Investigation of the potential effects of estrogen receptor modulators on immune checkpoint molecules
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LX22NPO5102 and LX22NPO5107
European- Union
LX22NPO5102 and LX22NPO5107
European- Union
LX22NPO5102 and LX22NPO5107
European- Union
SVV260637; SVV260521; UNCE 204064; Progres LF1 Q38 and Q27, Cooperatio ONCO
Charles University
. LM2023053
Ministry of Education, Youth, and Sports
TN02000109
Technology Agency of the Czech Republic
NU22-D-136 and NU21-08-00407
the Ministry of Health
PubMed
38321096
PubMed Central
PMC10847107
DOI
10.1038/s41598-024-51804-2
PII: 10.1038/s41598-024-51804-2
Knihovny.cz E-zdroje
- MeSH
- antigen CTLA-4 MeSH
- antigeny CD274 MeSH
- antigeny CD279 MeSH
- imunoterapie MeSH
- lidé MeSH
- modulátory estrogenních receptorů MeSH
- nádory * terapie MeSH
- proteiny kontrolních bodů imunitní reakce * MeSH
- quercetin MeSH
- selektivní modulátory estrogenních receptorů farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigen CTLA-4 MeSH
- antigeny CD274 MeSH
- antigeny CD279 MeSH
- modulátory estrogenních receptorů MeSH
- proteiny kontrolních bodů imunitní reakce * MeSH
- quercetin MeSH
- selektivní modulátory estrogenních receptorů MeSH
Immune checkpoints regulate the immune system response. Recent studies suggest that flavonoids, known as phytoestrogens, may inhibit the PD-1/PD-L1 axis. We explored the potential of estrogens and 17 Selective Estrogen Receptor Modulators (SERMs) as inhibiting ligands for immune checkpoint proteins (CTLA-4, PD-L1, PD-1, and CD80). Our docking studies revealed strong binding energy values for quinestrol, quercetin, and bazedoxifene, indicating their potential to inhibit PD-1 and CTLA-4. Quercetin and bazedoxifene, known to modulate EGFR and IL-6R alongside estrogen receptors, can influence the immune checkpoint functionality. We discuss the impact of SERMs on PD-1 and CTLA-4, suggesting that these SERMs could have therapeutic effects through immune checkpoint inhibition. This study highlights the potential of SERMs as inhibitory ligands for immune checkpoint proteins, emphasizing the importance of considering PD-1 and CTLA-4 inhibition when evaluating SERMs as therapeutic agents. Our findings open new avenues for cancer immunotherapy by exploring the interaction between various SERMs and immune checkpoint pathways.
BIOCEV 1st Faculty of Medicine Charles University 252 50 Vestec Czech Republic
Institute of Anatomy 1st Faculty of Medicine Charles University 120 00 Prague Czech Republic
Zobrazit více v PubMed
Abramenko N, et al. Estrogen receptor modulators in viral infections such as sars-cov-2: Therapeutic consequences. Int. J. Mol. Sci. 2021;22(12):6551. doi: 10.3390/ijms22126551. PubMed DOI PMC
Breithaupt-Faloppa AC, et al. 17β-Estradiol, a potential ally to alleviate SARS-CoV-2 infection. Clinics (Sao Paulo) 2020;75:e1980. doi: 10.6061/clinics/2020/e1980. PubMed DOI PMC
Millas I, Duarte Barros M. Estrogen receptors and their roles in the immune and respiratory systems. Anat. Rec. 2021;304(6):1185–1193. doi: 10.1002/ar.24612. PubMed DOI
Klein SL, Flanagan KL. Sex differences in immune responses. Nat. Rev. Immunol. 2016;16(10):626–638. doi: 10.1038/nri.2016.90. PubMed DOI
