B-Cell Receptor Signaling and Beyond: The Role of Igα (CD79a)/Igβ (CD79b) in Normal and Malignant B Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
AZV NV18-03-00117
Czech Health Research Council
PRIMUS/17/MED/9, UNCE/MED/016, Cooperatio
Charles University in Prague
Programme EXCELES, reg. No. LX22NPO5102
European Union - Next Generation EU
Ukraine Bridge Funding Award
European Hematology Association
PubMed
38203179
PubMed Central
PMC10779339
DOI
10.3390/ijms25010010
PII: ijms25010010
Knihovny.cz E-zdroje
- Klíčová slova
- B cell development, B lymphocytes, B-cell receptor, BCR, BCR assembly, BCR internalization, BCR signaling, BTK, CD79a, CD79b, CLL, DLBCL, ITAM, LYN, NHL, antigen-induced BCR signaling, immunoglobulin, lymphoid malignancies, malignant B cells, non-Hodgkin lymphoma, tonic BCR signaling,
- MeSH
- buněčná membrána MeSH
- kognice MeSH
- mutace MeSH
- receptory antigenů B-buněk * genetika MeSH
- signální transdukce * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- receptory antigenů B-buněk * MeSH
B-cell receptor (BCR) is a B cell hallmark surface complex regulating multiple cellular processes in normal as well as malignant B cells. Igα (CD79a)/Igβ (CD79b) are essential components of BCR that are indispensable for its functionality, signal initiation, and signal transduction. CD79a/CD79b-mediated BCR signaling is required for the survival of normal as well as malignant B cells via a wide signaling network. Recent studies identified the great complexity of this signaling network and revealed the emerging role of CD79a/CD79b in signal integration. In this review, we have focused on functional features of CD79a/CD79b, summarized signaling consequences of CD79a/CD79b post-translational modifications, and highlighted specifics of CD79a/CD79b interactions within BCR and related signaling cascades. We have reviewed the complex role of CD79a/CD79b in multiple aspects of normal B cell biology and how is the normal BCR signaling affected by lymphoid neoplasms associated CD79A/CD79B mutations. We have also summarized important unresolved questions and highlighted issues that remain to be explored for better understanding of CD79a/CD79b-mediated signal transduction and the eventual identification of additional therapeutically targetable BCR signaling vulnerabilities.
Zobrazit více v PubMed
Tanaka S., Baba Y. B Cell Receptor Signaling. Adv. Exp. Med. Biol. 2020;1254:23–36. doi: 10.1007/978-981-15-3532-1_2. PubMed DOI
Huse K., Bai B., Hilden V.I., Bollum L.K., Våtsveen T.K., Munthe L.A., Smeland E.B., Irish J.M., Wälchli S., Myklebust J.H. Mechanism of CD79A and CD79B Support for IgM+ B Cell Fitness through B Cell Receptor Surface Expression. J. Immunol. 2022;209:2042–2053. doi: 10.4049/jimmunol.2200144. PubMed DOI PMC
Chen R., Zhou D., Wang L., Zhu L., Ye X. MYD88(L265P) and CD79B double mutations type (MCD type) of diffuse large B-cell lymphoma: Mechanism, clinical characteristics, and targeted therapy. Ther. Adv. Hematol. 2022;13:20406207211072839. doi: 10.1177/20406207211072839. PubMed DOI PMC
Feng Y., Wang Y., Zhang S., Haneef K., Liu W. Structural and immunogenomic insights into B-cell receptor activation. J. Genet. Genom. 2020;47:27–35. doi: 10.1016/j.jgg.2019.12.003. PubMed DOI
Avalos A.M., Ploegh H.L. Early BCR Events and Antigen Capture, Processing, and Loading on MHC Class II on B Cells. Front. Immunol. 2014;5:92. doi: 10.3389/fimmu.2014.00092. PubMed DOI PMC
Srinivasan L., Sasaki Y., Calado D.P., Zhang B., Paik J.H., DePinho R.A., Kutok J.L., Kearney J.F., Otipoby K.L., Rajewsky K. PI3 kinase signals BCR-dependent mature B cell survival. Cell. 2009;139:573–586. doi: 10.1016/j.cell.2009.08.041. PubMed DOI PMC
Burger J.A., Wiestner A. Targeting B cell receptor signalling in cancer: Preclinical and clinical advances. Nat. Rev. Cancer. 2018;18:148–167. doi: 10.1038/nrc.2017.121. PubMed DOI
Young R.M., Staudt L.M. Targeting pathological B cell receptor signalling in lymphoid malignancies. Nat. Rev. Drug Discov. 2013;12:229–243. doi: 10.1038/nrd3937. PubMed DOI PMC
Puri K.D., Di Paolo J.A., Gold M.R. B-cell receptor signaling inhibitors for treatment of autoimmune inflammatory diseases and B-cell malignancies. Int. Rev. Immunol. 2013;32:397–427. doi: 10.3109/08830185.2013.818140. PubMed DOI
Rawlings D.J., Metzler G., Wray-Dutra M., Jackson S.W. Altered B cell signalling in autoimmunity. Nat. Rev. Immunol. 2017;17:421–436. doi: 10.1038/nri.2017.24. PubMed DOI PMC
Liu W., Tolar P., Song W., Kim T.J. Editorial: BCR Signaling and B Cell Activation. Front. Immunol. 2020;11:45. doi: 10.3389/fimmu.2020.00045. PubMed DOI PMC
Köhrer S., Havranek O., Seyfried F., Hurtz C., Coffey G.P., Kim E., Ten Hacken E., Jäger U., Vanura K., O’Brien S., et al. Pre-BCR signaling in precursor B-cell acute lymphoblastic leukemia regulates PI3K/AKT, FOXO1 and MYC, and can be targeted by SYK inhibition. Leukemia. 2016;30:1246–1254. doi: 10.1038/leu.2016.9. PubMed DOI PMC
Zhang M., Srivastava G., Lu L. The pre-B cell receptor and its function during B cell development. Cell Mol. Immunol. 2004;1:89–94. PubMed
Winkler T.H., Mårtensson I.-L. The Role of the Pre-B Cell Receptor in B Cell Development, Repertoire Selection, and Tolerance. Front. Immunol. 2018;9:2423. doi: 10.3389/fimmu.2018.02423. PubMed DOI PMC
Keren Z., Melamed D. Antigen receptor signaling competence and the determination of B cell fate in B-lymphopoiesis. Histol. Histopathol. 2005;20:187–196. doi: 10.14670/hh-20.187. PubMed DOI
