B-Cell Receptor Signaling and Beyond: The Role of Igα (CD79a)/Igβ (CD79b) in Normal and Malignant B Cells

. 2023 Dec 19 ; 25 (1) : . [epub] 20231219

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38203179

Grantová podpora
AZV NV18-03-00117 Czech Health Research Council
PRIMUS/17/MED/9, UNCE/MED/016, Cooperatio Charles University in Prague
Programme EXCELES, reg. No. LX22NPO5102 European Union - Next Generation EU
Ukraine Bridge Funding Award European Hematology Association

B-cell receptor (BCR) is a B cell hallmark surface complex regulating multiple cellular processes in normal as well as malignant B cells. Igα (CD79a)/Igβ (CD79b) are essential components of BCR that are indispensable for its functionality, signal initiation, and signal transduction. CD79a/CD79b-mediated BCR signaling is required for the survival of normal as well as malignant B cells via a wide signaling network. Recent studies identified the great complexity of this signaling network and revealed the emerging role of CD79a/CD79b in signal integration. In this review, we have focused on functional features of CD79a/CD79b, summarized signaling consequences of CD79a/CD79b post-translational modifications, and highlighted specifics of CD79a/CD79b interactions within BCR and related signaling cascades. We have reviewed the complex role of CD79a/CD79b in multiple aspects of normal B cell biology and how is the normal BCR signaling affected by lymphoid neoplasms associated CD79A/CD79B mutations. We have also summarized important unresolved questions and highlighted issues that remain to be explored for better understanding of CD79a/CD79b-mediated signal transduction and the eventual identification of additional therapeutically targetable BCR signaling vulnerabilities.

Zobrazit více v PubMed

Tanaka S., Baba Y. B Cell Receptor Signaling. Adv. Exp. Med. Biol. 2020;1254:23–36. doi: 10.1007/978-981-15-3532-1_2. PubMed DOI

Huse K., Bai B., Hilden V.I., Bollum L.K., Våtsveen T.K., Munthe L.A., Smeland E.B., Irish J.M., Wälchli S., Myklebust J.H. Mechanism of CD79A and CD79B Support for IgM+ B Cell Fitness through B Cell Receptor Surface Expression. J. Immunol. 2022;209:2042–2053. doi: 10.4049/jimmunol.2200144. PubMed DOI PMC

Chen R., Zhou D., Wang L., Zhu L., Ye X. MYD88(L265P) and CD79B double mutations type (MCD type) of diffuse large B-cell lymphoma: Mechanism, clinical characteristics, and targeted therapy. Ther. Adv. Hematol. 2022;13:20406207211072839. doi: 10.1177/20406207211072839. PubMed DOI PMC

Feng Y., Wang Y., Zhang S., Haneef K., Liu W. Structural and immunogenomic insights into B-cell receptor activation. J. Genet. Genom. 2020;47:27–35. doi: 10.1016/j.jgg.2019.12.003. PubMed DOI

Avalos A.M., Ploegh H.L. Early BCR Events and Antigen Capture, Processing, and Loading on MHC Class II on B Cells. Front. Immunol. 2014;5:92. doi: 10.3389/fimmu.2014.00092. PubMed DOI PMC

Srinivasan L., Sasaki Y., Calado D.P., Zhang B., Paik J.H., DePinho R.A., Kutok J.L., Kearney J.F., Otipoby K.L., Rajewsky K. PI3 kinase signals BCR-dependent mature B cell survival. Cell. 2009;139:573–586. doi: 10.1016/j.cell.2009.08.041. PubMed DOI PMC

Burger J.A., Wiestner A. Targeting B cell receptor signalling in cancer: Preclinical and clinical advances. Nat. Rev. Cancer. 2018;18:148–167. doi: 10.1038/nrc.2017.121. PubMed DOI

Young R.M., Staudt L.M. Targeting pathological B cell receptor signalling in lymphoid malignancies. Nat. Rev. Drug Discov. 2013;12:229–243. doi: 10.1038/nrd3937. PubMed DOI PMC

Puri K.D., Di Paolo J.A., Gold M.R. B-cell receptor signaling inhibitors for treatment of autoimmune inflammatory diseases and B-cell malignancies. Int. Rev. Immunol. 2013;32:397–427. doi: 10.3109/08830185.2013.818140. PubMed DOI

Rawlings D.J., Metzler G., Wray-Dutra M., Jackson S.W. Altered B cell signalling in autoimmunity. Nat. Rev. Immunol. 2017;17:421–436. doi: 10.1038/nri.2017.24. PubMed DOI PMC

Liu W., Tolar P., Song W., Kim T.J. Editorial: BCR Signaling and B Cell Activation. Front. Immunol. 2020;11:45. doi: 10.3389/fimmu.2020.00045. PubMed DOI PMC

Köhrer S., Havranek O., Seyfried F., Hurtz C., Coffey G.P., Kim E., Ten Hacken E., Jäger U., Vanura K., O’Brien S., et al. Pre-BCR signaling in precursor B-cell acute lymphoblastic leukemia regulates PI3K/AKT, FOXO1 and MYC, and can be targeted by SYK inhibition. Leukemia. 2016;30:1246–1254. doi: 10.1038/leu.2016.9. PubMed DOI PMC

Zhang M., Srivastava G., Lu L. The pre-B cell receptor and its function during B cell development. Cell Mol. Immunol. 2004;1:89–94. PubMed

Winkler T.H., Mårtensson I.-L. The Role of the Pre-B Cell Receptor in B Cell Development, Repertoire Selection, and Tolerance. Front. Immunol. 2018;9:2423. doi: 10.3389/fimmu.2018.02423. PubMed DOI PMC

Keren Z., Melamed D. Antigen receptor signaling competence and the determination of B cell fate in B-lymphopoiesis. Histol. Histopathol. 2005;20:187–196. doi: 10.14670/hh-20.187. PubMed DOI

Neys S.F.H., Heukels P., van Hulst J.A.C., Rip J., Wijsenbeek M.S., Hendriks R.W., Corneth O.B.J. Aberrant B Cell Receptor Signaling in Naïve B Cells from Patients with Idiopathic Pulmonary Fibrosis. Cells. 2021;10:1321. doi: 10.3390/cells10061321. PubMed DOI PMC

Wen Y., Jing Y., Yang L., Kang D., Jiang P., Li N., Cheng J., Li J., Li X., Peng Z., et al. The regulators of BCR signaling during B cell activation. Blood Sci. 2019;1:119–129. doi: 10.1097/BS9.0000000000000026. PubMed DOI PMC

Berry C.T., Liu X., Myles A., Nandi S., Chen Y.H., Hershberg U., Brodsky I.E., Cancro M.P., Lengner C.J., May M.J., et al. BCR-Induced Ca2+ Signals Dynamically Tune Survival, Metabolic Reprogramming, and Proliferation of Naive B Cells. Cell Rep. 2020;31:107474. doi: 10.1016/j.celrep.2020.03.038. PubMed DOI PMC

McShane A.N., Malinova D. The Ins and Outs of Antigen Uptake in B cells. Front. Immunol. 2022;13:892169. doi: 10.3389/fimmu.2022.892169. PubMed DOI PMC

Rastogi I., Jeon D., Moseman J.E., Muralidhar A., Potluri H.K., McNeel D.G. Role of B cells as antigen presenting cells. Front. Immunol. 2022;13:954936. doi: 10.3389/fimmu.2022.954936. PubMed DOI PMC

