Harmony in the Molecular Orchestra of Hearing: Developmental Mechanisms from the Ear to the Brain
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
P01 AG051443
NIA NIH HHS - United States
R01 AG060504
NIA NIH HHS - United States
R01 DC015252
NIDCD NIH HHS - United States
R01 DC016099
NIDCD NIH HHS - United States
PubMed
38360566
PubMed Central
PMC11787624
DOI
10.1146/annurev-neuro-081423-093942
Knihovny.cz E-zdroje
- Klíčová slova
- auditory cortex, cochlea, cochlear nucleus, inferior colliculus, medial geniculate body, superior olivary complex,
- MeSH
- lidé MeSH
- mozek metabolismus růst a vývoj MeSH
- sluch * fyziologie MeSH
- sluchová dráha * fyziologie MeSH
- sluchové korové centrum metabolismus fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Auditory processing in mammals begins in the peripheral inner ear and extends to the auditory cortex. Sound is transduced from mechanical stimuli into electrochemical signals of hair cells, which relay auditory information via the primary auditory neurons to cochlear nuclei. Information is subsequently processed in the superior olivary complex, lateral lemniscus, and inferior colliculus and projects to the auditory cortex via the medial geniculate body in the thalamus. Recent advances have provided valuable insights into the development and functioning of auditory structures, complementing our understanding of the physiological mechanisms underlying auditory processing. This comprehensive review explores the genetic mechanisms required for auditory system development from the peripheral cochlea to the auditory cortex. We highlight transcription factors and other genes with key recurring and interacting roles in guiding auditory system development and organization. Understanding these gene regulatory networks holds promise for developing novel therapeutic strategies for hearing disorders, benefiting millions globally.
Department of Neurological Sciences University of Nebraska Medical Center Omaha Nebraska USA; email
Department of Physiology and Cell Biology School of Medicine University of Nevada Reno Nevada USA
Zobrazit více v PubMed
Agoston Z, Li N, Haslinger A, Wizenmann A, Schulte D. 2012. Genetic and physical interaction of Meis2, Pax3 and Pax7 during dorsal midbrain development. BMC Dev. Biol. 12:10. PubMed PMC
Altman J, Bayer SA. 1989. Development of the rat thalamus: V. The posterior lobule of the thalamic neuroepithelium and the time and site of origin and settling pattern of neurons of the medial geniculate body. J. Comp. Neurol. 284:567–80 PubMed
Arac A, Zhao P, Dobkin BH, Carmichael ST, Golshani P. 2019. Deep Behavior: a deep learning toolbox for automated analysis of animal and human behavior imaging data. Front. Syst. Neurosci. 13:20. PubMed PMC
Arnold SJ, Huang G-J, Cheung AFP, Era T, Nishikawa S-I, et al. 2008. The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes Dev. 22(18):2479–84 PubMed PMC
Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, et al. 1999. Math1: an essential gene for the generation of inner ear hair cells. Science 284:1837–41 PubMed
Blinkiewicz PV, Long MR, Stoner ZA, Ketchum EM, Sheltz-Kempf SN, Duncan JS. 2023. Gata3 is required in late proneurosensory development for proper sensory cell formation and organization. Sci. Rep. 13:12573. PubMed PMC
Bordeynik-Cohen M, Sperber M, Ebbers L, Messika-Gold N, Krohs C, et al. 2023. Shared and organ-specific gene-expression programs during the development of the cochlea and the superior olivary complex. RNA Biol. 20:629–40 PubMed PMC
Bouchard M, de Caprona D, Busslinger M, Xu P, Fritzsch B. 2010. Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation. BMC Dev. Biol. 10:89. PubMed PMC
Budinger E 2020. Primary auditory cortex and the thalamo-cortico-thalamic circuitry I. Anatomy. In The Senses: A Comprehensive Reference, ed. Fritzsch B, pp. 623–56. Oxford, UK: Elsevier. 2nd ed.