Neys S.F.H., Heukels P., van Hulst J.A.C., Rip J., Wijsenbeek M.S., Hendriks R.W., Corneth O.B.J. Aberrant B Cell Receptor Signaling in Naïve B Cells from Patients with Idiopathic Pulmonary Fibrosis. Cells. 2021;10:1321. doi: 10.3390/cells10061321. PubMed DOI PMC
Wen Y., Jing Y., Yang L., Kang D., Jiang P., Li N., Cheng J., Li J., Li X., Peng Z., et al. The regulators of BCR signaling during B cell activation. Blood Sci. 2019;1:119–129. doi: 10.1097/BS9.0000000000000026. PubMed DOI PMC
Berry C.T., Liu X., Myles A., Nandi S., Chen Y.H., Hershberg U., Brodsky I.E., Cancro M.P., Lengner C.J., May M.J., et al. BCR-Induced Ca2+ Signals Dynamically Tune Survival, Metabolic Reprogramming, and Proliferation of Naive B Cells. Cell Rep. 2020;31:107474. doi: 10.1016/j.celrep.2020.03.038. PubMed DOI PMC
McShane A.N., Malinova D. The Ins and Outs of Antigen Uptake in B cells. Front. Immunol. 2022;13:892169. doi: 10.3389/fimmu.2022.892169. PubMed DOI PMC
Rastogi I., Jeon D., Moseman J.E., Muralidhar A., Potluri H.K., McNeel D.G. Role of B cells as antigen presenting cells. Front. Immunol. 2022;13:954936. doi: 10.3389/fimmu.2022.954936. PubMed DOI PMC
Chen Z., Wang J.H. How the Signaling Crosstalk of B Cell Receptor (BCR) and Co-Receptors Regulates Antibody Class Switch Recombination: A New Perspective of Checkpoints of BCR Signaling. Front. Immunol. 2021;12:663443. doi: 10.3389/fimmu.2021.663443. PubMed DOI PMC
Vlachiotis S., Abolhassani H. Transcriptional regulation of B cell class-switch recombination: The role in development of noninfectious complications. Expert Rev. Clin. Immunol. 2022;18:1145–1154. doi: 10.1080/1744666X.2022.2123795. PubMed DOI
Tsai D.-Y., Hung K.-H., Chang C.-W., Lin K.-I. Regulatory mechanisms of B cell responses and the implication in B cell-related diseases. J. Biomed. Sci. 2019;26:64. doi: 10.1186/s12929-019-0558-1. PubMed DOI PMC
Luo W., Mayeux J., Gutierrez T., Russell L., Getahun A., Müller J., Tedder T., Parnes J., Rickert R., Nitschke L., et al. A balance between B cell receptor and inhibitory receptor signaling controls plasma cell differentiation by maintaining optimal Ets1 levels. J. Immunol. 2014;193:909–920. doi: 10.4049/jimmunol.1400666. PubMed DOI PMC
Kluckova K., D’Avola A., Riches J.C. Advances in Understanding of Metabolism of B-Cell Lymphoma: Implications for Therapy. Cancers. 2022;14:5552. doi: 10.3390/cancers14225552. PubMed DOI PMC
Doughty C.A., Bleiman B.F., Wagner D.J., Dufort F.J., Mataraza J.M., Roberts M.F., Chiles T.C. Antigen receptor-mediated changes in glucose metabolism in B lymphocytes: Role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood. 2006;107:4458–4465. doi: 10.1182/blood-2005-12-4788. PubMed DOI PMC
Iperi C., Bordron A., Dueymes M., Pers J.-O., Jamin C. Metabolic Program of Regulatory B Lymphocytes and Influence in the Control of Malignant and Autoimmune Situations. Front. Immunol. 2021;12:735463. doi: 10.3389/fimmu.2021.735463. PubMed DOI PMC
Raza I.G.A., Clarke A.J. B Cell Metabolism and Autophagy in Autoimmunity. Front. Immunol. 2021;12:681105. doi: 10.3389/fimmu.2021.681105. PubMed DOI PMC
Watanabe K., Tsubata T. Autophagy connects antigen receptor signaling to costimulatory signaling in B lymphocytes. Autophagy. 2009;5:108–110. doi: 10.4161/auto.5.1.7278. PubMed DOI
Eeva J., Pelkonen J. Mechanisms of B cell receptor induced apoptosis. Apoptosis. 2004;9:525–531. doi: 10.1023/B:APPT.0000038032.22343.de. PubMed DOI
Nemazee D. Mechanisms of central tolerance for B cells. Nat. Rev. Immunol. 2017;17:281–294. doi: 10.1038/nri.2017.19. PubMed DOI PMC
Yam-Puc J.C., Zhang L., Maqueda-Alfaro R.A., Garcia-Ibanez L., Zhang Y., Davies J., Senis Y.A., Snaith M., Toellner K.-M. Enhanced BCR signaling inflicts early plasmablast and germinal center B cell death. iScience. 2021;24:102038. doi: 10.1016/j.isci.2021.102038. PubMed DOI PMC
Alaggio R., Amador C., Anagnostopoulos I., Attygalle A.D., Araujo I.B.O., Berti E., Bhagat G., Borges A.M., Boyer D., Calaminici M., et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia. 2022;36:1720–1748. doi: 10.1038/s41375-022-01620-2. PubMed DOI PMC
Susanibar-Adaniya S., Barta S.K. 2021 Update on Diffuse large B cell lymphoma: A review of current data and potential applications on risk stratification and management. Am. J. Hematol. 2021;96:617–629. doi: 10.1002/ajh.26151. PubMed DOI PMC
Liu Y., Barta S.K. Diffuse large B-cell lymphoma: 2019 update on diagnosis, risk stratification, and treatment. Am. J. Hematol. 2019;94:604–616. doi: 10.1002/ajh.25460. PubMed DOI
Gupta G., Garg V., Mallick S., Gogia A. Current trends in diagnosis and management of follicular lymphoma. Am. J. Blood Res. 2022;12:105–124. PubMed PMC
Carbone A., Roulland S., Gloghini A., Younes A., von Keudell G., López-Guillermo A., Fitzgibbon J. Follicular lymphoma. Nat. Rev. Dis. Primers. 2019;5:83. doi: 10.1038/s41572-019-0132-x. PubMed DOI
Profitós-Pelejà N., Santos J.C., Marín-Niebla A., Roué G., Ribeiro M.L. Regulation of B-Cell Receptor Signaling and Its Therapeutic Relevance in Aggressive B-Cell Lymphomas. Cancers. 2022;14:860. doi: 10.3390/cancers14040860. PubMed DOI PMC
Niemann C.U., Wiestner A. B-cell receptor signaling as a driver of lymphoma development and evolution. Semin. Cancer Biol. 2013;23:410–421. doi: 10.1016/j.semcancer.2013.09.001. PubMed DOI PMC
Dühren-von Minden M., Übelhart R., Schneider D., Wossning T., Bach M.P., Buchner M., Hofmann D., Surova E., Follo M., Köhler F., et al. Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling. Nature. 2012;489:309–312. doi: 10.1038/nature11309. PubMed DOI