Chen Z., Wang J.H. How the Signaling Crosstalk of B Cell Receptor (BCR) and Co-Receptors Regulates Antibody Class Switch Recombination: A New Perspective of Checkpoints of BCR Signaling. Front. Immunol. 2021;12:663443. doi: 10.3389/fimmu.2021.663443. PubMed DOI PMC

Vlachiotis S., Abolhassani H. Transcriptional regulation of B cell class-switch recombination: The role in development of noninfectious complications. Expert Rev. Clin. Immunol. 2022;18:1145–1154. doi: 10.1080/1744666X.2022.2123795. PubMed DOI

Tsai D.-Y., Hung K.-H., Chang C.-W., Lin K.-I. Regulatory mechanisms of B cell responses and the implication in B cell-related diseases. J. Biomed. Sci. 2019;26:64. doi: 10.1186/s12929-019-0558-1. PubMed DOI PMC

Luo W., Mayeux J., Gutierrez T., Russell L., Getahun A., Müller J., Tedder T., Parnes J., Rickert R., Nitschke L., et al. A balance between B cell receptor and inhibitory receptor signaling controls plasma cell differentiation by maintaining optimal Ets1 levels. J. Immunol. 2014;193:909–920. doi: 10.4049/jimmunol.1400666. PubMed DOI PMC

Kluckova K., D’Avola A., Riches J.C. Advances in Understanding of Metabolism of B-Cell Lymphoma: Implications for Therapy. Cancers. 2022;14:5552. doi: 10.3390/cancers14225552. PubMed DOI PMC

Doughty C.A., Bleiman B.F., Wagner D.J., Dufort F.J., Mataraza J.M., Roberts M.F., Chiles T.C. Antigen receptor-mediated changes in glucose metabolism in B lymphocytes: Role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood. 2006;107:4458–4465. doi: 10.1182/blood-2005-12-4788. PubMed DOI PMC

Iperi C., Bordron A., Dueymes M., Pers J.-O., Jamin C. Metabolic Program of Regulatory B Lymphocytes and Influence in the Control of Malignant and Autoimmune Situations. Front. Immunol. 2021;12:735463. doi: 10.3389/fimmu.2021.735463. PubMed DOI PMC

Raza I.G.A., Clarke A.J. B Cell Metabolism and Autophagy in Autoimmunity. Front. Immunol. 2021;12:681105. doi: 10.3389/fimmu.2021.681105. PubMed DOI PMC

Watanabe K., Tsubata T. Autophagy connects antigen receptor signaling to costimulatory signaling in B lymphocytes. Autophagy. 2009;5:108–110. doi: 10.4161/auto.5.1.7278. PubMed DOI

Eeva J., Pelkonen J. Mechanisms of B cell receptor induced apoptosis. Apoptosis. 2004;9:525–531. doi: 10.1023/B:APPT.0000038032.22343.de. PubMed DOI

Nemazee D. Mechanisms of central tolerance for B cells. Nat. Rev. Immunol. 2017;17:281–294. doi: 10.1038/nri.2017.19. PubMed DOI PMC

Yam-Puc J.C., Zhang L., Maqueda-Alfaro R.A., Garcia-Ibanez L., Zhang Y., Davies J., Senis Y.A., Snaith M., Toellner K.-M. Enhanced BCR signaling inflicts early plasmablast and germinal center B cell death. iScience. 2021;24:102038. doi: 10.1016/j.isci.2021.102038. PubMed DOI PMC

Alaggio R., Amador C., Anagnostopoulos I., Attygalle A.D., Araujo I.B.O., Berti E., Bhagat G., Borges A.M., Boyer D., Calaminici M., et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia. 2022;36:1720–1748. doi: 10.1038/s41375-022-01620-2. PubMed DOI PMC

Susanibar-Adaniya S., Barta S.K. 2021 Update on Diffuse large B cell lymphoma: A review of current data and potential applications on risk stratification and management. Am. J. Hematol. 2021;96:617–629. doi: 10.1002/ajh.26151. PubMed DOI PMC

Liu Y., Barta S.K. Diffuse large B-cell lymphoma: 2019 update on diagnosis, risk stratification, and treatment. Am. J. Hematol. 2019;94:604–616. doi: 10.1002/ajh.25460. PubMed DOI

Gupta G., Garg V., Mallick S., Gogia A. Current trends in diagnosis and management of follicular lymphoma. Am. J. Blood Res. 2022;12:105–124. PubMed PMC

Carbone A., Roulland S., Gloghini A., Younes A., von Keudell G., López-Guillermo A., Fitzgibbon J. Follicular lymphoma. Nat. Rev. Dis. Primers. 2019;5:83. doi: 10.1038/s41572-019-0132-x. PubMed DOI

Profitós-Pelejà N., Santos J.C., Marín-Niebla A., Roué G., Ribeiro M.L. Regulation of B-Cell Receptor Signaling and Its Therapeutic Relevance in Aggressive B-Cell Lymphomas. Cancers. 2022;14:860. doi: 10.3390/cancers14040860. PubMed DOI PMC

Niemann C.U., Wiestner A. B-cell receptor signaling as a driver of lymphoma development and evolution. Semin. Cancer Biol. 2013;23:410–421. doi: 10.1016/j.semcancer.2013.09.001. PubMed DOI PMC

Dühren-von Minden M., Übelhart R., Schneider D., Wossning T., Bach M.P., Buchner M., Hofmann D., Surova E., Follo M., Köhler F., et al. Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling. Nature. 2012;489:309–312. doi: 10.1038/nature11309. PubMed DOI

Young R.M., Phelan J.D., Wilson W.H., Staudt L.M. Pathogenic B-cell receptor signaling in lymphoid malignancies: New insights to improve treatment. Immunol. Rev. 2019;291:190–213. doi: 10.1111/imr.12792. PubMed DOI PMC

Valla K., Flowers C.R., Koff J.L. Targeting the B cell receptor pathway in non-Hodgkin lymphoma. Expert Opin. Investig. Drugs. 2018;27:513–522. doi: 10.1080/13543784.2018.1482273. PubMed DOI PMC

Fichtner M., Dreyling M., Binder M., Trepel M. The role of B cell antigen receptors in mantle cell lymphoma. J. Hematol. Oncol. 2017;10:164. doi: 10.1186/s13045-017-0533-9. PubMed DOI PMC

Sachen K.L., Strohman M.J., Singletary J., Alizadeh A.A., Kattah N.H., Lossos C., Mellins E.D., Levy S., Levy R. Self-antigen recognition by follicular lymphoma B-cell receptors. Blood. 2012;120:4182–4190. doi: 10.1182/blood-2012-05-427534. PubMed DOI PMC

Corso J., Pan K.T., Walter R., Doebele C., Mohr S., Bohnenberger H., Ströbel P., Lenz C., Slabicki M., Hüllein J., et al. Elucidation of tonic and activated B-cell receptor signaling in Burkitt’s lymphoma provides insights into regulation of cell survival. Proc. Natl. Acad. Sci. USA. 2016;113:5688–5693. doi: 10.1073/pnas.1601053113. PubMed DOI PMC

Noy A., de Vos S., Thieblemont C., Martin P., Flowers C.R., Morschhauser F., Collins G.P., Ma S., Coleman M., Peles S., et al. Targeting Bruton tyrosine kinase with ibrutinib in relapsed/refractory marginal zone lymphoma. Blood. 2017;129:2224–2232. doi: 10.1182/blood-2016-10-747345. PubMed DOI PMC

