The effect of space travel on human reproductive health: a systematic review
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38238348
PubMed Central
PMC10796912
DOI
10.1038/s41526-024-00351-1
PII: 10.1038/s41526-024-00351-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
With increasing possibilities of multi-year missions in deep space, colonizing other planets, and space tourism, it is important to investigate the effects of space travel on human reproduction. This study aimed to systematically review and summarize the results of available literature on space travel, microgravity, and space radiation, or Earth-based spaceflight analogues impact on female and male reproductive functions in humans. This systematic review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and Space Biomedicine Systematic Review methods. The search was performed using three databases: PubMed, Web of Science, and Medline Complete. During the database search, 364 studies were identified. After the study selection process, 16 studies were included in the review. Five studies included female participants, and the findings show an increased risk of thromboembolism in combined oral contraceptive users, decreased decidualization, functional insufficiency of corpus luteum, and decreased progesterone and LH levels related to space travel or its simulation. Male participants were included in 13 studies. In males, reproductive health considerations focused on the decrease in testosterone and sex hormone-binding globulin levels, the ratio of male offspring, sperm motility, sperm vitality, and the increase in sperm DNA fragmentation related to space travel or its simulation. Results of this systematic review highlight the need to focus more on the astronaut's reproductive health in future research, as only 16 studies were found during the literature search, and many more research questions related to reproductive health in astronauts still need to be answered.
Zobrazit více v PubMed
Ahrari K, Omolaoye TS, Goswami N, Alsuwaidi H, du Plessis SS. Effects of space flight on sperm function and integrity: A systematic review. Front Physiol. 2022;13:904375. doi: 10.3389/fphys.2022.904375. PubMed DOI PMC
Mishra B, Luderer U. Reproductive hazards of space travel in women and men. Nat. Rev. Endocrinol. 2019;15:713–730. doi: 10.1038/s41574-019-0267-6. PubMed DOI PMC
Macho L, et al. The response of the endocrine system to stress loads during space flight in human subjects. Adv. Space Res. 2003;31:1605–1610. doi: 10.1016/S0273-1177(03)00097-8. PubMed DOI
Narici MV, de Boer MD. Disuse of the musculo-skeletal system in space and on Earth. Eur. J. Appl Physiol. 2011;111:403–420. doi: 10.1007/s00421-010-1556-x. PubMed DOI
Tanaka K, Nishimura N, Kawai Y. Adaptation to microgravity, deconditioning, and countermeasures. J. Physiological Sci. 2017;67:271–281. doi: 10.1007/s12576-016-0514-8. PubMed DOI PMC
Belavý DL, et al. The effects of bed rest and countermeasure exercise on the endocrine system in male adults: evidence for immobilization-induced reduction in sex hormone-binding globulin levels. J. Endocrinol. Invest. 2012;35:54–62. PubMed
Fuller N, Smith JT, Ford AT. Impacts of ionising radiation on sperm quality, DNA integrity and post-fertilisation development in marine and freshwater crustaceans. Ecotoxicol. Environ. Saf. 2019;186:109764. doi: 10.1016/j.ecoenv.2019.109764. PubMed DOI
Straume, T., Blattnig, S. R., Blattnig, S. & Zeitlin, C. Radiation Hazards and the Colonization of Mars. https://www.researchgate.net/publication/271092972.