Young R.M., Phelan J.D., Wilson W.H., Staudt L.M. Pathogenic B-cell receptor signaling in lymphoid malignancies: New insights to improve treatment. Immunol. Rev. 2019;291:190–213. doi: 10.1111/imr.12792. PubMed DOI PMC
Valla K., Flowers C.R., Koff J.L. Targeting the B cell receptor pathway in non-Hodgkin lymphoma. Expert Opin. Investig. Drugs. 2018;27:513–522. doi: 10.1080/13543784.2018.1482273. PubMed DOI PMC
Fichtner M., Dreyling M., Binder M., Trepel M. The role of B cell antigen receptors in mantle cell lymphoma. J. Hematol. Oncol. 2017;10:164. doi: 10.1186/s13045-017-0533-9. PubMed DOI PMC
Sachen K.L., Strohman M.J., Singletary J., Alizadeh A.A., Kattah N.H., Lossos C., Mellins E.D., Levy S., Levy R. Self-antigen recognition by follicular lymphoma B-cell receptors. Blood. 2012;120:4182–4190. doi: 10.1182/blood-2012-05-427534. PubMed DOI PMC
Corso J., Pan K.T., Walter R., Doebele C., Mohr S., Bohnenberger H., Ströbel P., Lenz C., Slabicki M., Hüllein J., et al. Elucidation of tonic and activated B-cell receptor signaling in Burkitt’s lymphoma provides insights into regulation of cell survival. Proc. Natl. Acad. Sci. USA. 2016;113:5688–5693. doi: 10.1073/pnas.1601053113. PubMed DOI PMC
Noy A., de Vos S., Thieblemont C., Martin P., Flowers C.R., Morschhauser F., Collins G.P., Ma S., Coleman M., Peles S., et al. Targeting Bruton tyrosine kinase with ibrutinib in relapsed/refractory marginal zone lymphoma. Blood. 2017;129:2224–2232. doi: 10.1182/blood-2016-10-747345. PubMed DOI PMC
Bogusz A.M., Baxter R.H., Currie T., Sinha P., Sohani A.R., Kutok J.L., Rodig S.J. Quantitative immunofluorescence reveals the signature of active B-cell receptor signaling in diffuse large B-cell lymphoma. Clin. Cancer Res. 2012;18:6122–6135. doi: 10.1158/1078-0432.CCR-12-0397. PubMed DOI PMC
Davis R.E., Ngo V.N., Lenz G., Tolar P., Young R.M., Romesser P.B., Kohlhammer H., Lamy L., Zhao H., Yang Y., et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010;463:88–92. doi: 10.1038/nature08638. PubMed DOI PMC
Phelan J.D., Young R.M., Webster D.E., Roulland S., Wright G.W., Kasbekar M., Shaffer A.L., 3rd, Ceribelli M., Wang J.Q., Schmitz R., et al. A multiprotein supercomplex controlling oncogenic signalling in lymphoma. Nature. 2018;560:387–391. doi: 10.1038/s41586-018-0290-0. PubMed DOI PMC
Havranek O., Xu J., Köhrer S., Wang Z., Becker L., Comer J.M., Henderson J., Ma W., Man Chun Ma J., Westin J.R., et al. Tonic B-cell receptor signaling in diffuse large B-cell lymphoma. Blood. 2017;130:995–1006. doi: 10.1182/blood-2016-10-747303. PubMed DOI PMC
Myers D.R., Zikherman J., Roose J.P. Tonic Signals: Why Do Lymphocytes Bother? Trends Immunol. 2017;38:844–857. doi: 10.1016/j.it.2017.06.010. PubMed DOI PMC
Alizadeh A.A., Eisen M.B., Davis R.E., Ma C., Lossos I.S., Rosenwald A., Boldrick J.C., Sabet H., Tran T., Yu X., et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503–511. doi: 10.1038/35000501. PubMed DOI
Frustaci A.M., Deodato M., Zamprogna G., Cairoli R., Montillo M., Tedeschi A. Next Generation BTK Inhibitors in CLL: Evolving Challenges and New Opportunities. Cancers. 2023;15:1504. doi: 10.3390/cancers15051504. PubMed DOI PMC
Pedrosa L., Fernández-Miranda I., Pérez-Callejo D., Quero C., Rodríguez M., Martín-Acosta P., Gómez S., González-Rincón J., Santos A., Tarin C., et al. Proposal and validation of a method to classify genetic subtypes of diffuse large B cell lymphoma. Sci. Rep. 2021;11:1886. doi: 10.1038/s41598-020-80376-0. PubMed DOI PMC
Lacy S.E., Barrans S.L., Beer P.A., Painter D., Smith A.G., Roman E., Cooke S.L., Ruiz C., Glover P., Van Hoppe S.J.L., et al. Targeted sequencing in DLBCL, molecular subtypes, and outcomes: A Haematological Malignancy Research Network report. Blood. 2020;135:1759–1771. doi: 10.1182/blood.2019003535. PubMed DOI PMC
Wright G.W., Huang D.W., Phelan J.D., Coulibaly Z.A., Roulland S., Young R.M., Wang J.Q., Schmitz R., Morin R.D., Tang J., et al. A Probabilistic Classification Tool for Genetic Subtypes of Diffuse Large B Cell Lymphoma with Therapeutic Implications. Cancer Cell. 2020;37:551–568.e14. doi: 10.1016/j.ccell.2020.03.015. PubMed DOI PMC
Schmitz R., Wright G.W., Huang D.W., Johnson C.A., Phelan J.D., Wang J.Q., Roulland S., Kasbekar M., Young R.M., Shaffer A.L., et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2018;378:1396–1407. doi: 10.1056/NEJMoa1801445. PubMed DOI PMC
Chapuy B., Stewart C., Dunford A.J., Kim J., Kamburov A., Redd R.A., Lawrence M.S., Roemer M.G.M., Li A.J., Ziepert M., et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat. Med. 2018;24:679–690. doi: 10.1038/s41591-018-0016-8. PubMed DOI PMC
Ma X., Zhu Y., Dong D., Chen Y., Wang S., Yang D., Ma Z., Zhang A., Zhang F., Guo C., et al. Cryo-EM structures of two human B cell receptor isotypes. Science. 2022;377:880–885. doi: 10.1126/science.abo3828. PubMed DOI
Su Q., Chen M., Shi Y., Zhang X., Huang G., Huang B., Liu D., Liu Z., Shi Y. Cryo-EM structure of the human IgM B cell receptor. Science. 2022;377:875–880. doi: 10.1126/science.abo3923. PubMed DOI
Dong Y., Pi X., Bartels-Burgahn F., Saltukoglu D., Liang Z., Yang J., Alt F.W., Reth M., Wu H. Structural principles of B cell antigen receptor assembly. Nature. 2022;612:156–161. doi: 10.1038/s41586-022-05412-7. PubMed DOI PMC
Reth M., Nitschke L., Hikida M., Kurosaki T. Chapter 10—Structure and Signaling Function of the B-Cell Antigen Receptor and Its Coreceptors. In: Alt F.W., Honjo T., Radbruch A., Reth M., editors. Molecular Biology of B Cells. 2nd ed. Academic Press; London, UK: 2015. pp. 151–170.