Bogusz A.M., Baxter R.H., Currie T., Sinha P., Sohani A.R., Kutok J.L., Rodig S.J. Quantitative immunofluorescence reveals the signature of active B-cell receptor signaling in diffuse large B-cell lymphoma. Clin. Cancer Res. 2012;18:6122–6135. doi: 10.1158/1078-0432.CCR-12-0397. PubMed DOI PMC

Davis R.E., Ngo V.N., Lenz G., Tolar P., Young R.M., Romesser P.B., Kohlhammer H., Lamy L., Zhao H., Yang Y., et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010;463:88–92. doi: 10.1038/nature08638. PubMed DOI PMC

Phelan J.D., Young R.M., Webster D.E., Roulland S., Wright G.W., Kasbekar M., Shaffer A.L., 3rd, Ceribelli M., Wang J.Q., Schmitz R., et al. A multiprotein supercomplex controlling oncogenic signalling in lymphoma. Nature. 2018;560:387–391. doi: 10.1038/s41586-018-0290-0. PubMed DOI PMC

Havranek O., Xu J., Köhrer S., Wang Z., Becker L., Comer J.M., Henderson J., Ma W., Man Chun Ma J., Westin J.R., et al. Tonic B-cell receptor signaling in diffuse large B-cell lymphoma. Blood. 2017;130:995–1006. doi: 10.1182/blood-2016-10-747303. PubMed DOI PMC

Myers D.R., Zikherman J., Roose J.P. Tonic Signals: Why Do Lymphocytes Bother? Trends Immunol. 2017;38:844–857. doi: 10.1016/j.it.2017.06.010. PubMed DOI PMC

Alizadeh A.A., Eisen M.B., Davis R.E., Ma C., Lossos I.S., Rosenwald A., Boldrick J.C., Sabet H., Tran T., Yu X., et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503–511. doi: 10.1038/35000501. PubMed DOI

Frustaci A.M., Deodato M., Zamprogna G., Cairoli R., Montillo M., Tedeschi A. Next Generation BTK Inhibitors in CLL: Evolving Challenges and New Opportunities. Cancers. 2023;15:1504. doi: 10.3390/cancers15051504. PubMed DOI PMC

Pedrosa L., Fernández-Miranda I., Pérez-Callejo D., Quero C., Rodríguez M., Martín-Acosta P., Gómez S., González-Rincón J., Santos A., Tarin C., et al. Proposal and validation of a method to classify genetic subtypes of diffuse large B cell lymphoma. Sci. Rep. 2021;11:1886. doi: 10.1038/s41598-020-80376-0. PubMed DOI PMC

Lacy S.E., Barrans S.L., Beer P.A., Painter D., Smith A.G., Roman E., Cooke S.L., Ruiz C., Glover P., Van Hoppe S.J.L., et al. Targeted sequencing in DLBCL, molecular subtypes, and outcomes: A Haematological Malignancy Research Network report. Blood. 2020;135:1759–1771. doi: 10.1182/blood.2019003535. PubMed DOI PMC

Wright G.W., Huang D.W., Phelan J.D., Coulibaly Z.A., Roulland S., Young R.M., Wang J.Q., Schmitz R., Morin R.D., Tang J., et al. A Probabilistic Classification Tool for Genetic Subtypes of Diffuse Large B Cell Lymphoma with Therapeutic Implications. Cancer Cell. 2020;37:551–568.e14. doi: 10.1016/j.ccell.2020.03.015. PubMed DOI PMC

Schmitz R., Wright G.W., Huang D.W., Johnson C.A., Phelan J.D., Wang J.Q., Roulland S., Kasbekar M., Young R.M., Shaffer A.L., et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2018;378:1396–1407. doi: 10.1056/NEJMoa1801445. PubMed DOI PMC

Chapuy B., Stewart C., Dunford A.J., Kim J., Kamburov A., Redd R.A., Lawrence M.S., Roemer M.G.M., Li A.J., Ziepert M., et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat. Med. 2018;24:679–690. doi: 10.1038/s41591-018-0016-8. PubMed DOI PMC

Ma X., Zhu Y., Dong D., Chen Y., Wang S., Yang D., Ma Z., Zhang A., Zhang F., Guo C., et al. Cryo-EM structures of two human B cell receptor isotypes. Science. 2022;377:880–885. doi: 10.1126/science.abo3828. PubMed DOI

Su Q., Chen M., Shi Y., Zhang X., Huang G., Huang B., Liu D., Liu Z., Shi Y. Cryo-EM structure of the human IgM B cell receptor. Science. 2022;377:875–880. doi: 10.1126/science.abo3923. PubMed DOI

Dong Y., Pi X., Bartels-Burgahn F., Saltukoglu D., Liang Z., Yang J., Alt F.W., Reth M., Wu H. Structural principles of B cell antigen receptor assembly. Nature. 2022;612:156–161. doi: 10.1038/s41586-022-05412-7. PubMed DOI PMC

Reth M., Nitschke L., Hikida M., Kurosaki T. Chapter 10—Structure and Signaling Function of the B-Cell Antigen Receptor and Its Coreceptors. In: Alt F.W., Honjo T., Radbruch A., Reth M., editors. Molecular Biology of B Cells. 2nd ed. Academic Press; London, UK: 2015. pp. 151–170.

Tolar P., Pierce S.K. Unveiling the B cell receptor structure. Science. 2022;377:819–820. doi: 10.1126/science.add8065. PubMed DOI PMC

Tolar P., Sohn H.W., Pierce S.K. The initiation of antigen-induced B cell antigen receptor signaling viewed in living cells by fluorescence resonance energy transfer. Nat. Immunol. 2005;6:1168–1176. doi: 10.1038/ni1262. PubMed DOI

Friess M.D., Pluhackova K., Böckmann R.A. Structural Model of the mIgM B-Cell Receptor Transmembrane Domain From Self-Association Molecular Dynamics Simulations. Front. Immunol. 2018;9:2947. doi: 10.3389/fimmu.2018.02947. PubMed DOI PMC

Lutz J., Dittmann K., Bösl M.R., Winkler T.H., Wienands J., Engels N. Reactivation of IgG-switched memory B cells by BCR-intrinsic signal amplification promotes IgG antibody production. Nat. Commun. 2015;6:8575. doi: 10.1038/ncomms9575. PubMed DOI PMC

James L.K. B cells defined by immunoglobulin isotypes. Clin. Exp. Immunol. 2022;210:230–239. doi: 10.1093/cei/uxac091. PubMed DOI PMC

Engels N., König L.M., Schulze W., Radtke D., Vanshylla K., Lutz J., Winkler T.H., Nitschke L., Wienands J. The immunoglobulin tail tyrosine motif upgrades memory-type BCRs by incorporating a Grb2-Btk signalling module. Nat. Commun. 2014;5:5456. doi: 10.1038/ncomms6456. PubMed DOI PMC

Vanshylla K., Bartsch C., Hitzing C., Krümpelmann L., Wienands J., Engels N. Grb2 and GRAP connect the B cell antigen receptor to Erk MAP kinase activation in human B cells. Sci. Rep. 2018;8:4244. doi: 10.1038/s41598-018-22544-x. PubMed DOI PMC