Ferrando AA, Lane HW, Stuart CA, Davis-Street J, Wolfe RR. Prolonged bed rest decreases skeletal muscle and whole body protein synthesis. Am. J. Physiol.-Endocrinol. Metab. 1996;270:E627–E633. doi: 10.1152/ajpendo.1996.270.4.E627. PubMed DOI
Zachwieja JJ, et al. Testosterone Administration Preserves Protein Balance But Not Muscle Strength during 28 Days of Bed Rest1. J. Clin. Endocrinol. Metab. 1999;84:207–212. PubMed
Blaber EA, et al. Microgravity Reduces the Differentiation and Regenerative Potential of Embryonic Stem Cells. Stem Cells Dev. 2015;24:2605–2621. doi: 10.1089/scd.2015.0218. PubMed DOI PMC
Cho H-J, et al. Microgravity inhibits decidualization via decreasing Akt activity and FOXO3a expression in human endometrial stromal cells. Sci. Rep. 2019;9:12094. doi: 10.1038/s41598-019-48580-9. PubMed DOI PMC
Rose BI. Female astronauts: Impact of space radiation on menopause. Eur. J. Obstet. Gynecol. Reprod. Biol. 2022;271:210–213. doi: 10.1016/j.ejogrb.2022.02.022. PubMed DOI
Kim S-Y, Kim SK, Lee JR, Woodruff TK. Toward precision medicine for preserving fertility in cancer patients: existing and emerging fertility preservation options for women. J. Gynecol. Oncol. 2016;27:e22. doi: 10.3802/jgo.2016.27.e22. PubMed DOI PMC
Usik MA, Ogneva IV. Cytoskeleton Structure in Mouse Sperm and Testes After 30 Days of Hindlimb Unloading and 12 h of Recovery. Cell. Physiol. Biochem. 2018;51:375–392. doi: 10.1159/000495235. PubMed DOI
Merrill AH, Wang E, Mullins RE, Grindeland RE, Popova IA. Analyses of plasma for metabolic and hormonal changes in rats flown aboard COSMOS 2044. J. Appl Physiol. 1992;73:S132–S135. doi: 10.1152/jappl.1992.73.2.S132. PubMed DOI
Mazonakis, M., Damilakis, J., Varveris, H. & Gourtsouiannis, N. Radiation dose to testes and risk of infertility from radiotherapy for rectal cancer. Oncol Rep10.3892/or.15.3.729 (2006). PubMed
Buchli C, Martling A, Arver S, Holm T. Testicular Function After Radiotherapy for Rectal Cancer—A Review. J. Sex. Med. 2011;8:3220–3226. doi: 10.1111/j.1743-6109.2011.02455.x. PubMed DOI
Mark S, et al. The Impact of Sex and Gender on Adaptation to Space: Executive Summary. J. Women’s Health. 2014;23:941–947. doi: 10.1089/jwh.2014.4914. PubMed DOI PMC
Cantillo-Medina CP, Perdomo-Romero AY, Ramírez-Perdomo CA. Características y experiencias de los cuidadores familiares en el contexto de la salud mental. Rev. Peru. Med Exp. Salud Publica. 2022;39:185–192. doi: 10.17843/rpmesp.2022.392.11111. PubMed DOI PMC
Grandahl M, Stern J, Funkquist E-L. Longer shared parental leave is associated with longer duration of breastfeeding: a cross-sectional study among Swedish mothers and their partners. BMC Pediatr. 2020;20:159. doi: 10.1186/s12887-020-02065-1. PubMed DOI PMC
Kumar D, et al. Semen Abnormalities, Sperm DNA Damage and Global Hypermethylation in Health Workers Occupationally Exposed to Ionizing Radiation. PLoS One. 2013;8:e69927. doi: 10.1371/journal.pone.0069927. PubMed DOI PMC
Zhou, D. D., Hao, J. L., Guo, K. M., Lu, C. W. & Liu, X. D. Sperm quality and DNA damage in men from Jilin Province, China, who are occupationally exposed to ionizing radiation. Genet. Mol. Res.15, (2016). PubMed
Gorbacheva EYU, et al. The State of the Organs of the Female Reproductive System after a 5-Day “Dry” Immersion. Int J. Mol. Sci. 2023;24:4160. doi: 10.3390/ijms24044160. PubMed DOI PMC
Loder I, et al. Adrenomedullin and elements of orthostatic competence after 41 h of voluntary submersion in water as measured in four healthy males. Eur. J. Appl Physiol. 2006;96:644–650. doi: 10.1007/s00421-005-0122-4. PubMed DOI
Meignié A, et al. The Effects of Menstrual Cycle Phase on Elite Athlete Performance: A Critical and Systematic Review. Front Physiol. 2021;12:654585. doi: 10.3389/fphys.2021.654585. PubMed DOI PMC
Strollo, F. et al. A Short Term-12° Head Down Tilt Does Not Mimic Microgravity in Terms of Human Gonadal Function. Microgravity Sci. Technol.XVIII-3/4, (2006).