Tolar P., Pierce S.K. Unveiling the B cell receptor structure. Science. 2022;377:819–820. doi: 10.1126/science.add8065. PubMed DOI PMC
Tolar P., Sohn H.W., Pierce S.K. The initiation of antigen-induced B cell antigen receptor signaling viewed in living cells by fluorescence resonance energy transfer. Nat. Immunol. 2005;6:1168–1176. doi: 10.1038/ni1262. PubMed DOI
Friess M.D., Pluhackova K., Böckmann R.A. Structural Model of the mIgM B-Cell Receptor Transmembrane Domain From Self-Association Molecular Dynamics Simulations. Front. Immunol. 2018;9:2947. doi: 10.3389/fimmu.2018.02947. PubMed DOI PMC
Lutz J., Dittmann K., Bösl M.R., Winkler T.H., Wienands J., Engels N. Reactivation of IgG-switched memory B cells by BCR-intrinsic signal amplification promotes IgG antibody production. Nat. Commun. 2015;6:8575. doi: 10.1038/ncomms9575. PubMed DOI PMC
James L.K. B cells defined by immunoglobulin isotypes. Clin. Exp. Immunol. 2022;210:230–239. doi: 10.1093/cei/uxac091. PubMed DOI PMC
Engels N., König L.M., Schulze W., Radtke D., Vanshylla K., Lutz J., Winkler T.H., Nitschke L., Wienands J. The immunoglobulin tail tyrosine motif upgrades memory-type BCRs by incorporating a Grb2-Btk signalling module. Nat. Commun. 2014;5:5456. doi: 10.1038/ncomms6456. PubMed DOI PMC
Vanshylla K., Bartsch C., Hitzing C., Krümpelmann L., Wienands J., Engels N. Grb2 and GRAP connect the B cell antigen receptor to Erk MAP kinase activation in human B cells. Sci. Rep. 2018;8:4244. doi: 10.1038/s41598-018-22544-x. PubMed DOI PMC
Geisberger R., Crameri R., Achatz G. Models of signal transduction through the B-cell antigen receptor. Immunology. 2003;110:401–410. doi: 10.1111/j.1365-2567.2003.01770.x. PubMed DOI PMC
Maity P.C., Datta M., Nicolò A., Jumaa H. Isotype Specific Assembly of B Cell Antigen Receptors and Synergism With Chemokine Receptor CXCR4. Front. Immunol. 2018;9:2988. doi: 10.3389/fimmu.2018.02988. PubMed DOI PMC
Lockey C., Young H., Brown J., Dixon A.M. Characterization of interactions within the Igα/Igβ transmembrane domains of the human B-cell receptor provides insights into receptor assembly. J. Biol. Chem. 2022;298:101843. doi: 10.1016/j.jbc.2022.101843. PubMed DOI PMC
Wemlinger S.M., Parker Harp C.R., Yu B., Hardy I.R., Seefeldt M., Matsuda J., Mingueneau M., Spilker K.A., Cameron T.O., Larrick J.W., et al. Preclinical Analysis of Candidate Anti-Human CD79 Therapeutic Antibodies Using a Humanized CD79 Mouse Model. J. Immunol. 2022;208:1566–1584. doi: 10.4049/jimmunol.2101056. PubMed DOI PMC
Xie W., Wucherpfennig K., Patel D.J. A structural platform for B cell receptor signaling. Cell Res. 2022;33:95–96. doi: 10.1038/s41422-022-00724-9. PubMed DOI PMC
Ma J., Wang W., Ma J., Xu Z. A Novel and Validated 8-Pyroptosis-Related Genes Based Risk Prediction Model for Diffuse Large B Cell Lymphoma. Biomolecules. 2022;12:1835. doi: 10.3390/biom12121835. PubMed DOI PMC
He X., Kläsener K., Iype J.M., Becker M., Maity P.C., Cavallari M., Nielsen P.J., Yang J., Reth M. Continuous signaling of CD79b and CD19 is required for the fitness of Burkitt lymphoma B cells. EMBO J. 2018;37:e97980. doi: 10.15252/embj.201797980. PubMed DOI PMC
Luger D., Yang Y.A., Raviv A., Weinberg D., Banerjee S., Lee M.J., Trepel J., Yang L., Wakefield L.M. Expression of the B-cell receptor component CD79a on immature myeloid cells contributes to their tumor promoting effects. PLoS ONE. 2013;8:e76115. doi: 10.1371/journal.pone.0076115. PubMed DOI PMC
Drake J.R. The immunobiology of ubiquitin-dependent B cell receptor functions. Mol. Immunol. 2018;101:146–154. doi: 10.1016/j.molimm.2018.05.022. PubMed DOI PMC
Corneth O.B.J., Neys S.F.H., Hendriks R.W. Aberrant B Cell Signaling in Autoimmune Diseases. Cells. 2022;11:3391. doi: 10.3390/cells11213391. PubMed DOI PMC
Cyster J.G., Allen C.D.C. B Cell Responses: Cell Interaction Dynamics and Decisions. Cell. 2019;177:524–540. doi: 10.1016/j.cell.2019.03.016. PubMed DOI PMC
Smith L.D., Minton A.R., Blunt M.D., Karydis L.I., Dutton D.A., Rogers-Broadway K.R., Dobson R., Liu R., Norster F., Hogg E., et al. BCR signaling contributes to autophagy regulation in chronic lymphocytic leukemia. Leukemia. 2020;34:640–644. doi: 10.1038/s41375-019-0557-y. PubMed DOI PMC
Carter M.J., Cox K.L., Blakemore S.J., Bogdanov Y.D., Happo L., Scott C.L., Strasser A., Packham G.K., Cragg M.S. BCR-signaling-induced cell death demonstrates dependency on multiple BH3-only proteins in a murine model of B-cell lymphoma. Cell Death Differ. 2016;23:303–312. doi: 10.1038/cdd.2015.97. PubMed DOI PMC
O’Neill S.K., Getahun A., Gauld S.B., Merrell K.T., Tamir I., Smith M.J., Dal Porto J.M., Li Q.Z., Cambier J.C. Monophosphorylation of CD79a and CD79b ITAM motifs initiates a SHIP-1 phosphatase-mediated inhibitory signaling cascade required for B cell anergy. Immunity. 2011;35:746–756. doi: 10.1016/j.immuni.2011.10.011. PubMed DOI PMC
Vuillier F., Dumas G., Magnac C., Prevost M.C., Lalanne A.I., Oppezzo P., Melanitou E., Dighiero G., Payelle-Brogard B. Lower levels of surface B-cell-receptor expression in chronic lymphocytic leukemia are associated with glycosylation and folding defects of the mu and CD79a chains. Blood. 2005;105:2933–2940. doi: 10.1182/blood-2004-09-3643. PubMed DOI
Zhang M., Veselits M., O’Neill S., Hou P., Reddi A.L., Berlin I., Ikeda M., Nash P.D., Longnecker R., Band H., et al. Ubiquitinylation of Ig beta dictates the endocytic fate of the B cell antigen receptor. J. Immunol. 2007;179:4435–4443. doi: 10.4049/jimmunol.179.7.4435. PubMed DOI
Sasaki Y., Iwai K. Roles of the NF-κB Pathway in B-Lymphocyte Biology. Curr. Top. Microbiol. Immunol. 2016;393:177–209. doi: 10.1007/82_2015_479. PubMed DOI
Almaden J.V., Liu Y.C., Yang E., Otero D.C., Birnbaum H., Davis-Turak J., Asagiri M., David M., Goldrath A.W., Hoffmann A. B-cell survival and development controlled by the coordination of NF-κB family members RelB and cRel. Blood. 2016;127:1276–1286. doi: 10.1182/blood-2014-10-606988. PubMed DOI PMC
Szydłowski M., Jabłońska E., Juszczyński P. FOXO1 transcription factor: A critical effector of the PI3K-AKT axis in B-cell development. Int. Rev. Immunol. 2014;33:146–157. doi: 10.3109/08830185.2014.885022. PubMed DOI
Chen J., Limon J.J., Blanc C., Peng S.L., Fruman D.A. Foxo1 regulates marginal zone B-cell development. Eur. J. Immunol. 2010;40:1890–1896. doi: 10.1002/eji.200939817. PubMed DOI PMC
Sevdali E., Block V., Lataretu M., Li H., Smulski C.R., Briem J.S., Heitz Y., Fischer B., Ramirez N.J., Grimbacher B., et al. BAFFR activates PI3K/AKT signaling in human naive but not in switched memory B cells through direct interactions with B cell antigen receptors. Cell Rep. 2022;39:111019. doi: 10.1016/j.celrep.2022.111019. PubMed DOI
Lang P., Stolpa J.C., Freiberg B.A., Crawford F., Kappler J., Kupfer A., Cambier J.C. TCR-induced transmembrane signaling by peptide/MHC class II via associated Ig-alpha/beta dimers. Science. 2001;291:1537–1540. doi: 10.1126/science.291.5508.1537. PubMed DOI
Katikaneni D.S., Jin L. B cell MHC class II signaling: A story of life and death. Hum. Immunol. 2019;80:37–43. doi: 10.1016/j.humimm.2018.04.013. PubMed DOI PMC
Watanabe K., Ichinose S., Hayashizaki K., Tsubata T. Induction of autophagy by B cell antigen receptor stimulation and its inhibition by costimulation. Biochem. Biophys. Res. Commun. 2008;374:274–281. doi: 10.1016/j.bbrc.2008.07.013. PubMed DOI
Arbogast F., Arnold J., Hammann P., Kuhn L., Chicher J., Murera D., Weishaar J., Muller S., Fauny J.D., Gros F. ATG5 is required for B cell polarization and presentation of particulate antigens. Autophagy. 2019;15:280–294. doi: 10.1080/15548627.2018.1516327. PubMed DOI PMC
Caro-Maldonado A., Wang R., Nichols A.G., Kuraoka M., Milasta S., Sun L.D., Gavin A.L., Abel E.D., Kelsoe G., Green D.R., et al. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J. Immunol. 2014;192:3626–3636. doi: 10.4049/jimmunol.1302062. PubMed DOI PMC
Jumaa H., Caganova M., McAllister E.J., Hoenig L., He X., Saltukoglu D., Brenker K., Köhler M., Leben R., Hauser A.E., et al. Immunoglobulin expression in the endoplasmic reticulum shapes the metabolic fitness of B lymphocytes. Life Sci. Alliance. 2020;3:e202000700. doi: 10.26508/lsa.202000700. PubMed DOI PMC
Love P.E., Hayes S.M. ITAM-mediated signaling by the T-cell antigen receptor. Cold Spring Harb. Perspect. Biol. 2010;2:a002485. doi: 10.1101/cshperspect.a002485. PubMed DOI PMC
Schroeder H.W., Jr., Imboden J.B., Torres R.M. Clinical Immunology: Principles and Practice. 5th ed. Elsevier; Amsterdam, The Netherlands: 2019. Antigen Receptor Genes, Gene Products, and Coreceptors.