Geisberger R., Crameri R., Achatz G. Models of signal transduction through the B-cell antigen receptor. Immunology. 2003;110:401–410. doi: 10.1111/j.1365-2567.2003.01770.x. PubMed DOI PMC

Maity P.C., Datta M., Nicolò A., Jumaa H. Isotype Specific Assembly of B Cell Antigen Receptors and Synergism With Chemokine Receptor CXCR4. Front. Immunol. 2018;9:2988. doi: 10.3389/fimmu.2018.02988. PubMed DOI PMC

Lockey C., Young H., Brown J., Dixon A.M. Characterization of interactions within the Igα/Igβ transmembrane domains of the human B-cell receptor provides insights into receptor assembly. J. Biol. Chem. 2022;298:101843. doi: 10.1016/j.jbc.2022.101843. PubMed DOI PMC

Wemlinger S.M., Parker Harp C.R., Yu B., Hardy I.R., Seefeldt M., Matsuda J., Mingueneau M., Spilker K.A., Cameron T.O., Larrick J.W., et al. Preclinical Analysis of Candidate Anti-Human CD79 Therapeutic Antibodies Using a Humanized CD79 Mouse Model. J. Immunol. 2022;208:1566–1584. doi: 10.4049/jimmunol.2101056. PubMed DOI PMC

Xie W., Wucherpfennig K., Patel D.J. A structural platform for B cell receptor signaling. Cell Res. 2022;33:95–96. doi: 10.1038/s41422-022-00724-9. PubMed DOI PMC

Ma J., Wang W., Ma J., Xu Z. A Novel and Validated 8-Pyroptosis-Related Genes Based Risk Prediction Model for Diffuse Large B Cell Lymphoma. Biomolecules. 2022;12:1835. doi: 10.3390/biom12121835. PubMed DOI PMC

He X., Kläsener K., Iype J.M., Becker M., Maity P.C., Cavallari M., Nielsen P.J., Yang J., Reth M. Continuous signaling of CD79b and CD19 is required for the fitness of Burkitt lymphoma B cells. EMBO J. 2018;37:e97980. doi: 10.15252/embj.201797980. PubMed DOI PMC

Luger D., Yang Y.A., Raviv A., Weinberg D., Banerjee S., Lee M.J., Trepel J., Yang L., Wakefield L.M. Expression of the B-cell receptor component CD79a on immature myeloid cells contributes to their tumor promoting effects. PLoS ONE. 2013;8:e76115. doi: 10.1371/journal.pone.0076115. PubMed DOI PMC

Drake J.R. The immunobiology of ubiquitin-dependent B cell receptor functions. Mol. Immunol. 2018;101:146–154. doi: 10.1016/j.molimm.2018.05.022. PubMed DOI PMC

Corneth O.B.J., Neys S.F.H., Hendriks R.W. Aberrant B Cell Signaling in Autoimmune Diseases. Cells. 2022;11:3391. doi: 10.3390/cells11213391. PubMed DOI PMC

Cyster J.G., Allen C.D.C. B Cell Responses: Cell Interaction Dynamics and Decisions. Cell. 2019;177:524–540. doi: 10.1016/j.cell.2019.03.016. PubMed DOI PMC

Smith L.D., Minton A.R., Blunt M.D., Karydis L.I., Dutton D.A., Rogers-Broadway K.R., Dobson R., Liu R., Norster F., Hogg E., et al. BCR signaling contributes to autophagy regulation in chronic lymphocytic leukemia. Leukemia. 2020;34:640–644. doi: 10.1038/s41375-019-0557-y. PubMed DOI PMC

Carter M.J., Cox K.L., Blakemore S.J., Bogdanov Y.D., Happo L., Scott C.L., Strasser A., Packham G.K., Cragg M.S. BCR-signaling-induced cell death demonstrates dependency on multiple BH3-only proteins in a murine model of B-cell lymphoma. Cell Death Differ. 2016;23:303–312. doi: 10.1038/cdd.2015.97. PubMed DOI PMC

O’Neill S.K., Getahun A., Gauld S.B., Merrell K.T., Tamir I., Smith M.J., Dal Porto J.M., Li Q.Z., Cambier J.C. Monophosphorylation of CD79a and CD79b ITAM motifs initiates a SHIP-1 phosphatase-mediated inhibitory signaling cascade required for B cell anergy. Immunity. 2011;35:746–756. doi: 10.1016/j.immuni.2011.10.011. PubMed DOI PMC

Vuillier F., Dumas G., Magnac C., Prevost M.C., Lalanne A.I., Oppezzo P., Melanitou E., Dighiero G., Payelle-Brogard B. Lower levels of surface B-cell-receptor expression in chronic lymphocytic leukemia are associated with glycosylation and folding defects of the mu and CD79a chains. Blood. 2005;105:2933–2940. doi: 10.1182/blood-2004-09-3643. PubMed DOI

Zhang M., Veselits M., O’Neill S., Hou P., Reddi A.L., Berlin I., Ikeda M., Nash P.D., Longnecker R., Band H., et al. Ubiquitinylation of Ig beta dictates the endocytic fate of the B cell antigen receptor. J. Immunol. 2007;179:4435–4443. doi: 10.4049/jimmunol.179.7.4435. PubMed DOI

Sasaki Y., Iwai K. Roles of the NF-κB Pathway in B-Lymphocyte Biology. Curr. Top. Microbiol. Immunol. 2016;393:177–209. doi: 10.1007/82_2015_479. PubMed DOI

Almaden J.V., Liu Y.C., Yang E., Otero D.C., Birnbaum H., Davis-Turak J., Asagiri M., David M., Goldrath A.W., Hoffmann A. B-cell survival and development controlled by the coordination of NF-κB family members RelB and cRel. Blood. 2016;127:1276–1286. doi: 10.1182/blood-2014-10-606988. PubMed DOI PMC

Szydłowski M., Jabłońska E., Juszczyński P. FOXO1 transcription factor: A critical effector of the PI3K-AKT axis in B-cell development. Int. Rev. Immunol. 2014;33:146–157. doi: 10.3109/08830185.2014.885022. PubMed DOI

Chen J., Limon J.J., Blanc C., Peng S.L., Fruman D.A. Foxo1 regulates marginal zone B-cell development. Eur. J. Immunol. 2010;40:1890–1896. doi: 10.1002/eji.200939817. PubMed DOI PMC

Sevdali E., Block V., Lataretu M., Li H., Smulski C.R., Briem J.S., Heitz Y., Fischer B., Ramirez N.J., Grimbacher B., et al. BAFFR activates PI3K/AKT signaling in human naive but not in switched memory B cells through direct interactions with B cell antigen receptors. Cell Rep. 2022;39:111019. doi: 10.1016/j.celrep.2022.111019. PubMed DOI

Lang P., Stolpa J.C., Freiberg B.A., Crawford F., Kappler J., Kupfer A., Cambier J.C. TCR-induced transmembrane signaling by peptide/MHC class II via associated Ig-alpha/beta dimers. Science. 2001;291:1537–1540. doi: 10.1126/science.291.5508.1537. PubMed DOI

Katikaneni D.S., Jin L. B cell MHC class II signaling: A story of life and death. Hum. Immunol. 2019;80:37–43. doi: 10.1016/j.humimm.2018.04.013. PubMed DOI PMC

Watanabe K., Ichinose S., Hayashizaki K., Tsubata T. Induction of autophagy by B cell antigen receptor stimulation and its inhibition by costimulation. Biochem. Biophys. Res. Commun. 2008;374:274–281. doi: 10.1016/j.bbrc.2008.07.013. PubMed DOI