Liang X, et al. Changes in the Diurnal Rhythms during a 45-Day Head-Down Bed Rest. PLoS One. 2012;7:e47984. doi: 10.1371/journal.pone.0047984. PubMed DOI PMC
Smorawiński J, et al. Effects of 3-day bed rest on physiological responses to graded exercise in athletes and sedentary men. J. Appl Physiol. 2001;91:249–257. doi: 10.1152/jappl.2001.91.1.249. PubMed DOI
Smith SM, Heer M, Wang Z, Huntoon CL, Zwart SR. Long-Duration Space Flight and Bed Rest Effects on Testosterone and Other Steroids. J. Clin. Endocrinol. Metab. 2012;97:270–278. doi: 10.1210/jc.2011-2233. PubMed DOI PMC
Ikeuchi T, et al. Human sperm motility in a microgravity environment. Reprod. Med Biol. 2005;4:161–168. doi: 10.1111/j.1447-0578.2005.00092.x. PubMed DOI PMC
Tomilovskaya E, et al. The First Female Dry Immersion (NAIAD-2020): Design and Specifics of a 3-Day Study. Front Physiol. 2021;12:661959. doi: 10.3389/fphys.2021.661959. PubMed DOI PMC
Little BB, Rigsby CH, Little LR. Pilot and astronaut offspring: possible G-force effects on human sex ratio. Aviat. Space Environ. Med. 1987;58:707–709. PubMed
Zwart SR, Auñón-Chancellor SM, Heer M, Melin MM, Smith SM. Albumin, oral contraceptives, and venous thromboembolism risk in astronauts. J. Appl Physiol. 2022;132:1232–1239. doi: 10.1152/japplphysiol.00024.2022. PubMed DOI PMC
Boada M, et al. Microgravity effects on frozen human sperm samples. J. Assist Reprod. Genet. 2020;37:2249–2257. doi: 10.1007/s10815-020-01877-5. PubMed DOI PMC
Ronca AE, et al. Effects of Sex and Gender on Adaptations to Space: Reproductive Health. J. Women’s Health. 2014;23:967–974. doi: 10.1089/jwh.2014.4915. PubMed DOI PMC
Günther V, et al. Changes of salivary estrogen levels for detecting the fertile period. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015;194:38–42. doi: 10.1016/j.ejogrb.2015.08.007. PubMed DOI
Hong X, et al. Effects of spaceflight aboard the International Space Station on mouse estrous cycle and ovarian gene expression. NPJ Microgravity. 2021;7:11. doi: 10.1038/s41526-021-00139-7. PubMed DOI PMC
Munro MG, Critchley HOD, Fraser IS. The two FIGO systems for normal and abnormal uterine bleeding symptoms and classification of causes of abnormal uterine bleeding in the reproductive years: 2018 revisions. Int. J. Gynecol. Obstet. 2018;143:393–408. doi: 10.1002/ijgo.12666. PubMed DOI
Jain V, Wotring VE. Medically induced amenorrhea in female astronauts. NPJ Microgravity. 2016;2:16008. doi: 10.1038/npjmgrav.2016.8. PubMed DOI PMC
Auñón-Chancellor SM, Pattarini JM, Moll S, Sargsyan A. Venous Thrombosis during Spaceflight. N. Engl. J. Med. 2020;382:89–90. doi: 10.1056/NEJMc1905875. PubMed DOI
Jennings RT, Santy PA. Reproduction in the Space Environment. Obstet. Gynecol. Surv. 1990;45:7–17. doi: 10.1097/00006254-199001000-00006. PubMed DOI
Jain V, et al. Human development and reproduction in space—a European perspective. NPJ Microgravity. 2023;9:24. doi: 10.1038/s41526-023-00272-5. PubMed DOI PMC
Steller J, Alberts J, Ronca A. Oxidative Stress as Cause, Consequence, or Biomarker of Altered Female Reproduction and Development in the Space Environment. Int J. Mol. Sci. 2018;19:3729. doi: 10.3390/ijms19123729. PubMed DOI PMC
Sekulić SR, Lukač DD, Naumović NM. The fetus cannot exercise like an astronaut: gravity loading is necessary for the physiological development during second half of pregnancy. Med. Hypotheses. 2005;64:221–228. doi: 10.1016/j.mehy.2004.08.012. PubMed DOI
Wong AM, De Santis M. Rat gestation during space flight: Outcomes for dams and their offspring born after return to Earth. Integr. Physiological Behav. Sci. 1997;32:322–342. doi: 10.1007/BF02688630. PubMed DOI
Barish RJ. In-Flight Radiation Exposure During Pregnancy. Obstet. Gynecol. 2004;103:1326–1330. doi: 10.1097/01.AOG.0000126947.90065.90. PubMed DOI