Brábek J, et al. Interleukin-6: Molecule in the intersection of cancer, ageing and COVID-19. Int. J. Mol. Sci. 2020;21(21):7937. doi: 10.3390/ijms21217937. PubMed DOI PMC
Kaňuchová M, et al. Genistein does not inhibit TGF-beta1-induced conversion of human dermal fibroblasts to myofibroblasts. Physiol. Res. 2021;70(5):815–820. doi: 10.33549/physiolres.934666. PubMed DOI PMC
Lathigara D, Kaushal D, Wilson RB. Molecular mechanisms of western diet-induced obesity and obesity-related carcinogenesis—A narrative review. Metabolites. 2023;13(5):675. doi: 10.3390/metabo13050675. PubMed DOI PMC
Gál P, et al. Autoimmunity, cancer and COVID-19 abnormally activate wound healing pathways: Critical role of inflammation. Histochem. Cell. Biol. 2022;158(5):415–434. doi: 10.1007/s00418-022-02140-x. PubMed DOI PMC
Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol. Rev. 2008;224:166–182. doi: 10.1111/j.1600-065X.2008.00662.x. PubMed DOI
Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: Similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol. 2016;39(1):98–106. doi: 10.1097/COC.0000000000000239. PubMed DOI PMC
Rotte A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J. Exp. Clin. Cancer Res. 2019;38(1):255. doi: 10.1186/s13046-019-1259-z. PubMed DOI PMC
Okazaki T, Honjo T. PD-1 and PD-1 ligands: From discovery to clinical application. Int. Immunol. 2007;19(7):813–824. doi: 10.1093/intimm/dxm057. PubMed DOI
Chemnitz JM, et al. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol. 2004;173(2):945–954. doi: 10.4049/jimmunol.173.2.945. PubMed DOI
Laba S, Mallett G, Amarnath S. The depths of PD-1 function within the tumor microenvironment beyond CD8(+) T cells. Semin. Cancer Biol. 2022;86(Pt 2):1045–1055. doi: 10.1016/j.semcancer.2021.05.022. PubMed DOI
Celis-Gutierrez J, et al. Quantitative interactomics in primary T cells provides a rationale for concomitant PD-1 and BTLA coinhibitor blockade in cancer immunotherapy. Cell Rep. 2019;27(11):3315–3330.e7. doi: 10.1016/j.celrep.2019.05.041. PubMed DOI PMC
Concha-Benavente F, et al. Identification of the cell-intrinsic and -extrinsic pathways downstream of EGFR and IFNγ that induce PD-L1 Expression in head and neck cancer. Cancer Res. 2016;76(5):1031–1043. doi: 10.1158/0008-5472.CAN-15-2001. PubMed DOI PMC
Pandey P, et al. Review to understand the crosstalk between immunotherapy and tumor metabolism. Molecules. 2023;28(2):862. doi: 10.3390/molecules28020862. PubMed DOI PMC
Lin X, et al. Progress in PD-1/PD-L1 pathway inhibitors: From biomacromolecules to small molecules. Eur. J. Med. Chem. 2020;186:111876. doi: 10.1016/j.ejmech.2019.111876. PubMed DOI
Wu X, et al. Insights into non-peptide small-molecule inhibitors of the PD-1/PD-L1 interaction: Development and perspective. Bioorg. Med. Chem. 2021;33:116038. doi: 10.1016/j.bmc.2021.116038. PubMed DOI
Smith WM, et al. Therapeutic targeting of immune checkpoints with small molecule inhibitors. Am. J. Transl. Res. 2019;11(2):529–541. PubMed PMC
Li W, et al. Immune checkpoint PD-1/PD-L1 CTLA-4/CD80 are blocked by Rhus Verniciflua stokes and its active compounds. Molecules. 2019;24(22):4062. doi: 10.3390/molecules24224062. PubMed DOI PMC
Jing L, et al. Quercetin inhibiting the PD-1/PD-L1 interaction for immune-enhancing cancer chemopreventive agent. Phytother. Res. 2021;35(11):6441–6451. doi: 10.1002/ptr.7297. PubMed DOI