Xu W., Berning P., Lenz G. Targeting B-cell receptor and PI3K signaling in diffuse large B-cell lymphoma. Blood. 2021;138:1110–1119. doi: 10.1182/blood.2020006784. PubMed DOI
Roche P.A., Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol. 2015;15:203–216. doi: 10.1038/nri3818. PubMed DOI PMC
Busman-Sahay K., Drake L., Sitaram A., Marks M., Drake J.R. Cis and trans regulatory mechanisms control AP2-mediated B cell receptor endocytosis via select tyrosine-based motifs. PLoS ONE. 2013;8:e54938. doi: 10.1371/journal.pone.0054938. PubMed DOI PMC
Crute B.W., Sheraden R., Ott V.L., Harley I.T.W., Getahun A., Cambier J.C. Inhibitory Receptor Trap: A Platform for Discovery of Inhibitory Receptors That Utilize Inositol Lipid and Phosphotyrosine Phosphatase Effectors. Front. Immunol. 2020;11:592329. doi: 10.3389/fimmu.2020.592329. PubMed DOI PMC
Franks S.E., Cambier J.C. Putting on the Brakes: Regulatory Kinases and Phosphatases Maintaining B Cell Anergy. Front. Immunol. 2018;9:665. doi: 10.3389/fimmu.2018.00665. PubMed DOI PMC
Pao L.I., Famiglietti S.J., Cambier J.C. Asymmetrical phosphorylation and function of immunoreceptor tyrosine-based activation motif tyrosines in B cell antigen receptor signal transduction. J. Immunol. 1998;160:3305–3314. doi: 10.4049/jimmunol.160.7.3305. PubMed DOI
Clark M.R., Campbell K.S., Kazlauskas A., Johnson S.A., Hertz M., Potter T.A., Pleiman C., Cambier J.C. The B cell antigen receptor complex: Association of Ig-alpha and Ig-beta with distinct cytoplasmic effectors. Science. 1992;258:123–126. doi: 10.1126/science.1439759. PubMed DOI
Mkaddem S.B., Murua A., Flament H., Titeca-Beauport D., Bounaix C., Danelli L., Launay P., Benhamou M., Blank U., Daugas E., et al. Lyn and Fyn function as molecular switches that control immunoreceptors to direct homeostasis or inflammation. Nat. Commun. 2017;8:246. doi: 10.1038/s41467-017-00294-0. PubMed DOI PMC
Gross A.J., Lyandres J.R., Panigrahi A.K., Prak E.T., DeFranco A.L. Developmental acquisition of the Lyn-CD22-SHP-1 inhibitory pathway promotes B cell tolerance. J. Immunol. 2009;182:5382–5392. doi: 10.4049/jimmunol.0803941. PubMed DOI PMC
Khan N., Rothstein T.L. The Alternate Pathway for BCR Signaling Induced by IL-4 Requires Lyn Tyrosine Kinase. J. Mol. Biol. 2021;433:166667. doi: 10.1016/j.jmb.2020.10.002. PubMed DOI
Kohlhas V., Hallek M., Nguyen P.H. Constitutive activation of Lyn kinase enhances BCR responsiveness, but not the development of CLL in Eµ-TCL1 mice. Blood Adv. 2020;4:6106–6116. doi: 10.1182/bloodadvances.2020002584. PubMed DOI PMC
Alsadeq A., Hobeika E., Medgyesi D., Kläsener K., Reth M. The role of the Syk/Shp-1 kinase-phosphatase equilibrium in B cell development and signaling. J. Immunol. 2014;193:268–276. doi: 10.4049/jimmunol.1203040. PubMed DOI
Adachi T., Wienands J., Wakabayashi C., Yakura H., Reth M., Tsubata T. SHP-1 requires inhibitory co-receptors to down-modulate B cell antigen receptor-mediated phosphorylation of cellular substrates. J. Biol. Chem. 2001;276:26648–26655. doi: 10.1074/jbc.M100997200. PubMed DOI
Miyazaki A., Yogosawa S., Murakami A., Kitamura D. Identification of CMTM7 as a transmembrane linker of BLNK and the B-cell receptor. PLoS ONE. 2012;7:e31829. doi: 10.1371/journal.pone.0031829. PubMed DOI PMC
Patterson H.C., Kraus M., Kim Y.M., Ploegh H., Rajewsky K. The B cell receptor promotes B cell activation and proliferation through a non-ITAM tyrosine in the Igalpha cytoplasmic domain. Immunity. 2006;25:55–65. doi: 10.1016/j.immuni.2006.04.014. PubMed DOI
Kabak S., Skaggs B.J., Gold M.R., Affolter M., West K.L., Foster M.S., Siemasko K., Chan A.C., Aebersold R., Clark M.R. The direct recruitment of BLNK to immunoglobulin alpha couples the B-cell antigen receptor to distal signaling pathways. Mol. Cell Biol. 2002;22:2524–2535. doi: 10.1128/MCB.22.8.2524-2535.2002. PubMed DOI PMC
Choi J., Phelan J.D., Wright G.W., Häupl B., Huang D.W., Shaffer A.L., 3rd, Young R.M., Wang Z., Zhao H., Yu X., et al. Regulation of B cell receptor-dependent NF-κB signaling by the tumor suppressor KLHL14. Proc. Natl. Acad. Sci. USA. 2020;117:6092–6102. doi: 10.1073/pnas.1921187117. PubMed DOI PMC
Veselits M., Tanaka A., Chen Y., Hamel K., Mandal M., Kandasamy M., Manicassamy B., O’Neill S.K., Wilson P., Sciammas R., et al. Igβ ubiquitination activates PI3K signals required for endosomal sorting. J. Exp. Med. 2017;214:3775–3790. doi: 10.1084/jem.20161868. PubMed DOI PMC
Satpathy S., Wagner S.A., Beli P., Gupta R., Kristiansen T.A., Malinova D., Francavilla C., Tolar P., Bishop G.A., Hostager B.S., et al. Systems-wide analysis of BCR signalosomes and downstream phosphorylation and ubiquitylation. Mol. Syst. Biol. 2015;11:810. doi: 10.15252/msb.20145880. PubMed DOI PMC
Drake L., McGovern-Brindisi E.M., Drake J.R. BCR ubiquitination controls BCR-mediated antigen processing and presentation. Blood. 2006;108:4086–4093. doi: 10.1182/blood-2006-05-025338. PubMed DOI PMC
Katkere B., Rosa S., Drake J.R. The Syk-binding ubiquitin ligase c-Cbl mediates signaling-dependent B cell receptor ubiquitination and B cell receptor-mediated antigen processing and presentation. J. Biol. Chem. 2012;287:16636–16644. doi: 10.1074/jbc.M112.357640. PubMed DOI PMC
Fearon D.T., Carroll M.C. Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu. Rev. Immunol. 2000;18:393–422. doi: 10.1146/annurev.immunol.18.1.393. PubMed DOI