Budinger E, Kanold PO. 2018. Auditory cortex circuits. In The Mammalian Auditory Pathways, ed. Oliver D, Cant N, Fay R, Popper A, pp. 199–233. Cham, Switz.: Springer
Cai X, Kardon AP, Snyder LM, Kuzirian MS, Minestro S, et al. 2016. Bhlhb5::flpo allele uncovers a requirement for Bhlhb5 for the development of the dorsal cochlear nucleus. Dev. Biol. 414:149–60 PubMed PMC
Chizhikov VV, Iskusnykh IY, Fattakhov N, Fritzsch B. 2021. Lmx1a and Lmx1b are redundantly required for the development of multiple components of the mammalian auditory system. Neuroscience 452:247–64 PubMed PMC
Chonko KT, Jahan I, Stone J, Wright MC, Fujiyama T, et al. 2013. Atoh1 directs hair cell differentiation and survival in the late embryonic mouse inner ear. Dev. Biol. 381:401–10 PubMed PMC
Chumak T, Tothova D, Filova I, Bures Z, Popelar J, et al. 2021. Overexpression of Isl1 under the Pax2 promoter, leads to impaired sound processing and increased inhibition in the inferior colliculus. Int. J. Mol. Sci. 22:4507. PubMed PMC
Cossart R, Garel S. 2022. Step by step: cells with multiple functions in cortical circuit assembly. Nat. Rev. Neurosci. 23:395–410 PubMed
Cossart R, Khazipov R. 2022. How development sculpts hippocampal circuits and function. Physiol. Rev. 102:343–78 PubMed
Dabdoub A, Fritzsch B, Popper AN, Fay RR, eds. 2016. The Primary Auditory Neurons of the Mammalian Cochlea. New York: Springer
Dennis DJ, Han S, Schuurmans C. 2019. bHLH transcription factors in neural development, disease, and reprogramming. Brain Res. 1705:48–65 PubMed
Di Bonito M, Studer M. 2017. Cellular and molecular underpinnings of neuronal assembly in the central auditory system during mouse development. Front. Neural Circuits 11:18. PubMed PMC
Di Bonito M, Studer M, Puelles L. 2017. Nuclear derivatives and axonal projections originating from rhombomere 4 in the mouse hindbrain. Brain Struct. Funct. 222:3509–42 PubMed PMC
Driscoll ME, Tadi P. 2022. Neuroanatomy, Inferior Colliculus. Treasure Island, FL: StatPearls Publ. PubMed
Driver EC, Kelley MW. 2020. Development of the cochlea. Development 147:dev162263. PubMed PMC
Duncan JS, Fritzsch B. 2013. Continued expression of GATA3 is necessary for cochlear neurosensory development. PLOS ONE 8:e62046. PubMed PMC
Dvorakova M, Macova I, Bohuslavova R, Anderova M, Fritzsch B, Pavlinkova G. 2020. Early ear neuronal development, but not olfactory or lens development, can proceed without SOX2. Dev. Biol. 457:43–56 PubMed PMC
Eggenschwiler JT, Bulgakov OV, Qin J, Li T, Anderson KV. 2006. Mouse Rab23 regulates hedgehog signaling from smoothened to Gli proteins. Dev. Biol. 290:1–12 PubMed
Elliott KL, Fritzsch B, Duncan JS. 2018. Evolutionary and developmental biology provide insights into the regeneration of organ of Corti hair cells. Front. Cell. Neurosci. 12:252. PubMed PMC
Elliott KL, Fritzsch B, Yamoah EN, Zine A. 2022. Age-related hearing loss: sensory and neural etiology and their interdependence. Front. Aging Neurosci. 14:814528. PubMed PMC
Elliott KL, Iskusnykh IY, Chizhikov VV, Fritzsch B. 2023. Ptf1a expression is necessary for correct targeting of spiral ganglion neurons within the cochlear nuclei. Neurosci. Lett. 806:137244. PubMed PMC
Elliott KL, Kersigo J, Lee JH, Jahan I, Pavlinkova G, et al. 2021a. Developmental changes in peripherin-eGFP expression in spiral ganglion neurons. Front. Cell. Neurosci. 15:678113. PubMed PMC
Elliott KL, Kersigo J, Lee JH, Yamoah EN, Fritzsch B. 2021b. Sustained loss of Bdnf affects peripheral but not central vestibular targets. Front. Neurol. 12:768456. PubMed PMC
Elliott KL, Kersigo J, Pan N, Jahan I, Fritzsch B. 2017. Spiral ganglion neuron projection development to the hindbrain in mice lacking peripheral and/or central target differentiation. Front. Neural Circuits 11:25. PubMed PMC
Elliott KL, Pavlínková G, Chizhikov VV, Yamoah EN, Fritzsch B. 2021c. Development in the mammalian auditory system depends on transcription factors. Int. J. Mol. Sci. 22:4189. PubMed PMC
Englund C, Fink A, Lau C, Pham D, Daza RA, et al. 2005. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J. Neurosci. 25:247–51 PubMed PMC
Farago AF, Awatramani RB, Dymecki SM. 2006. Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron 50:205–18 PubMed
Felmy F, Meyer EM. 2020. Lateral lemniscus. In The Senses: A Comprehensive Reference, ed. Fritzsch B, pp. 556–65. Oxford, UK: Elsevier. 2nd ed.