Kim JH, et al. Kaempferol and its glycoside, Kaempferol 7-O-rhamnoside, inhibit PD-1/PD-L1 interaction in vitro. Int. J. Mol. Sci. 2020;21(9):3239. doi: 10.3390/ijms21093239. PubMed DOI PMC
Bajusz D, Rácz A, Héberger K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminf. 2015;7(1):20. doi: 10.1186/s13321-015-0069-3. PubMed DOI PMC
Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31(2):455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Berman HM, et al. The protein data bank. Nucleic Acids Res. 2000;28(1):235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC
Collins AV, et al. The interaction properties of costimulatory molecules revisited. Immunity. 2002;17(2):201–210. doi: 10.1016/S1074-7613(02)00362-X. PubMed DOI
Chen W, et al. Strategies for developing PD-1 inhibitors and future directions. Biochem. Pharmacol. 2022;202:115113. doi: 10.1016/j.bcp.2022.115113. PubMed DOI
Park J-J, et al. Checkpoint inhibition through small molecule-induced internalization of programmed death-ligand 1. Nat. Commun. 2021;12(1):1222. doi: 10.1038/s41467-021-21410-1. PubMed DOI PMC
Dong Y, Sun Q, Zhang X. PD-1 and its ligands are important immune checkpoints in cancer. Oncotarget. 2017;8(2):2171–2186. doi: 10.18632/oncotarget.13895. PubMed DOI PMC
Brooks B, et al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 2004;4:187–217. doi: 10.1002/jcc.540040211. DOI
Jo S, et al. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008;29(11):1859–1865. doi: 10.1002/jcc.20945. PubMed DOI
Alifu M, et al. Checkpoint inhibitors as dual immunotherapy in advanced non-small cell lung cancer: A meta-analysis. Front. Oncol. 2023;13:1146905. doi: 10.3389/fonc.2023.1146905. PubMed DOI PMC
Wu K, et al. The efficacy and safety of combination of PD-1 and CTLA-4 inhibitors: A meta-analysis. Exp. Hematol. Oncol. 2019;8:26. doi: 10.1186/s40164-019-0150-0. PubMed DOI PMC
Mahmud AR, et al. Natural flavonols: Actions, mechanisms, and potential therapeutic utility for various diseases. Beni Suef Univ. J. Basic Appl. Sci. 2023;12(1):47. doi: 10.1186/s43088-023-00387-4. PubMed DOI PMC
Agency, E.M., Assessment Report for Conbriza. 2009. p. 46.
Sidhu A, et al. Effect of quinestrol on body weight, vital organs, biochemicals and genotoxicity in adult male lesser bandicoot rat, Bandicota bengalensis. Pestic Biochem. Physiol. 2020;165:104544. doi: 10.1016/j.pestbp.2020.02.010. PubMed DOI
Aitken DA, Daw EG. Allergic reaction to quinestrol. Br. Med. J. 1970;2(5702):177. doi: 10.1136/bmj.2.5702.177-a. PubMed DOI PMC
Tong D. Selective estrogen receptor modulators contribute to prostate cancer treatment by regulating the tumor immune microenvironment. J. Immunother. Cancer. 2022;10(4):e002944. doi: 10.1136/jitc-2021-002944. PubMed DOI PMC
Segovia-Mendoza M, Morales-Montor J. Immune tumor microenvironment in breast cancer and the participation of estrogen and its receptors in cancer physiopathology. Front. Immunol. 2019;10:348. doi: 10.3389/fimmu.2019.00348. PubMed DOI PMC
Zhang N, et al. The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer. Int. J. Oncol. 2016;49(4):1360–1368. doi: 10.3892/ijo.2016.3632. PubMed DOI
Tan X, et al. Mechanisms of Quercetin against atrial fibrillation explored by network pharmacology combined with molecular docking and experimental validation. Sci. Rep. 2022;12(1):9777. doi: 10.1038/s41598-022-13911-w. PubMed DOI PMC