Whillock A.L., Ybarra T.K., Bishop G.A. TNF receptor-associated factor 3 restrains B-cell receptor signaling in normal and malignant B cells. J. Biol. Chem. 2021;296:100465. doi: 10.1016/j.jbc.2021.100465. PubMed DOI PMC
Bishop G.A., Stunz L.L., Hostager B.S. TRAF3 as a Multifaceted Regulator of B Lymphocyte Survival and Activation. Front. Immunol. 2018;9:2161. doi: 10.3389/fimmu.2018.02161. PubMed DOI PMC
Vallabhapurapu S., Matsuzawa A., Zhang W., Tseng P.H., Keats J.J., Wang H., Vignali D.A., Bergsagel P.L., Karin M. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat. Immunol. 2008;9:1364–1370. doi: 10.1038/ni.1678. PubMed DOI PMC
Mosquera Orgueira A., Ferreiro Ferro R., Díaz Arias J., Aliste Santos C., Antelo Rodríguez B., Bao Pérez L., Alonso Vence N., Bendaña López Á., Abuin Blanco A., Melero Valentín P., et al. Detection of new drivers of frequent B-cell lymphoid neoplasms using an integrated analysis of whole genomes. PLoS ONE. 2021;16:e0248886. doi: 10.1371/journal.pone.0248886. PubMed DOI PMC
Wilson W.H., Young R.M., Schmitz R., Yang Y., Pittaluga S., Wright G., Lih C.J., Williams P.M., Shaffer A.L., Gerecitano J., et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat. Med. 2015;21:922–926. doi: 10.1038/nm.3884. PubMed DOI PMC
Visco C., Tanasi I., Quaglia F.M., Ferrarini I., Fraenza C., Krampera M. Oncogenic Mutations of MYD88 and CD79B in Diffuse Large B-Cell Lymphoma and Implications for Clinical Practice. Cancers. 2020;12:2913. doi: 10.3390/cancers12102913. PubMed DOI PMC
Grondona P., Bucher P., Schulze-Osthoff K., Hailfinger S., Schmitt A. NF-κB Activation in Lymphoid Malignancies: Genetics, Signaling, and Targeted Therapy. Biomedicines. 2018;6:38. doi: 10.3390/biomedicines6020038. PubMed DOI PMC
Miao Y., Medeiros L.J., Xu-Monette Z.Y., Li J., Young K.H. Dysregulation of Cell Survival in Diffuse Large B Cell Lymphoma: Mechanisms and Therapeutic Targets. Front. Oncol. 2019;9:107. doi: 10.3389/fonc.2019.00107. PubMed DOI PMC
Nagel D., Bognar M., Eitelhuber A.C., Kutzner K., Vincendeau M., Krappmann D. Combinatorial BTK and MALT1 inhibition augments killing of CD79 mutant diffuse large B cell lymphoma. Oncotarget. 2015;6:42232–42242. doi: 10.18632/oncotarget.6273. PubMed DOI PMC
Pasqualucci L., Klein U. NF-κB Mutations in Germinal Center B-Cell Lymphomas: Relation to NF-κB Function in Normal B Cells. Biomedicines. 2022;10:2450. doi: 10.3390/biomedicines10102450. PubMed DOI PMC
Ducharme O., Beylot-Barry M., Pham-Ledard A., Bohers E., Viailly P.J., Bandres T., Faur N., Frison E., Vergier B., Jardin F., et al. Mutations of the B-Cell Receptor Pathway Confer Chemoresistance in Primary Cutaneous Diffuse Large B-Cell Lymphoma Leg Type. J. Investig. Dermatol. 2019;139:2334–2342.e8. doi: 10.1016/j.jid.2019.05.008. PubMed DOI
Myklebust J.H., Brody J., Kohrt H.E., Kolstad A., Czerwinski D.K., Wälchli S., Green M.R., Trøen G., Liestøl K., Beiske K., et al. Distinct patterns of B-cell receptor signaling in non-Hodgkin lymphomas identified by single-cell profiling. Blood. 2017;129:759–770. doi: 10.1182/blood-2016-05-718494. PubMed DOI PMC
Thurner L., Hartmann S., Neumann F., Hoth M., Stilgenbauer S., Küppers R., Preuss K.D., Bewarder M. Role of Specific B-Cell Receptor Antigens in Lymphomagenesis. Front. Oncol. 2020;10:604685. doi: 10.3389/fonc.2020.604685. PubMed DOI PMC
Andrades A., Álvarez-Pérez J.C., Patiño-Mercau J.R., Cuadros M., Baliñas-Gavira C., Medina P.P. Recurrent splice site mutations affect key diffuse large B-cell lymphoma genes. Blood. 2022;139:2406–2410. doi: 10.1182/blood.2021011708. PubMed DOI
Young R.M., Wu T., Schmitz R., Dawood M., Xiao W., Phelan J.D., Xu W., Menard L., Meffre E., Chan W.C., et al. Survival of human lymphoma cells requires B-cell receptor engagement by self-antigens. Proc. Natl. Acad. Sci. USA. 2015;112:13447–13454. doi: 10.1073/pnas.1514944112. PubMed DOI PMC
Lohr J.G., Stojanov P., Lawrence M.S., Auclair D., Chapuy B., Sougnez C., Cruz-Gordillo P., Knoechel B., Asmann Y.W., Slager S.L., et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc. Natl. Acad. Sci. USA. 2012;109:3879–3884. doi: 10.1073/pnas.1121343109. PubMed DOI PMC
Payelle-Brogard B., Magnac C., Mauro F.R., Mandelli F., Dighiero G. Analysis of the B-cell receptor B29 (CD79b) gene in familial chronic lymphocytic leukemia. Blood. 1999;94:3516–3522. doi: 10.1182/blood.V94.10.3516.422k09_3516_3522. PubMed DOI
Takeuchi T., Yamaguchi M., Kobayashi K., Miyazaki K., Tawara I., Imai H., Ono R., Nosaka T., Tanaka K., Katayama N. MYD88, CD79B, and CARD11 gene mutations in CD5-positive diffuse large B-cell lymphoma. Cancer. 2017;123:1166–1173. doi: 10.1002/cncr.30404. PubMed DOI
Bohers E., Mareschal S., Bouzelfen A., Marchand V., Ruminy P., Maingonnat C., Ménard A.L., Etancelin P., Bertrand P., Dubois S., et al. Targetable activating mutations are very frequent in GCB and ABC diffuse large B-cell lymphoma. Genes Chromosomes Cancer. 2014;53:144–153. doi: 10.1002/gcc.22126. PubMed DOI
Poulain S., Roumier C., Galiègue-Zouitina S., Daudignon A., Herbaux C., Aiijou R., Lainelle A., Broucqsault N., Bertrand E., Manier S., et al. Genome wide SNP array identified multiple mechanisms of genetic changes in Waldenstrom macroglobulinemia. Am. J. Hematol. 2013;88:948–954. doi: 10.1002/ajh.23545. PubMed DOI