Filova I, Bohuslavova R, Tavakoli M, Yamoah EN, Fritzsch B, Pavlinkova G. 2022a. Early deletion of Neurod1 alters neuronal lineage potential and diminishes neurogenesis in the inner ear. Front. Cell Dev. Biol. 10:845461. PubMed PMC
Filova I, Dvorakova M, Bohuslavova R, Pavlinek A, Elliott KL, et al. 2020. Combined Atoh1 and Neurod1 deletion reveals autonomous growth of auditory nerve fibers. Mol. Neurobiol. 57:5307–23 PubMed PMC
Filova I, Pysanenko K, Tavakoli M, Vochyanova S, Dvorakova M, et al. 2022b. ISL1 is necessary for auditory neuron development and contributes toward tonotopic organization. PNAS 119:e2207433119. PubMed PMC
Fritzsch B 2023. Sensing Sound: Evolutionary Neurobiology of a Novel Sense of Hearing. Boca Raton, FL: CRC Press
Fritzsch B, Elliott KL, Pavlinkova G. 2019. Primary sensory map formations reflect unique needs and molecular cues specific to each sensory system. F1000Research 8:345 PubMed PMC
Fritzsch B, Elliott KL, Yamoah EN. 2022. Neurosensory development of the four brainstem-projecting sensory systems and their integration in the telencephalon. Front. Neural Circuits 16:913480. PubMed PMC
Fritzsch B, Kersigo J, Yang T, Jahan I, Pan N. 2016. Neurotrophic factor function during ear development: expression changes define critical phases for neuronal viability. In The Primary Auditory Neurons of the Mammalian Cochlea, ed. Dabdoub A, Fritzsch B, Popper AN, Fay RR, pp. 49–84. New York: Springer
Fritzsch B, Martin PR. 2022. Vision and retina evolution: how to develop a retina. IBRO Neurosci. Rep. 12:240–48 PubMed PMC
Fujiyama T, Yamada M, Terao M, Terashima T, Hioki H, et al. 2009. Inhibitory and excitatory subtypes of cochlear nucleus neurons are defined by distinct bHLH transcription factors, Ptf1a and Atoh1. Development 136:2049–58 PubMed
García-Añoveros J, Clancy JC, Foo CZ, García-Gómez I, Zhou Y, et al. 2022. Tbx2 is a master regulator of inner versus outer hair cell differentiation. Nature 605:298–303 PubMed PMC
Glover JC, Elliott KL, Erives A, Chizhikov VV, Fritzsch B. 2018. Wilhelm His’ lasting insights into hindbrain and cranial ganglia development and evolution. Dev. Biol. 444:S14–24 PubMed PMC
Glover JC, Fritzsch B. 2022. Molecular mechanisms governing development of the hindbrain choroid plexus and auditory projection: a validation of the seminal observations of Wilhelm His. IBRO Neurosci. Rep. 13:306–13 PubMed PMC
Goodrich L, Kanold P. 2020. Functional circuit development in the auditory system. In Neural Circuit and Cognitive Development: Comprehensive Developmental Neuroscience, ed. Rubenstein J, Rakic P, pp. 27–55. New York: Elsevier. 2nd ed.