Hering NA, et al. Targeting interleukin-6/glycoprotein-130 signaling by raloxifene or SC144 enhances paclitaxel efficacy in pancreatic cancer. Cancers (Basel) 2023;15(2):456. doi: 10.3390/cancers15020456. PubMed DOI PMC
Maennling AE, et al. Molecular targeting therapy against EGFR family in breast cancer: Progress and future potentials. Cancers (Basel) 2019;11(12):1826. doi: 10.3390/cancers11121826. PubMed DOI PMC
Frawley T, Piskareva O. Extracellular vesicle dissemination of epidermal growth factor receptor and ligands and its role in cancer progression. Cancers (Basel) 2020;12(11):3200. doi: 10.3390/cancers12113200. PubMed DOI PMC
Peles E, Yarden Y. Neu and its ligands: From an oncogene to neural factors. Bioessays. 1993;15(12):815–824. doi: 10.1002/bies.950151207. PubMed DOI
Wieduwilt MJ, Moasser MM. The epidermal growth factor receptor family: Biology driving targeted therapeutics. Cell. Mol. Life Sci. 2008;65(10):1566–1584. doi: 10.1007/s00018-008-7440-8. PubMed DOI PMC
Li CW, et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat. Commun. 2016;7:12632. doi: 10.1038/ncomms12632. PubMed DOI PMC
Hsu JM, et al. Posttranslational modifications of PD-L1 and their applications in cancer therapy. Cancer Res. 2018;78(22):6349–6353. doi: 10.1158/0008-5472.CAN-18-1892. PubMed DOI PMC
Lastwika KJ, et al. Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res. 2016;76(2):227–238. doi: 10.1158/0008-5472.CAN-14-3362. PubMed DOI
Lin K, et al. EGFR-TKI down-regulates PD-L1 in EGFR mutant NSCLC through inhibiting NF-κB. Biochem. Biophys. Res. Commun. 2015;463(1–2):95–101. doi: 10.1016/j.bbrc.2015.05.030. PubMed DOI
Li X, et al. Interactions between EGFR and PD-1/PD-L1 pathway: Implications for treatment of NSCLC. Cancer Lett. 2018;418:1–9. doi: 10.1016/j.canlet.2018.01.005. PubMed DOI
Lee BS, et al. Hippo effector YAP directly regulates the expression of PD-L1 transcripts in EGFR-TKI-resistant lung adenocarcinoma. Biochem. Biophys. Res. Commun. 2017;491(2):493–499. doi: 10.1016/j.bbrc.2017.07.007. PubMed DOI
To KKW, Fong W, Cho WCS. Immunotherapy in treating EGFR-mutant lung cancer: Current challenges and new strategies. Front. Oncol. 2021;11:635007. doi: 10.3389/fonc.2021.635007. PubMed DOI PMC
Wölfle SJ, et al. PD-L1 expression on tolerogenic APCs is controlled by STAT-3. Eur. J. Immunol. 2011;41(2):413–424. doi: 10.1002/eji.201040979. PubMed DOI
Koopmans I, et al. A novel bispecific antibody for EGFR-directed blockade of the PD-1/PD-L1 immune checkpoint. Oncoimmunology. 2018;7(8):e1466016. doi: 10.1080/2162402X.2018.1466016. PubMed DOI PMC
Mohan N, et al. Comparative characterization of different molecular formats of bispecific antibodies targeting EGFR and PD-L1. Pharmaceutics. 2022;14(7):1381. doi: 10.3390/pharmaceutics14071381. PubMed DOI PMC
Chen M, et al. Insluin and epithelial growth factor (EGF) promote programmed death ligand 1(PD-L1) production and transport in colon cancer stem cells. BMC Cancer. 2019;19(1):153. doi: 10.1186/s12885-019-5364-3. PubMed DOI PMC
Akbay EA, et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 2013;3(12):1355–1363. doi: 10.1158/2159-8290.CD-13-0310. PubMed DOI PMC
