochem. Photobiol. 2005;81:1161–1167. doi: 10.1562/2005-04-04-RA-474. PubMed DOI

Wiehe A., Senge M.O. The photosensitizer temoporfin (mTHPC)—Chemical, pre-clinical and clinical developments in the last decade. Photochem. Photobiol. 2023;99:356–419. doi: 10.1111/php.13730. PubMed DOI

Senge M.O., Brandt J.C. Temoporfin (Foscan®, 5,10,15,20-tetra(m-hydroxyphenyl)chlorin)—A second-generation photosensitizer. Photochem. Photobiol. 2011;87:1240–1296. doi: 10.1111/j.1751-1097.2011.00986.x. PubMed DOI

Hamblin M.R. Upconversion in photodynamic therapy: Plumbing the depths. Dalton Trans. 2018;47:8571–8580. doi: 10.1039/C8DT00087E. PubMed DOI PMC

Qiu H., Tan M., Ohulchanskyy T.Y., Lovell J.F., Chen G. Recent progress in upconversion photodynamic therapy. Nanomaterials. 2018;8:344. doi: 10.3390/nano8050344. PubMed DOI PMC

Nahorniak M., Pop-Georgievski O., Velychkivska N., Filipová M., Rydvalová E., Gunár K., Matouš P., Kostiv U., Horák D. Rose Bengal-modified upconverting nanoparticles: Synthesis, characterization, and biological evaluation. Life. 2022;12:1383. doi: 10.3390/life12091383. PubMed DOI PMC

Kostiv U., Patsula V., Noculak A., Podhorodecki A., Větvička D., Poučková P., Sedláková Z., Horák D. Phthalocyanine-conjugated upconversion NaYF4: Yb3+/Er3+@SiO2 nanospheres for NIR-triggered photodynamic therapy in a tumor mouse model. ChemMedChem. 2017;12:2066–2073. doi: 10.1002/cmdc.201700508. PubMed DOI

Wang C., Tao H., Cheng L., Liu Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials. 2011;32:6145–6154. doi: 10.1016/j.biomaterials.2011.05.007. PubMed DOI

Wang H., Han R.-L., Yang L.-M., Shi J.-H., Liu Z.-J., Hu Y., Wang Y., Liu S.-J., Gan Y. Design and synthesis of core–shell–shell upconversion nanoparticles for NIR-induced drug release, photodynamic therapy, and cell imaging. ACS Appl. Mater. Interfaces. 2016;8:4416–4423. doi: 10.1021/acsami.5b11197. PubMed DOI

Khaydukov E., Mironova K., Semchishen V., Generalova A.N., Nechaev A.V., Khochenkov D.A., Stepanova E.V., Lebedev O.I., Zvyagin A.V., Deyev S.M., et al. Riboflavin photoactivation by upconversion nanoparticles for cancer treatment. Sci. Rep. 2016;6:35103. doi: 10.1038/srep35103. PubMed DOI PMC

Liu X., Zheng M., Kong X., Zhang Y., Zeng Q., Sun Z., Buma W., Zhang H. Separately doped upconversion-C-60 nanoplatform for NIR imaging-guided photodynamic therapy of cancer cells. Chem. Commun. 2013;49:3224–3226. doi: 10.1039/C3CC41013G. PubMed DOI

Yu Q., Rodriguez E.M., Naccache R., Forgione P., Lamoureux G., Sanz-Rodriguez F., Scheglmann D., Capobianco J.A. Chemical modification of temoporfin—A second generation photosensitizer activated using upconverting nanoparticles for singlet oxygen generation. Chem. Commun. 2014;50:12150–12153. doi: 10.1039/C4CC05867D. PubMed DOI

Shapoval O., Brandmeier J.C., Nahorniak M., Oleksa V., Makhneva E., Gorris H.H., Farka Z., Horák D. PMVEMA-coated upconverting nanoparticles for upconversion-linked immunoassay of cardiac troponin. Talanta. 2022;244:123400. doi: 10.1016/j.talanta.2022.123400. PubMed DOI