Okosun J., Bödör C., Wang J., Araf S., Yang C.Y., Pan C., Boller S., Cittaro D., Bozek M., Iqbal S., et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat. Genet. 2014;46:176–181. doi: 10.1038/ng.2856. PubMed DOI PMC
Krysiak K., Gomez F., White B.S., Matlock M., Miller C.A., Trani L., Fronick C.C., Fulton R.S., Kreisel F., Cashen A.F., et al. Recurrent somatic mutations affecting B-cell receptor signaling pathway genes in follicular lymphoma. Blood. 2017;129:473–483. doi: 10.1182/blood-2016-07-729954. PubMed DOI PMC
Trøen G., Warsame A., Delabie J. CD79B and MYD88 Mutations in Splenic Marginal Zone Lymphoma. ISRN Oncol. 2013;2013:252318. doi: 10.1155/2013/252318. PubMed DOI PMC
Thompson A.A., Talley J.A., Do H.N., Kagan H.L., Kunkel L., Berenson J., Cooper M.D., Saxon A., Wall R. Aberrations of the B-Cell Receptor B29 (CD79b) Gene in Chronic Lymphocytic Leukemia. Blood. 1997;90:1387–1394. doi: 10.1182/blood.V90.4.1387. PubMed DOI
Cetin G.O., Baris I.C., Caner V., Sarikepe B., Sen Turk N., Tepeli E., Hacioglu S., Sari I., Bagci G., Keskin A. Mutational status of EZH2 and CD79B hot spots in mature B-cell non-Hodgkin’s lymphomas: Novel CD79B variations have been revealed. Eur. Rev. Med. Pharmacol. Sci. 2016;20:830–836. PubMed
Bruno A., Boisselier B., Labreche K., Marie Y., Polivka M., Jouvet A., Adam C., Figarella-Branger D., Miquel C., Eimer S., et al. Mutational analysis of primary central nervous system lymphoma. Oncotarget. 2014;5:5065–5075. doi: 10.18632/oncotarget.2080. PubMed DOI PMC
Kim Y., Ju H., Kim D.H., Yoo H.Y., Kim S.J., Kim W.S., Ko Y.H. CD79B and MYD88 mutations in diffuse large B-cell lymphoma. Hum. Pathol. 2014;45:556–564. doi: 10.1016/j.humpath.2013.10.023. PubMed DOI
Saieg M.A., Geddie W.R., Boerner S.L., Bailey D., Crump M., da Cunha Santos G. EZH2 and CD79B mutational status over time in B-cell non-Hodgkin lymphomas detected by high-throughput sequencing using minimal samples. Cancer Cytopathol. 2013;121:377–386. doi: 10.1002/cncy.21262. PubMed DOI PMC
Hunter Z.R., Xu L., Yang G., Zhou Y., Liu X., Cao Y., Manning R.J., Tripsas C., Patterson C.J., Sheehy P., et al. The genomic landscape of Waldenström macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123:1637–1646. doi: 10.1182/blood-2013-09-525808. PubMed DOI
Alfarano A., Indraccolo S., Circosta P., Minuzzo S., Vallario A., Zamarchi R., Fregonese A., Calderazzo F., Faldella A., Aragno M., et al. An alternatively spliced form of CD79b gene may account for altered B-cell receptor expression in B-chronic lymphocytic leukemia. Blood. 1999;93:2327–2335. doi: 10.1182/blood.V93.7.2327. PubMed DOI
Jiménez C., Alonso-Álvarez S., Alcoceba M., Ordóñez G.R., García-Álvarez M., Prieto-Conde M.I., Chillón M.C., Balanzategui A., Corral R., Marín L.A., et al. From Waldenström’s macroglobulinemia to aggressive diffuse large B-cell lymphoma: A whole-exome analysis of abnormalities leading to transformation. Blood Cancer J. 2017;7:e591. doi: 10.1038/bcj.2017.72. PubMed DOI PMC
Wang J.Q., Jeelall Y.S., Humburg P., Batchelor E.L., Kaya S.M., Yoo H.M., Goodnow C.C., Horikawa K. Synergistic cooperation and crosstalk between MYD88(L265P) and mutations that dysregulate CD79B and surface IgM. J. Exp. Med. 2017;214:2759–2776. doi: 10.1084/jem.20161454. PubMed DOI PMC
Gordon M.S., Kato R.M., Lansigan F., Thompson A.A., Wall R., Rawlings D.J. Aberrant B cell receptor signaling from B29 (Igbeta, CD79b) gene mutations of chronic lymphocytic leukemia B cells. Proc. Natl. Acad. Sci. USA. 2000;97:5504–5509. doi: 10.1073/pnas.090087097. PubMed DOI PMC
Faumont N., Taoui O., Collares D., Jais J.P., Leroy K., Prévaud L., Jardin F., Molina T.J., Copie-Bergman C., Petit B., et al. c-Rel Is the Pivotal NF-κB Subunit in Germinal Center Diffuse Large B-Cell Lymphoma: A LYSA Study. Front. Oncol. 2021;11:638897. doi: 10.3389/fonc.2021.638897. PubMed DOI PMC
Compagno M., Lim W.K., Grunn A., Nandula S.V., Brahmachary M., Shen Q., Bertoni F., Ponzoni M., Scandurra M., Califano A., et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature. 2009;459:717–721. doi: 10.1038/nature07968. PubMed DOI PMC
Davis R.E., Brown K.D., Siebenlist U., Staudt L.M. Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J. Exp. Med. 2001;194:1861–1874. doi: 10.1084/jem.194.12.1861. PubMed DOI PMC
Lu H.Y., Bauman B.M., Arjunaraja S., Dorjbal B., Milner J.D., Snow A.L., Turvey S.E. The CBM-opathies-A Rapidly Expanding Spectrum of Human Inborn Errors of Immunity Caused by Mutations in the CARD11-BCL10-MALT1 Complex. Front. Immunol. 2018;9:2078. doi: 10.3389/fimmu.2018.02078. PubMed DOI PMC
Turvey S.E., Durandy A., Fischer A., Fung S.Y., Geha R.S., Gewies A., Giese T., Greil J., Keller B., McKinnon M.L., et al. The CARD11-BCL10-MALT1 (CBM) signalosome complex: Stepping into the limelight of human primary immunodeficiency. J. Allergy Clin. Immunol. 2014;134:276–284. doi: 10.1016/j.jaci.2014.06.015. PubMed DOI PMC
Kloo B., Nagel D., Pfeifer M., Grau M., Düwel M., Vincendeau M., Dörken B., Lenz P., Lenz G., Krappmann D. Critical role of PI3K signaling for NF-kappaB-dependent survival in a subset of activated B-cell-like diffuse large B-cell lymphoma cells. Proc. Natl. Acad. Sci. USA. 2011;108:272–277. doi: 10.1073/pnas.1008969108. PubMed DOI PMC
Kim A., Seong K.M., Kang H.J., Park S., Lee S.S. Inhibition of Lyn is a promising treatment for mantle cell lymphoma with bortezomib resistance. Oncotarget. 2015;6:38225–38238. doi: 10.18632/oncotarget.5425. PubMed DOI PMC