Arbogast F., Arnold J., Hammann P., Kuhn L., Chicher J., Murera D., Weishaar J., Muller S., Fauny J.D., Gros F. ATG5 is required for B cell polarization and presentation of particulate antigens. Autophagy. 2019;15:280–294. doi: 10.1080/15548627.2018.1516327. PubMed DOI PMC

Caro-Maldonado A., Wang R., Nichols A.G., Kuraoka M., Milasta S., Sun L.D., Gavin A.L., Abel E.D., Kelsoe G., Green D.R., et al. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J. Immunol. 2014;192:3626–3636. doi: 10.4049/jimmunol.1302062. PubMed DOI PMC

Jumaa H., Caganova M., McAllister E.J., Hoenig L., He X., Saltukoglu D., Brenker K., Köhler M., Leben R., Hauser A.E., et al. Immunoglobulin expression in the endoplasmic reticulum shapes the metabolic fitness of B lymphocytes. Life Sci. Alliance. 2020;3:e202000700. doi: 10.26508/lsa.202000700. PubMed DOI PMC

Love P.E., Hayes S.M. ITAM-mediated signaling by the T-cell antigen receptor. Cold Spring Harb. Perspect. Biol. 2010;2:a002485. doi: 10.1101/cshperspect.a002485. PubMed DOI PMC

Schroeder H.W., Jr., Imboden J.B., Torres R.M. Clinical Immunology: Principles and Practice. 5th ed. Elsevier; Amsterdam, The Netherlands: 2019. Antigen Receptor Genes, Gene Products, and Coreceptors.

Xu W., Berning P., Lenz G. Targeting B-cell receptor and PI3K signaling in diffuse large B-cell lymphoma. Blood. 2021;138:1110–1119. doi: 10.1182/blood.2020006784. PubMed DOI

Roche P.A., Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol. 2015;15:203–216. doi: 10.1038/nri3818. PubMed DOI PMC

Busman-Sahay K., Drake L., Sitaram A., Marks M., Drake J.R. Cis and trans regulatory mechanisms control AP2-mediated B cell receptor endocytosis via select tyrosine-based motifs. PLoS ONE. 2013;8:e54938. doi: 10.1371/journal.pone.0054938. PubMed DOI PMC

Crute B.W., Sheraden R., Ott V.L., Harley I.T.W., Getahun A., Cambier J.C. Inhibitory Receptor Trap: A Platform for Discovery of Inhibitory Receptors That Utilize Inositol Lipid and Phosphotyrosine Phosphatase Effectors. Front. Immunol. 2020;11:592329. doi: 10.3389/fimmu.2020.592329. PubMed DOI PMC

Franks S.E., Cambier J.C. Putting on the Brakes: Regulatory Kinases and Phosphatases Maintaining B Cell Anergy. Front. Immunol. 2018;9:665. doi: 10.3389/fimmu.2018.00665. PubMed DOI PMC

Pao L.I., Famiglietti S.J., Cambier J.C. Asymmetrical phosphorylation and function of immunoreceptor tyrosine-based activation motif tyrosines in B cell antigen receptor signal transduction. J. Immunol. 1998;160:3305–3314. doi: 10.4049/jimmunol.160.7.3305. PubMed DOI

Clark M.R., Campbell K.S., Kazlauskas A., Johnson S.A., Hertz M., Potter T.A., Pleiman C., Cambier J.C. The B cell antigen receptor complex: Association of Ig-alpha and Ig-beta with distinct cytoplasmic effectors. Science. 1992;258:123–126. doi: 10.1126/science.1439759. PubMed DOI

Mkaddem S.B., Murua A., Flament H., Titeca-Beauport D., Bounaix C., Danelli L., Launay P., Benhamou M., Blank U., Daugas E., et al. Lyn and Fyn function as molecular switches that control immunoreceptors to direct homeostasis or inflammation. Nat. Commun. 2017;8:246. doi: 10.1038/s41467-017-00294-0. PubMed DOI PMC

Gross A.J., Lyandres J.R., Panigrahi A.K., Prak E.T., DeFranco A.L. Developmental acquisition of the Lyn-CD22-SHP-1 inhibitory pathway promotes B cell tolerance. J. Immunol. 2009;182:5382–5392. doi: 10.4049/jimmunol.0803941. PubMed DOI PMC

Khan N., Rothstein T.L. The Alternate Pathway for BCR Signaling Induced by IL-4 Requires Lyn Tyrosine Kinase. J. Mol. Biol. 2021;433:166667. doi: 10.1016/j.jmb.2020.10.002. PubMed DOI

Kohlhas V., Hallek M., Nguyen P.H. Constitutive activation of Lyn kinase enhances BCR responsiveness, but not the development of CLL in Eµ-TCL1 mice. Blood Adv. 2020;4:6106–6116. doi: 10.1182/bloodadvances.2020002584. PubMed DOI PMC

Alsadeq A., Hobeika E., Medgyesi D., Kläsener K., Reth M. The role of the Syk/Shp-1 kinase-phosphatase equilibrium in B cell development and signaling. J. Immunol. 2014;193:268–276. doi: 10.4049/jimmunol.1203040. PubMed DOI

Adachi T., Wienands J., Wakabayashi C., Yakura H., Reth M., Tsubata T. SHP-1 requires inhibitory co-receptors to down-modulate B cell antigen receptor-mediated phosphorylation of cellular substrates. J. Biol. Chem. 2001;276:26648–26655. doi: 10.1074/jbc.M100997200. PubMed DOI

Miyazaki A., Yogosawa S., Murakami A., Kitamura D. Identification of CMTM7 as a transmembrane linker of BLNK and the B-cell receptor. PLoS ONE. 2012;7:e31829. doi: 10.1371/journal.pone.0031829. PubMed DOI PMC

Patterson H.C., Kraus M., Kim Y.M., Ploegh H., Rajewsky K. The B cell receptor promotes B cell activation and proliferation through a non-ITAM tyrosine in the Igalpha cytoplasmic domain. Immunity. 2006;25:55–65. doi: 10.1016/j.immuni.2006.04.014. PubMed DOI

Kabak S., Skaggs B.J., Gold M.R., Affolter M., West K.L., Foster M.S., Siemasko K., Chan A.C., Aebersold R., Clark M.R. The direct recruitment of BLNK to immunoglobulin alpha couples the B-cell antigen receptor to distal signaling pathways. Mol. Cell Biol. 2002;22:2524–2535. doi: 10.1128/MCB.22.8.2524-2535.2002. PubMed DOI PMC

Choi J., Phelan J.D., Wright G.W., Häupl B., Huang D.W., Shaffer A.L., 3rd, Young R.M., Wang Z., Zhao H., Yu X., et al. Regulation of B cell receptor-dependent NF-κB signaling by the tumor suppressor KLHL14. Proc. Natl. Acad. Sci. USA. 2020;117:6092–6102. doi: 10.1073/pnas.1921187117. PubMed DOI PMC

Veselits M., Tanaka A., Chen Y., Hamel K., Mandal M., Kandasamy M., Manicassamy B., O’Neill S.K., Wilson P., Sciammas R., et al. Igβ ubiquitination activates PI3K signals required for endosomal sorting. J. Exp. Med. 2017;214:3775–3790. doi: 10.1084/jem.20161868. PubMed DOI PMC