Božović A, et al. Estrogen receptor beta: The promising biomarker and potential target in metastases. Int. J. Mol. Sci. 2021;22(4):1656. doi: 10.3390/ijms22041656. PubMed DOI PMC
Porras L, Ismail H, Mader S. Positive regulation of estrogen receptor alpha in breast tumorigenesis. Cells. 2021;10(11):2966. doi: 10.3390/cells10112966. PubMed DOI PMC
Hanstein B, et al. Insights into the molecular biology of the estrogen receptor define novel therapeutic targets for breast cancer. Eur. J. Endocrinol. 2004;150(3):243–255. doi: 10.1530/eje.0.1500243. PubMed DOI
Azuma K, et al. Association of estrogen receptor alpha and histone deacetylase 6 causes rapid deacetylation of tubulin in breast cancer cells. Cancer Res. 2009;69(7):2935–2940. doi: 10.1158/0008-5472.CAN-08-3458. PubMed DOI
Lai JS, et al. Metastases of prostate cancer express estrogen receptor-beta. Urology. 2004;64(4):814–820. doi: 10.1016/j.urology.2004.05.036. PubMed DOI
Steiner MS, Raghow S. Antiestrogens and selective estrogen receptor modulators reduce prostate cancer risk. World J. Urol. 2003;21(1):31–36. doi: 10.1007/s00345-002-0316-x. PubMed DOI
Fan P, Jordan VC. Estrogen receptor and the unfolded protein response: Double-edged swords in therapy for estrogen receptor-positive breast cancer. Target Oncol. 2022;17(2):111–124. doi: 10.1007/s11523-022-00870-5. PubMed DOI PMC
Diaz-Ruano AB, et al. Estradiol and estrone have different biological functions to induce NF-κB-driven inflammation, EMT and stemness in ER+ cancer cells. Int. J. Mol. Sci. 2023;24(2):1221. doi: 10.3390/ijms24021221. PubMed DOI PMC
Yang L, et al. Posttranscriptional control of PD-L1 expression by 17β-estradiol via PI3K/Akt signaling pathway in ERα-positive cancer cell lines. Int. J. Gynecol. Cancer. 2017;27(2):196–205. doi: 10.1097/IGC.0000000000000875. PubMed DOI PMC
Nilsson N, Carlsten H. Estrogen induces suppression of natural killer cell cytotoxicity and augmentation of polyclonal B cell activation. Cell. Immunol. 1994;158(1):131–139. doi: 10.1006/cimm.1994.1262. PubMed DOI
Vegeto E, et al. Regulation of the lipopolysaccharide signal transduction pathway by 17beta-estradiol in macrophage cells. J. Steroid Biochem. Mol. Biol. 2004;91(1–2):59–66. doi: 10.1016/j.jsbmb.2004.02.004. PubMed DOI
Polanczyk MJ, et al. Treg suppressive activity involves estrogen-dependent expression of programmed death-1 (PD-1) Int. Immunol. 2007;19(3):337–343. doi: 10.1093/intimm/dxl151. PubMed DOI
Hernandez S, et al. Differential spatial gene and protein expression associated with recurrence following chemoradiation for localized anal squamous cell cancer. Cancers (Basel) 2023;15(6):1701. doi: 10.3390/cancers15061701. PubMed DOI PMC
Zhang Z, et al. Sema4D silencing increases the sensitivity of nivolumab to B16–F10 resistant melanoma via inhibiting the PI3K/AKT signaling pathway. PeerJ. 2023;11:e15172. doi: 10.7717/peerj.15172. PubMed DOI PMC
Mehra S, et al. Remodeling of stromal immune microenvironment by urolithin A improves survival with immune checkpoint blockade in pancreatic cancer. Cancer Res. Commun. 2023;3(7):1224–1236. doi: 10.1158/2767-9764.CRC-22-0329. PubMed DOI PMC
Okita R, et al. PD-L1 overexpression is partially regulated by EGFR/HER2 signaling and associated with poor prognosis in patients with non-small-cell lung cancer. Cancer Immunol. Immunother. 2017;66(7):865–876. doi: 10.1007/s00262-017-1986-y. PubMed DOI PMC