Kirejev V., Goncalves A.R., Aggelidou C., Manet I., Mårtensson J., Yannakopoulou K., Ericson M.B. Photophysics and ex vivo biodistribution of β-cyclodextrin-meso-tetra(m-hydroxyphenyl)porphyrin conjugate for biomedical applications. Photochem. Photobiol. Sci. 2014;13:1185–1191. doi: 10.1039/c4pp00088a. PubMed DOI

Rogers L., Burke-Murphy E., Senge M.O. Simple porphyrin desymmetrization: 5,10,15,20-Tetrakis(3-hydroxyphenyl)-porphyrin (mTHPP) as a gateway molecule for peripheral functionalization. Eur. J. Org. Chem. 2014;2014:4283–4294. doi: 10.1002/ejoc.201402433. DOI

Shapoval O., Engstová H., Jirák D., Drahokoupil J., Sulková K., Berková Z., Pop-Georgievski O., Holendová B., Ježek P., Horák D. Poly(4-styrenesulfonic acid-co-maleic anhydride)-coated NaGdF4:Yb,Tb,Nd nanoparticles with luminescence and magnetic properties for imaging of pancreatic islets and β-cells. ACS Appl. Mater. Interfaces. 2022;14:18233–18247. doi: 10.1021/acsami.2c04274. PubMed DOI

Muniz F.T.L., Miranda M.A.R., Santos C.M., Sasaki J.M. The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr. A Found. Adv. 2016;72:385–390. doi: 10.1107/S205327331600365X. PubMed DOI

Gomes A., Fernandes E., Lima J.L. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods. 2005;65:45–80. doi: 10.1016/j.jbbm.2005.10.003. PubMed DOI

Vera V.T., Mendez-Gonzalez D., Ramos-Ramos D.J., Igalla A., Laurenti M., Contreras-Caceres R., Lopez-Cabarcos E., Díaz E., Rubio-Retama J., Melle S., et al. The effects of dopant concentration and excitation intensity on the upconversion and downconversion emission processes of β-NaYF4:Yb3+,Er3+ nanoparticles. J. Mater. Chem. C. 2021;9:8902–8911. doi: 10.1039/D1TC01419F. DOI

Luo X., Chen Q., Guo H., Zhang H., He X., Zhao W. One-step hydrothermal synthesis of Cit-NaYbF4:Er3+ nanocrystals with enhanced red upconversion emission for in vivo fluorescence molecular tomography. J. Rare Earths. 2022. in press . DOI

Ramasamy P., Chandra P., Rhee S.W., Kim J. Enhanced upconversion luminescence in NaGdF4:Yb,Er nanocrystals by Fe3+ doping and their application in bioimaging. Nanoscale. 2013;5:8711–8717. doi: 10.1039/c3nr01608k. PubMed DOI

Kamimura M., Omoto A., Chiu H.-C., Soga K. Enhanced red upconversion emission of NaYF4:Yb3+,Er3+,Mn2+ nanoparticles for near-infrared-induced photodynamic therapy and fluorescence imaging. Chem. Lett. 2017;46:1076–1078. doi: 10.1246/cl.170322. DOI

Tang J., Chen L., Li J., Wang Z., Zhang J.H., Zhang L.G., Luo Y.S., Wang X.J. Selectively enhanced red upconversion luminescence and phase/size manipulation via Fe3+ doping in NaYF4:Yb,Er nanocrystals. Nanoscale. 2015;7:14752. doi: 10.1039/C5NR04125B. PubMed DOI

Nahorniak M., Patsula V., Mareková D., Matouš P., Shapoval O., Oleksa V., Vosmanská M., Machová Urdzíková L., Jendelová P., Herynek V., et al. Chemical and colloidal stability of polymer-coated NaYF4:Yb,Er nanoparticles in aqueous media and viability of cells: The effect of a protective coating. Int. J. Mol. Sci. 2023;24:2724. doi: 10.3390/ijms24032724. PubMed DOI PMC

Hu P., Wu T., Fan W., Chen L., Liu Y., Ni D., Bu W., Shi J. Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy. Biomaterials. 2017;141:86–95. doi: 10.1016/j.biomaterials.2017.06.035. PubMed DOI