Satpathy S., Wagner S.A., Beli P., Gupta R., Kristiansen T.A., Malinova D., Francavilla C., Tolar P., Bishop G.A., Hostager B.S., et al. Systems-wide analysis of BCR signalosomes and downstream phosphorylation and ubiquitylation. Mol. Syst. Biol. 2015;11:810. doi: 10.15252/msb.20145880. PubMed DOI PMC

Drake L., McGovern-Brindisi E.M., Drake J.R. BCR ubiquitination controls BCR-mediated antigen processing and presentation. Blood. 2006;108:4086–4093. doi: 10.1182/blood-2006-05-025338. PubMed DOI PMC

Katkere B., Rosa S., Drake J.R. The Syk-binding ubiquitin ligase c-Cbl mediates signaling-dependent B cell receptor ubiquitination and B cell receptor-mediated antigen processing and presentation. J. Biol. Chem. 2012;287:16636–16644. doi: 10.1074/jbc.M112.357640. PubMed DOI PMC

Fearon D.T., Carroll M.C. Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu. Rev. Immunol. 2000;18:393–422. doi: 10.1146/annurev.immunol.18.1.393. PubMed DOI

Whillock A.L., Ybarra T.K., Bishop G.A. TNF receptor-associated factor 3 restrains B-cell receptor signaling in normal and malignant B cells. J. Biol. Chem. 2021;296:100465. doi: 10.1016/j.jbc.2021.100465. PubMed DOI PMC

Bishop G.A., Stunz L.L., Hostager B.S. TRAF3 as a Multifaceted Regulator of B Lymphocyte Survival and Activation. Front. Immunol. 2018;9:2161. doi: 10.3389/fimmu.2018.02161. PubMed DOI PMC

Vallabhapurapu S., Matsuzawa A., Zhang W., Tseng P.H., Keats J.J., Wang H., Vignali D.A., Bergsagel P.L., Karin M. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat. Immunol. 2008;9:1364–1370. doi: 10.1038/ni.1678. PubMed DOI PMC

Mosquera Orgueira A., Ferreiro Ferro R., Díaz Arias J., Aliste Santos C., Antelo Rodríguez B., Bao Pérez L., Alonso Vence N., Bendaña López Á., Abuin Blanco A., Melero Valentín P., et al. Detection of new drivers of frequent B-cell lymphoid neoplasms using an integrated analysis of whole genomes. PLoS ONE. 2021;16:e0248886. doi: 10.1371/journal.pone.0248886. PubMed DOI PMC

Wilson W.H., Young R.M., Schmitz R., Yang Y., Pittaluga S., Wright G., Lih C.J., Williams P.M., Shaffer A.L., Gerecitano J., et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat. Med. 2015;21:922–926. doi: 10.1038/nm.3884. PubMed DOI PMC

Visco C., Tanasi I., Quaglia F.M., Ferrarini I., Fraenza C., Krampera M. Oncogenic Mutations of MYD88 and CD79B in Diffuse Large B-Cell Lymphoma and Implications for Clinical Practice. Cancers. 2020;12:2913. doi: 10.3390/cancers12102913. PubMed DOI PMC

Grondona P., Bucher P., Schulze-Osthoff K., Hailfinger S., Schmitt A. NF-κB Activation in Lymphoid Malignancies: Genetics, Signaling, and Targeted Therapy. Biomedicines. 2018;6:38. doi: 10.3390/biomedicines6020038. PubMed DOI PMC

Miao Y., Medeiros L.J., Xu-Monette Z.Y., Li J., Young K.H. Dysregulation of Cell Survival in Diffuse Large B Cell Lymphoma: Mechanisms and Therapeutic Targets. Front. Oncol. 2019;9:107. doi: 10.3389/fonc.2019.00107. PubMed DOI PMC

Nagel D., Bognar M., Eitelhuber A.C., Kutzner K., Vincendeau M., Krappmann D. Combinatorial BTK and MALT1 inhibition augments killing of CD79 mutant diffuse large B cell lymphoma. Oncotarget. 2015;6:42232–42242. doi: 10.18632/oncotarget.6273. PubMed DOI PMC

Pasqualucci L., Klein U. NF-κB Mutations in Germinal Center B-Cell Lymphomas: Relation to NF-κB Function in Normal B Cells. Biomedicines. 2022;10:2450. doi: 10.3390/biomedicines10102450. PubMed DOI PMC

Ducharme O., Beylot-Barry M., Pham-Ledard A., Bohers E., Viailly P.J., Bandres T., Faur N., Frison E., Vergier B., Jardin F., et al. Mutations of the B-Cell Receptor Pathway Confer Chemoresistance in Primary Cutaneous Diffuse Large B-Cell Lymphoma Leg Type. J. Investig. Dermatol. 2019;139:2334–2342.e8. doi: 10.1016/j.jid.2019.05.008. PubMed DOI

Myklebust J.H., Brody J., Kohrt H.E., Kolstad A., Czerwinski D.K., Wälchli S., Green M.R., Trøen G., Liestøl K., Beiske K., et al. Distinct patterns of B-cell receptor signaling in non-Hodgkin lymphomas identified by single-cell profiling. Blood. 2017;129:759–770. doi: 10.1182/blood-2016-05-718494. PubMed DOI PMC

Thurner L., Hartmann S., Neumann F., Hoth M., Stilgenbauer S., Küppers R., Preuss K.D., Bewarder M. Role of Specific B-Cell Receptor Antigens in Lymphomagenesis. Front. Oncol. 2020;10:604685. doi: 10.3389/fonc.2020.604685. PubMed DOI PMC

Andrades A., Álvarez-Pérez J.C., Patiño-Mercau J.R., Cuadros M., Baliñas-Gavira C., Medina P.P. Recurrent splice site mutations affect key diffuse large B-cell lymphoma genes. Blood. 2022;139:2406–2410. doi: 10.1182/blood.2021011708. PubMed DOI

Young R.M., Wu T., Schmitz R., Dawood M., Xiao W., Phelan J.D., Xu W., Menard L., Meffre E., Chan W.C., et al. Survival of human lymphoma cells requires B-cell receptor engagement by self-antigens. Proc. Natl. Acad. Sci. USA. 2015;112:13447–13454. doi: 10.1073/pnas.1514944112. PubMed DOI PMC

Lohr J.G., Stojanov P., Lawrence M.S., Auclair D., Chapuy B., Sougnez C., Cruz-Gordillo P., Knoechel B., Asmann Y.W., Slager S.L., et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc. Natl. Acad. Sci. USA. 2012;109:3879–3884. doi: 10.1073/pnas.1121343109. PubMed DOI PMC

Payelle-Brogard B., Magnac C., Mauro F.R., Mandelli F., Dighiero G. Analysis of the B-cell receptor B29 (CD79b) gene in familial chronic lymphocytic leukemia. Blood. 1999;94:3516–3522. doi: 10.1182/blood.V94.10.3516.422k09_3516_3522. PubMed DOI

Takeuchi T., Yamaguchi M., Kobayashi K., Miyazaki K., Tawara I., Imai H., Ono R., Nosaka T., Tanaka K., Katayama N. MYD88, CD79B, and CARD11 gene mutations in CD5-positive diffuse large B-cell lymphoma. Cancer. 2017;123:1166–1173. doi: 10.1002/cncr.30404. PubMed DOI