Petrikovsky B, Terrani M, Sichinava L. Transatlantic Air Travel in the Third Trimester of Pregnancy: Does It Affect the Fetus? Am. J. Perinatol. Rep. 2018;08:e71–e73. doi: 10.1055/s-0038-1641584. PubMed DOI PMC
Grajewski B, et al. Miscarriage Among Flight Attendants. Epidemiology. 2015;26:192–203. doi: 10.1097/EDE.0000000000000225. PubMed DOI PMC
Bush NR, et al. Maternal Stress During Pregnancy Predicts Infant Infectious and Noninfectious Illness. J. Pediatr. 2021;228:117–125.e2. doi: 10.1016/j.jpeds.2020.08.041. PubMed DOI PMC
Lima SAM, et al. Is the risk of low birth weight or preterm labor greater when maternal stress is experienced during pregnancy? A systematic review and meta-analysis of cohort studies. PLoS One. 2018;13:e0200594. doi: 10.1371/journal.pone.0200594. PubMed DOI PMC
Barbonetti A, D’Andrea S, Francavilla S. Testosterone replacement therapy. Andrology. 2020;8:1551–1566. doi: 10.1111/andr.12774. PubMed DOI
Strollo F, et al. The effect of microgravity on testicular androgen secretion. Aviat. Space Environ. Med. 1998;69:133–136. PubMed
Tash JS, Johnson DC, Enders GC. Long-term (6-wk) hindlimb suspension inhibits spermatogenesis in adult male rats. J. Appl Physiol. 2002;92:1191–1198. doi: 10.1152/japplphysiol.00931.2001. PubMed DOI
Hossain AM, Barik S, Kulkarni PM. Lack of significant morphological differences between human X and Y spermatozoa and their precursor cells (spermatids) exposed to different prehybridization treatments. J. Androl. 2001;22:119–123. doi: 10.1002/j.1939-4640.2001.tb02161.x. PubMed DOI
Rahman MS, Pang M-G. New Biological Insights on X and Y Chromosome-Bearing Spermatozoa. Front Cell Dev. Biol. 2020;7:388. doi: 10.3389/fcell.2019.00388. PubMed DOI PMC
You Y-A, et al. Sex chromosome-dependent differential viability of human spermatozoa during prolonged incubation. Hum. Reprod. 2017;32:1183–1191. doi: 10.1093/humrep/dex080. PubMed DOI
Hijikata Y, et al. Association between occupational testicular radiation exposure and lower male sex ratio of offspring among orthopedic surgeons. PLoS One. 2021;16:e0262089. doi: 10.1371/journal.pone.0262089. PubMed DOI PMC
Reulen RC, et al. Offspring sex ratio and gonadal irradiation in the British Childhood Cancer Survivor Study. Br. J. Cancer. 2007;96:1439–1441. doi: 10.1038/sj.bjc.6603736. PubMed DOI PMC
Wakayama S, et al. Evaluating the long-term effect of space radiation on the reproductive normality of mammalian sperm preserved on the International Space Station. Sci. Adv. 2021;7:eabg5554. doi: 10.1126/sciadv.abg5554. PubMed DOI PMC
Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ n71 (2021) 10.1136/bmj.n71. PubMed PMC
Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst. Rev. 2016;5:210. doi: 10.1186/s13643-016-0384-4. PubMed DOI PMC
Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epidemiol. Community Health (1978) 1998;52:377–384. doi: 10.1136/jech.52.6.377. PubMed DOI PMC
Gimunová M, Paulínyová A, Bernaciková M, Paludo AC. The Prevalence of Menstrual Cycle Disorders in Female Athletes from Different Sports Disciplines: A Rapid Review. Int J. Environ. Res Public Health. 2022;19:14243. doi: 10.3390/ijerph192114243. PubMed DOI PMC
Paludo AC, Paravlic A, Dvořáková K, Gimunová M. The Effect of Menstrual Cycle on Perceptual Responses in Athletes: A Systematic Review With Meta-Analysis. Front Psychol. 2022;13:926854. doi: 10.3389/fpsyg.2022.926854. PubMed DOI PMC
Winnard A, et al. Systematic review of countermeasures to minimise physiological changes and risk of injury to the lumbopelvic area following long-term microgravity. Musculoskelet. Sci. Pr. 2017;27:S5–S14. doi: 10.1016/j.msksp.2016.12.009. PubMed DOI