Fang F., Wang S., Song Y., Sun M., Chen W.-C., Zhao D., Zhang J. Continuous spatiotemporal therapy of a full-API nanodrug via multi-step tandem endogenous biosynthesis. Nat. Commun. 2023;14:1660. doi: 10.1038/s41467-023-37315-0. PubMed DOI PMC

Friedmann A.J., Krysko D.V., Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat. Rev. Cancer. 2019;19:405–414. doi: 10.1038/s41568-019-0149-1. PubMed DOI

Ding B., Shao S., Xiao H., Sun C., Cai X., Jiang F., Zhao X., Ma P.A., Lin J. MnFe2O4-decorated large-pore mesoporous silica-coated upconversion nanoparticles for near-infrared light-induced and O2 self-sufficient photodynamic therapy. Nanoscale. 2019;11:14654. doi: 10.1039/C9NR04858H. PubMed DOI

Idris N.M., Gnanasammandhan M.K., Zhang J., Ho P.C., Mahendran R., Zhang Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 2012;18:1580–1585. doi: 10.1038/nm.2933. PubMed DOI

Yan S., Zeng X., Tang Y.A., Liu B.F., Wang Y., Liu X. Activating antitumor immunity and antimetastatic effect through polydopamine-encapsulated core–shell upconversion nanoparticles. Adv. Mater. 2019;31:e1905825. doi: 10.1002/adma.201905825. PubMed DOI

Li Y., Chen G. Upconversion nanoparticles for cancer therapy. Adv. NanoBiomed Res. 2022;2:2200092. doi: 10.1002/anbr.202270113. DOI

Park Y.I., Kim H.M., Kim J.H., Moon K.C., Yoo B., Lee K.T., Lee N., Choi Y., Park W., Ling D., et al. Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy. Adv. Mater. 2012;24:5755–5761. doi: 10.1002/adma.201202433. PubMed DOI

Cui S., Chen H., Zhu H., Tian J., Chi X., Qian Z., Achilefu S., Gu Y. Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light. J. Mater. Chem. 2012;22:4861–4873. doi: 10.1039/c2jm16112e. DOI

Punjabi A., Wu X., Tokatli-Apollon A., El-Rifai M., Lee H., Zhang Y., Wang C., Liu Z., Chan E.M., Duan C., et al. Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy. ACS Nano. 2014;8:10621–10630. doi: 10.1021/nn505051d. PubMed DOI PMC

Thanasekaran P., Chu C.-H., Wang S.-B., Chen K.-Y., Gao H.-D., Lee M.M., Sun S.-S., Li J.-P., Chen J.-Y., Chen J.-K., et al. Lipid-wrapped upconversion nanoconstruct/photosensitizer complex for near-infrared light-mediated photodynamic therapy. ACS Appl. Mater. Interfaces. 2019;11:84–95. doi: 10.1021/acsami.8b07760. PubMed DOI

Chen C.W., Chan Y.C., Hsiao M., Liu R.S. Plasmon-enhanced photodynamic cancer therapy by upconversion nanoparticles conjugated with Au nanorods. ACS Appl. Mater. Interfaces. 2016;8:32108. doi: 10.1021/acsami.6b07770. PubMed DOI

Li Y., Zhang X., Zhang Y., Zhang Y., He Y., Liu Y., Ju H. Activatable photodynamic therapy with therapeutic effect prediction based on a self-correction upconversion nanoprobe. ACS Appl. Mater. Interfaces. 2020;12:19313. doi: 10.1021/acsami.0c03432. PubMed DOI

Zhao N., Wu B., Hu X., Xing D. NIR-triggered high-efficient photodynamic and chemo-cascade therapy using caspase-3 responsive functionalized upconversion nanoparticles. Biomaterials. 2017;141:40. doi: 10.1016/j.biomaterials.2017.06.031. PubMed DOI

Tsai Y.C., Vijayaraghavan P., Chiang W.H., Chen H.H., Liu T.I., Shen M.Y., Omoto A., Kamimura M., Soga K., Chiu H.C. Targeted delivery of functionalized upconversion nanoparticles for externally triggered photothermal/photodynamic therapies of brain glioblastoma. Theranostics. 2018;8:1435–1448. doi: 10.7150/thno.22482. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...