Bohers E., Mareschal S., Bouzelfen A., Marchand V., Ruminy P., Maingonnat C., Ménard A.L., Etancelin P., Bertrand P., Dubois S., et al. Targetable activating mutations are very frequent in GCB and ABC diffuse large B-cell lymphoma. Genes Chromosomes Cancer. 2014;53:144–153. doi: 10.1002/gcc.22126. PubMed DOI

Poulain S., Roumier C., Galiègue-Zouitina S., Daudignon A., Herbaux C., Aiijou R., Lainelle A., Broucqsault N., Bertrand E., Manier S., et al. Genome wide SNP array identified multiple mechanisms of genetic changes in Waldenstrom macroglobulinemia. Am. J. Hematol. 2013;88:948–954. doi: 10.1002/ajh.23545. PubMed DOI

Okosun J., Bödör C., Wang J., Araf S., Yang C.Y., Pan C., Boller S., Cittaro D., Bozek M., Iqbal S., et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat. Genet. 2014;46:176–181. doi: 10.1038/ng.2856. PubMed DOI PMC

Krysiak K., Gomez F., White B.S., Matlock M., Miller C.A., Trani L., Fronick C.C., Fulton R.S., Kreisel F., Cashen A.F., et al. Recurrent somatic mutations affecting B-cell receptor signaling pathway genes in follicular lymphoma. Blood. 2017;129:473–483. doi: 10.1182/blood-2016-07-729954. PubMed DOI PMC

Trøen G., Warsame A., Delabie J. CD79B and MYD88 Mutations in Splenic Marginal Zone Lymphoma. ISRN Oncol. 2013;2013:252318. doi: 10.1155/2013/252318. PubMed DOI PMC

Thompson A.A., Talley J.A., Do H.N., Kagan H.L., Kunkel L., Berenson J., Cooper M.D., Saxon A., Wall R. Aberrations of the B-Cell Receptor B29 (CD79b) Gene in Chronic Lymphocytic Leukemia. Blood. 1997;90:1387–1394. doi: 10.1182/blood.V90.4.1387. PubMed DOI

Cetin G.O., Baris I.C., Caner V., Sarikepe B., Sen Turk N., Tepeli E., Hacioglu S., Sari I., Bagci G., Keskin A. Mutational status of EZH2 and CD79B hot spots in mature B-cell non-Hodgkin’s lymphomas: Novel CD79B variations have been revealed. Eur. Rev. Med. Pharmacol. Sci. 2016;20:830–836. PubMed

Bruno A., Boisselier B., Labreche K., Marie Y., Polivka M., Jouvet A., Adam C., Figarella-Branger D., Miquel C., Eimer S., et al. Mutational analysis of primary central nervous system lymphoma. Oncotarget. 2014;5:5065–5075. doi: 10.18632/oncotarget.2080. PubMed DOI PMC

Kim Y., Ju H., Kim D.H., Yoo H.Y., Kim S.J., Kim W.S., Ko Y.H. CD79B and MYD88 mutations in diffuse large B-cell lymphoma. Hum. Pathol. 2014;45:556–564. doi: 10.1016/j.humpath.2013.10.023. PubMed DOI

Saieg M.A., Geddie W.R., Boerner S.L., Bailey D., Crump M., da Cunha Santos G. EZH2 and CD79B mutational status over time in B-cell non-Hodgkin lymphomas detected by high-throughput sequencing using minimal samples. Cancer Cytopathol. 2013;121:377–386. doi: 10.1002/cncy.21262. PubMed DOI PMC

Hunter Z.R., Xu L., Yang G., Zhou Y., Liu X., Cao Y., Manning R.J., Tripsas C., Patterson C.J., Sheehy P., et al. The genomic landscape of Waldenström macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123:1637–1646. doi: 10.1182/blood-2013-09-525808. PubMed DOI

Alfarano A., Indraccolo S., Circosta P., Minuzzo S., Vallario A., Zamarchi R., Fregonese A., Calderazzo F., Faldella A., Aragno M., et al. An alternatively spliced form of CD79b gene may account for altered B-cell receptor expression in B-chronic lymphocytic leukemia. Blood. 1999;93:2327–2335. doi: 10.1182/blood.V93.7.2327. PubMed DOI

Jiménez C., Alonso-Álvarez S., Alcoceba M., Ordóñez G.R., García-Álvarez M., Prieto-Conde M.I., Chillón M.C., Balanzategui A., Corral R., Marín L.A., et al. From Waldenström’s macroglobulinemia to aggressive diffuse large B-cell lymphoma: A whole-exome analysis of abnormalities leading to transformation. Blood Cancer J. 2017;7:e591. doi: 10.1038/bcj.2017.72. PubMed DOI PMC

Wang J.Q., Jeelall Y.S., Humburg P., Batchelor E.L., Kaya S.M., Yoo H.M., Goodnow C.C., Horikawa K. Synergistic cooperation and crosstalk between MYD88(L265P) and mutations that dysregulate CD79B and surface IgM. J. Exp. Med. 2017;214:2759–2776. doi: 10.1084/jem.20161454. PubMed DOI PMC

Gordon M.S., Kato R.M., Lansigan F., Thompson A.A., Wall R., Rawlings D.J. Aberrant B cell receptor signaling from B29 (Igbeta, CD79b) gene mutations of chronic lymphocytic leukemia B cells. Proc. Natl. Acad. Sci. USA. 2000;97:5504–5509. doi: 10.1073/pnas.090087097. PubMed DOI PMC

Faumont N., Taoui O., Collares D., Jais J.P., Leroy K., Prévaud L., Jardin F., Molina T.J., Copie-Bergman C., Petit B., et al. c-Rel Is the Pivotal NF-κB Subunit in Germinal Center Diffuse Large B-Cell Lymphoma: A LYSA Study. Front. Oncol. 2021;11:638897. doi: 10.3389/fonc.2021.638897. PubMed DOI PMC

Compagno M., Lim W.K., Grunn A., Nandula S.V., Brahmachary M., Shen Q., Bertoni F., Ponzoni M., Scandurra M., Califano A., et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature. 2009;459:717–721. doi: 10.1038/nature07968. PubMed DOI PMC

Davis R.E., Brown K.D., Siebenlist U., Staudt L.M. Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J. Exp. Med. 2001;194:1861–1874. doi: 10.1084/jem.194.12.1861. PubMed DOI PMC

Lu H.Y., Bauman B.M., Arjunaraja S., Dorjbal B., Milner J.D., Snow A.L., Turvey S.E. The CBM-opathies-A Rapidly Expanding Spectrum of Human Inborn Errors of Immunity Caused by Mutations in the CARD11-BCL10-MALT1 Complex. Front. Immunol. 2018;9:2078. doi: 10.3389/fimmu.2018.02078. PubMed DOI PMC

Turvey S.E., Durandy A., Fischer A., Fung S.Y., Geha R.S., Gewies A., Giese T., Greil J., Keller B., McKinnon M.L., et al. The CARD11-BCL10-MALT1 (CBM) signalosome complex: Stepping into the limelight of human primary immunodeficiency. J. Allergy Clin. Immunol. 2014;134:276–284. doi: 10.1016/j.jaci.2014.06.015. PubMed DOI PMC