Zerdes I, et al. Genetic, transcriptional and post-translational regulation of the programmed death protein ligand 1 in cancer: Biology and clinical correlations. Oncogene. 2018;37(34):4639–4661. doi: 10.1038/s41388-018-0303-3. PubMed DOI PMC
Rašková M, et al. The role of IL-6 in cancer cell invasiveness and metastasis-overview and therapeutic opportunities. Cells. 2022;11(22):3698. doi: 10.3390/cells11223698. PubMed DOI PMC
Wang R, et al. S100a9 deficiency accelerates MDS-associated tumor escape via PD-1/PD-L1 overexpression. Acta Biochim. Biophys. Sin. (Shanghai) 2023;55(2):194–201. doi: 10.3724/abbs.2023015. PubMed DOI PMC
Li J, et al. PD-1(+) mast cell enhanced by PD-1 blocking therapy associated with resistance to immunotherapy. Cancer Immunol. Immunother. 2023;72(3):633–645. doi: 10.1007/s00262-022-03282-6. PubMed DOI PMC
Bao S, et al. TGF-β1 induces immune escape by enhancing PD-1 and CTLA-4 expression on T lymphocytes in hepatocellular carcinoma. Front. Oncol. 2021;11:694145. doi: 10.3389/fonc.2021.694145. PubMed DOI PMC
Hernández-Vega AM, Camacho-Arroyo I. Crosstalk between 17β-estradiol and TGF-β signaling modulates glioblastoma progression. Brain Sci. 2021;11(5):564. doi: 10.3390/brainsci11050564. PubMed DOI PMC
Ito I, et al. Estrogen inhibits transforming growth factor beta signaling by promoting Smad2/3 degradation. J. Biol. Chem. 2010;285(19):14747–14755. doi: 10.1074/jbc.M109.093039. PubMed DOI PMC
Vazquez Rodriguez G, et al. Estradiol promotes breast cancer cell migration via recruitment and activation of neutrophils. Cancer Immunol. Res. 2017;5(3):234–247. doi: 10.1158/2326-6066.CIR-16-0150. PubMed DOI
Ghafouri-Fard S, et al. The impact of the phytotherapeutic agent quercetin on expression of genes and activity of signaling pathways. Biomed. Pharmacother. 2021;141:111847. doi: 10.1016/j.biopha.2021.111847. PubMed DOI
Alnusaire TS, et al. Revealing the underlying mechanism of acacia nilotica against asthma from a systematic perspective: A network pharmacology and molecular docking study. Life (Basel) 2023;13(2):411. PubMed PMC
Jiao P, et al. Integrating network pharmacology and experimental validation to elucidate the mechanism of Yiqi Yangyin decoction in suppressing non-small-cell lung cancer. Biomed. Res. Int. 2023;2023:4967544. doi: 10.1155/2023/4967544. PubMed DOI PMC
Khalid HR, et al. Integrated system pharmacology approaches to elucidate multi-target mechanism of solanum surattense against hepatocellular carcinoma. Molecules. 2022;27(19):6220. doi: 10.3390/molecules27196220. PubMed DOI PMC
Liu M, et al. Investigation of the underlying mechanism of Huangqi-Dangshen for myasthenia gravis treatment via molecular docking and network pharmacology. Evid. Based Complement Alternat. Med. 2023;2023:5301024. doi: 10.1155/2023/5301024. PubMed DOI PMC
Pan J, et al. Qingfei Jiedu decoction inhibits PD-L1 expression in lung adenocarcinoma based on network pharmacology analysis, molecular docking and experimental verification. Front. Pharmacol. 2022;13:897966. doi: 10.3389/fphar.2022.897966. PubMed DOI PMC
Chen X, et al. EGFR and ERK activation resists flavonoid quercetin-induced anticancer activities in human cervical cancer cells in vitro. Oncol. Lett. 2021;22(5):754. doi: 10.3892/ol.2021.13015. PubMed DOI PMC