Ezell S.A., Wang S., Bihani T., Lai Z., Grosskurth S.E., Tepsuporn S., Davies B.R., Huszar D., Byth K.F. Differential regulation of mTOR signaling determines sensitivity to AKT inhibition in diffuse large B cell lymphoma. Oncotarget. 2016;7:9163–9174. doi: 10.18632/oncotarget.7036. PubMed DOI PMC
Majchrzak A., Witkowska M., Smolewski P. Inhibition of the PI3K/Akt/mTOR signaling pathway in diffuse large B-cell lymphoma: Current knowledge and clinical significance. Molecules. 2014;19:14304–14315. doi: 10.3390/molecules190914304. PubMed DOI PMC
Ma M.C.J., Tadros S., Bouska A., Heavican T., Yang H., Deng Q., Moore D., Akhter A., Hartert K., Jain N., et al. Subtype-specific and co-occurring genetic alterations in B-cell non-Hodgkin lymphoma. Haematologica. 2022;107:690–701. doi: 10.3324/haematol.2020.274258. PubMed DOI PMC
Xu P.P., Shen R., Shi Z.Y., Cheng S., Wang L., Liu Y., Zhang L., Huang R., Ma X., Wu X., et al. The Prognostic Significance of CD79B Mutation in Diffuse Large B-Cell Lymphoma: A Meta-analysis and Systematic Literature Review. Clin. Lymphoma Myeloma Leuk. 2022;22:e1051–e1058.e1. doi: 10.1016/j.clml.2022.08.006. PubMed DOI
de Groen R.A.L., Schrader A.M.R., Kersten M.J., Pals S.T., Vermaat J.S.P. MYD88 in the driver’s seat of B-cell lymphomagenesis: From molecular mechanisms to clinical implications. Haematologica. 2019;104:2337–2348. doi: 10.3324/haematol.2019.227272. PubMed DOI PMC
Sewastianik T., Guerrera M.L., Adler K., Dennis P.S., Wright K., Shanmugam V., Huang Y., Tanton H., Jiang M., Kofides A., et al. Human MYD88L265P is insufficient by itself to drive neoplastic transformation in mature mouse B cells. Blood Adv. 2019;3:3360–3374. doi: 10.1182/bloodadvances.2019000588. PubMed DOI PMC
Alcoceba M., García-Álvarez M., Medina A., Maldonado R., González-Calle V., Chillón M.C., Sarasquete M.E., González M., García-Sanz R., Jiménez C. MYD88 Mutations: Transforming the Landscape of IgM Monoclonal Gammopathies. Int. J. Mol. Sci. 2022;23:5570. doi: 10.3390/ijms23105570. PubMed DOI PMC
Motshwene P.G., Moncrieffe M.C., Grossmann J.G., Kao C., Ayaluru M., Sandercock A.M., Robinson C.V., Latz E., Gay N.J. An oligomeric signaling platform formed by the Toll-like receptor signal transducers MyD88 and IRAK-4. J. Biol. Chem. 2009;284:25404–25411. doi: 10.1074/jbc.M109.022392. PubMed DOI PMC
Balka K.R., De Nardo D. Understanding early TLR signaling through the Myddosome. J. Leukoc. Biol. 2019;105:339–351. doi: 10.1002/JLB.MR0318-096R. PubMed DOI
Cao F., Deliz-Aguirre R., Gerpott F.H., Ziska E., Taylor M.J. Myddosome clustering in IL-1 receptor signaling regulates the formation of an NF-κB activating signalosome. EMBO Rep. 2023;24:e57233. doi: 10.15252/embr.202357233. PubMed DOI PMC
De Nardo D., Balka K.R., Cardona Gloria Y., Rao V.R., Latz E., Masters S.L. Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a dual role in myddosome formation and Toll-like receptor signaling. J. Biol. Chem. 2018;293:15195–15207. doi: 10.1074/jbc.RA118.003314. PubMed DOI PMC
Weber T., Schmitz R. Molecular Subgroups of Diffuse Large B Cell Lymphoma: Biology and Implications for Clinical Practice. Curr. Oncol. Rep. 2022;24:13–21. doi: 10.1007/s11912-021-01155-2. PubMed DOI PMC
Roschewski M., Phelan J.D., Wilson W.H. Molecular Classification and Treatment of Diffuse Large B-Cell Lymphoma and Primary Mediastinal B-Cell Lymphoma. Cancer J. 2020;26:195–205. doi: 10.1097/PPO.0000000000000450. PubMed DOI PMC
Fornecker L.M., Muller L., Bertrand F., Paul N., Pichot A., Herbrecht R., Chenard M.P., Mauvieux L., Vallat L., Bahram S., et al. Multi-omics dataset to decipher the complexity of drug resistance in diffuse large B-cell lymphoma. Sci. Rep. 2019;9:895. doi: 10.1038/s41598-018-37273-4. PubMed DOI PMC
George B., Chowdhury S.M., Hart A., Sircar A., Singh S.K., Nath U.K., Mamgain M., Singhal N.K., Sehgal L., Jain N. Ibrutinib Resistance Mechanisms and Treatment Strategies for B-Cell lymphomas. Cancers. 2020;12:1328. doi: 10.3390/cancers12051328. PubMed DOI PMC
Kim J.H., Kim W.S., Ryu K., Kim S.J., Park C. CD79B limits response of diffuse large B cell lymphoma to ibrutinib. Leuk. Lymphoma. 2016;57:1413–1422. doi: 10.3109/10428194.2015.1113276. PubMed DOI
Rip J., de Bruijn M.J.W., Neys S.F.H., Singh S.P., Willar J., van Hulst J.A.C., Hendriks R.W., Corneth O.B.J. Bruton’s tyrosine kinase inhibition induces rewiring of proximal and distal B-cell receptor signaling in mice. Eur. J. Immunol. 2021;51:2251–2265. doi: 10.1002/eji.202048968. PubMed DOI PMC
Domka K., Goral A., Firczuk M. cROSsing the Line: Between Beneficial and Harmful Effects of Reactive Oxygen Species in B-Cell Malignancies. Front. Immunol. 2020;11:1538. doi: 10.3389/fimmu.2020.01538. PubMed DOI PMC
Wang S.S., Davis S., Cerhan J.R., Hartge P., Severson R.K., Cozen W., Lan Q., Welch R., Chanock S.J., Rothman N. Polymorphisms in oxidative stress genes and risk for non-Hodgkin lymphoma. Carcinogenesis. 2006;27:1828–1834. doi: 10.1093/carcin/bgl013. PubMed DOI
Müller-Winkler J., Mitter R., Rappe J.C.F., Vanes L., Schweighoffer E., Mohammadi H., Wack A., Tybulewicz V.L.J. Critical requirement for BCR, BAFF, and BAFFR in memory B cell survival. J. Exp. Med. 2021;218:e20191393. doi: 10.1084/jem.20191393. PubMed DOI PMC