Kloo B., Nagel D., Pfeifer M., Grau M., Düwel M., Vincendeau M., Dörken B., Lenz P., Lenz G., Krappmann D. Critical role of PI3K signaling for NF-kappaB-dependent survival in a subset of activated B-cell-like diffuse large B-cell lymphoma cells. Proc. Natl. Acad. Sci. USA. 2011;108:272–277. doi: 10.1073/pnas.1008969108. PubMed DOI PMC

Kim A., Seong K.M., Kang H.J., Park S., Lee S.S. Inhibition of Lyn is a promising treatment for mantle cell lymphoma with bortezomib resistance. Oncotarget. 2015;6:38225–38238. doi: 10.18632/oncotarget.5425. PubMed DOI PMC

Ezell S.A., Wang S., Bihani T., Lai Z., Grosskurth S.E., Tepsuporn S., Davies B.R., Huszar D., Byth K.F. Differential regulation of mTOR signaling determines sensitivity to AKT inhibition in diffuse large B cell lymphoma. Oncotarget. 2016;7:9163–9174. doi: 10.18632/oncotarget.7036. PubMed DOI PMC

Majchrzak A., Witkowska M., Smolewski P. Inhibition of the PI3K/Akt/mTOR signaling pathway in diffuse large B-cell lymphoma: Current knowledge and clinical significance. Molecules. 2014;19:14304–14315. doi: 10.3390/molecules190914304. PubMed DOI PMC

Ma M.C.J., Tadros S., Bouska A., Heavican T., Yang H., Deng Q., Moore D., Akhter A., Hartert K., Jain N., et al. Subtype-specific and co-occurring genetic alterations in B-cell non-Hodgkin lymphoma. Haematologica. 2022;107:690–701. doi: 10.3324/haematol.2020.274258. PubMed DOI PMC

Xu P.P., Shen R., Shi Z.Y., Cheng S., Wang L., Liu Y., Zhang L., Huang R., Ma X., Wu X., et al. The Prognostic Significance of CD79B Mutation in Diffuse Large B-Cell Lymphoma: A Meta-analysis and Systematic Literature Review. Clin. Lymphoma Myeloma Leuk. 2022;22:e1051–e1058.e1. doi: 10.1016/j.clml.2022.08.006. PubMed DOI

de Groen R.A.L., Schrader A.M.R., Kersten M.J., Pals S.T., Vermaat J.S.P. MYD88 in the driver’s seat of B-cell lymphomagenesis: From molecular mechanisms to clinical implications. Haematologica. 2019;104:2337–2348. doi: 10.3324/haematol.2019.227272. PubMed DOI PMC

Sewastianik T., Guerrera M.L., Adler K., Dennis P.S., Wright K., Shanmugam V., Huang Y., Tanton H., Jiang M., Kofides A., et al. Human MYD88L265P is insufficient by itself to drive neoplastic transformation in mature mouse B cells. Blood Adv. 2019;3:3360–3374. doi: 10.1182/bloodadvances.2019000588. PubMed DOI PMC

Alcoceba M., García-Álvarez M., Medina A., Maldonado R., González-Calle V., Chillón M.C., Sarasquete M.E., González M., García-Sanz R., Jiménez C. MYD88 Mutations: Transforming the Landscape of IgM Monoclonal Gammopathies. Int. J. Mol. Sci. 2022;23:5570. doi: 10.3390/ijms23105570. PubMed DOI PMC

Motshwene P.G., Moncrieffe M.C., Grossmann J.G., Kao C., Ayaluru M., Sandercock A.M., Robinson C.V., Latz E., Gay N.J. An oligomeric signaling platform formed by the Toll-like receptor signal transducers MyD88 and IRAK-4. J. Biol. Chem. 2009;284:25404–25411. doi: 10.1074/jbc.M109.022392. PubMed DOI PMC

Balka K.R., De Nardo D. Understanding early TLR signaling through the Myddosome. J. Leukoc. Biol. 2019;105:339–351. doi: 10.1002/JLB.MR0318-096R. PubMed DOI

Cao F., Deliz-Aguirre R., Gerpott F.H., Ziska E., Taylor M.J. Myddosome clustering in IL-1 receptor signaling regulates the formation of an NF-κB activating signalosome. EMBO Rep. 2023;24:e57233. doi: 10.15252/embr.202357233. PubMed DOI PMC

De Nardo D., Balka K.R., Cardona Gloria Y., Rao V.R., Latz E., Masters S.L. Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a dual role in myddosome formation and Toll-like receptor signaling. J. Biol. Chem. 2018;293:15195–15207. doi: 10.1074/jbc.RA118.003314. PubMed DOI PMC

Weber T., Schmitz R. Molecular Subgroups of Diffuse Large B Cell Lymphoma: Biology and Implications for Clinical Practice. Curr. Oncol. Rep. 2022;24:13–21. doi: 10.1007/s11912-021-01155-2. PubMed DOI PMC

Roschewski M., Phelan J.D., Wilson W.H. Molecular Classification and Treatment of Diffuse Large B-Cell Lymphoma and Primary Mediastinal B-Cell Lymphoma. Cancer J. 2020;26:195–205. doi: 10.1097/PPO.0000000000000450. PubMed DOI PMC

Fornecker L.M., Muller L., Bertrand F., Paul N., Pichot A., Herbrecht R., Chenard M.P., Mauvieux L., Vallat L., Bahram S., et al. Multi-omics dataset to decipher the complexity of drug resistance in diffuse large B-cell lymphoma. Sci. Rep. 2019;9:895. doi: 10.1038/s41598-018-37273-4. PubMed DOI PMC

George B., Chowdhury S.M., Hart A., Sircar A., Singh S.K., Nath U.K., Mamgain M., Singhal N.K., Sehgal L., Jain N. Ibrutinib Resistance Mechanisms and Treatment Strategies for B-Cell lymphomas. Cancers. 2020;12:1328. doi: 10.3390/cancers12051328. PubMed DOI PMC

Kim J.H., Kim W.S., Ryu K., Kim S.J., Park C. CD79B limits response of diffuse large B cell lymphoma to ibrutinib. Leuk. Lymphoma. 2016;57:1413–1422. doi: 10.3109/10428194.2015.1113276. PubMed DOI

Rip J., de Bruijn M.J.W., Neys S.F.H., Singh S.P., Willar J., van Hulst J.A.C., Hendriks R.W., Corneth O.B.J. Bruton’s tyrosine kinase inhibition induces rewiring of proximal and distal B-cell receptor signaling in mice. Eur. J. Immunol. 2021;51:2251–2265. doi: 10.1002/eji.202048968. PubMed DOI PMC

Domka K., Goral A., Firczuk M. cROSsing the Line: Between Beneficial and Harmful Effects of Reactive Oxygen Species in B-Cell Malignancies. Front. Immunol. 2020;11:1538. doi: 10.3389/fimmu.2020.01538. PubMed DOI PMC

Wang S.S., Davis S., Cerhan J.R., Hartge P., Severson R.K., Cozen W., Lan Q., Welch R., Chanock S.J., Rothman N. Polymorphisms in oxidative stress genes and risk for non-Hodgkin lymphoma. Carcinogenesis. 2006;27:1828–1834. doi: 10.1093/carcin/bgl013. PubMed DOI

Müller-Winkler J., Mitter R., Rappe J.C.F., Vanes L., Schweighoffer E., Mohammadi H., Wack A., Tybulewicz V.L.J. Critical requirement for BCR, BAFF, and BAFFR in memory B cell survival. J. Exp. Med. 2021;218:e20191393. doi: 10.1084/jem.20191393. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...