Yu F, Jiang LL, Di YC. Effect of quercetin on heat shock protein 27 expression in prostate cancer cells. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2014;36(5):506–509. PubMed
Parcellier A, et al. HSP27 is a ubiquitin-binding protein involved in I-kappaBalpha proteasomal degradation. Mol. Cell Biol. 2003;23(16):5790–5802. doi: 10.1128/MCB.23.16.5790-5802.2003. PubMed DOI PMC
Pozios I, et al. Raloxifene inhibits pancreatic adenocarcinoma growth by interfering with ERβ and IL-6/gp130/STAT3 signaling. Cell. Oncol. (Dordr) 2021;44(1):167–177. doi: 10.1007/s13402-020-00559-9. PubMed DOI PMC
Luo P, et al. Raloxifene inhibits IL-6/STAT3 signaling pathway and protects against high-fat-induced atherosclerosis in ApoE(-/-) mice. Life Sci. 2020;261:118304. doi: 10.1016/j.lfs.2020.118304. PubMed DOI
Kim L, et al. Bazedoxifene, a GP130 inhibitor, modulates emt signaling and exhibits antitumor effects in HPV-positive cervical cancer. Int. J. Mol. Sci. 2021;22(16):8693. doi: 10.3390/ijms22168693. PubMed DOI PMC
Tian J, et al. Bazedoxifene is a novel IL-6/GP130 inhibitor for treating triple-negative breast cancer. Breast Cancer Res. Treat. 2019;175(3):553–566. doi: 10.1007/s10549-019-05183-2. PubMed DOI
Song W, et al. Bazedoxifene plays a protective role against inflammatory injury of endothelial cells by targeting CD40. Cardiovasc. Ther. 2020;2020:1795853. doi: 10.1155/2020/1795853. PubMed DOI PMC
Fahmy UA, et al. Potentiality of raloxifene loaded melittin functionalized lipidic nanovesicles against pancreatic cancer cells. Drug Deliv. 2022;29(1):1863–1877. doi: 10.1080/10717544.2022.2072544. PubMed DOI PMC
Ma Y, et al. Raloxifene, identified as a novel LSD1 inhibitor, suppresses the migration of renal cell carcinoma. Future Med. Chem. 2021;13(6):533–542. doi: 10.4155/fmc-2020-0323. PubMed DOI
Chen S, et al. In vitro and in silico analyses of the inhibition of human aldehyde oxidase by bazedoxifene, lasofoxifene, and structural analogues. J. Pharmacol. Exp. Ther. 2019;371(1):75–86. doi: 10.1124/jpet.119.259267. PubMed DOI
Beedham C. Aldehyde oxidase; new approaches to old problems. Xenobiotica. 2020;50(1):34–50. doi: 10.1080/00498254.2019.1626029. PubMed DOI
Manevski N, et al. Metabolism by aldehyde oxidase: Drug design and complementary approaches to challenges in drug discovery. J. Med. Chem. 2019;62(24):10955–10994. doi: 10.1021/acs.jmedchem.9b00875. PubMed DOI
Pettersen EF, et al. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25(13):1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Biovia, D.S., BIOVIA Discovery Studio Visualizer (2D diagram and scheme of the interactions with amino acids). 2020, BIOVIA Workbook: San Diego, USA.
Backman TW, Cao Y, Girke T. ChemMine tools: An online service for analyzing and clustering small molecules. Nucleic Acids Res. 2011;39:W486–91. doi: 10.1093/nar/gkr320. PubMed DOI PMC
Krieger E, et al. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins. 2009;77(Suppl 9):114–22. doi: 10.1002/prot.22570. PubMed DOI PMC
Vangone A, et al. Large-scale prediction of binding affinity in protein-small ligand complexes: The PRODIGY-LIG web server. Bioinformatics. 2019;35(9):1585–1587. doi: 10.1093/bioinformatics/bty816. PubMed DOI