Grothe B 2020. The auditory system function—an integrative perspective. In The Senses: A Comprehensive Reference, ed. Fritzsch B, pp. 1–17. Oxford, UK: Elsevier. 2nd ed.
Gurung B, Fritzsch B. 2004. Time course of embryonic midbrain and thalamic auditory connection development in mice as revealed by carbocyanine dye tracing. J. Comp. Neurol. 479:309–27 PubMed PMC
Henke RM, Meredith DM, Borromeo MD, Savage TK, Johnson JE. 2009. Ascl1 and Neurog2 form novel complexes and regulate Delta-like3 (Dll3) expression in the neural tube. Dev. Biol. 328:529–40 PubMed PMC
Hernandez-Miranda LR, Müller T, Birchmeier C. 2017. The dorsal spinal cord and hindbrain: from developmental mechanisms to functional circuits. Dev. Biol. 432:34–42 PubMed
Hevner RF. 2022. Neurogenesis of cerebral cortex projection neurons. In Neuroscience in the 21st Century: From Basic to Clinical, ed. Pfaff DW, pp. 275–89. New York: Springer
Hevner RF, Shi L, Justice N, Hsueh Y-P, Sheng M, et al. 2001. Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29:353–66 PubMed
Holley M, Rhodes C, Kneebone A, Herde MK, Fleming M, Steel KP. 2010. Emx2 and early hair cell development in the mouse inner ear. Dev. Biol. 340:547–56 PubMed PMC
Horng S, Kreiman G, Ellsworth C, Page D, Blank M, et al. 2009. Differential gene expression in the developing lateral geniculate nucleus and medial geniculate nucleus reveals novel roles for Zic4 and Foxp2 in visual and auditory pathway development. J. Neurosci. 29:13672–83 PubMed PMC
Hoshino N, Altarshan Y, Alzein A, Fernando AM, Nguyen HT, et al. 2021. Ephrin-A3 is required for tonotopic map precision and auditory functions in the mouse auditory brainstem. J. Comp. Neurol. 529:3633–54 PubMed PMC
Iskusnykh IY, Steshina EY, Chizhikov VV. 2016. Loss of Ptf1a leads to a widespread cell-fate misspecification in the brainstem, affecting the development of somatosensory and viscerosensory nuclei. J. Neurosci. 36:2691–710 PubMed PMC
Iyer AA, Groves AK. 2021. Transcription factor reprogramming in the inner ear: turning on cell fate switches to regenerate sensory hair cells. Front. Cell. Neurosci. 15:660748. PubMed PMC
Jahan I, Elliott KL, Fritzsch B. 2018. Understanding molecular evolution and development of the organ of Corti can provide clues for hearing restoration. Integr. Comp. Biol. 58:351–65 PubMed PMC
Jahan I, Kersigo J, Elliott KL, Fritzsch B. 2021. Smoothened overexpression causes trochlear motoneurons to reroute and innervate ipsilateral eyes. Cell Tissue Res. 384:59–72 PubMed PMC
Kaiser M, Lüdtke TH, Deuper L, Rudat C, Christoffels VM, et al. 2022. TBX2 specifies and maintains inner hair and supporting cell fate in the Organ of Corti. Nat. Commun. 13:7628. PubMed PMC
Kaiser M, Wojahn I, Rudat C, Lüdtke TH, Christoffels VM, et al. 2021. Regulation of otocyst patterning by Tbx2 and Tbx3 is required for inner ear morphogenesis in the mouse. Development 148:dev195651. PubMed
Kandler K, Lee J, Pecka M. 2020. The superior olivary complex. In The Senses: A Comprehensive Reference, ed. Fritzsch B, pp. 533–55. Oxford, UK: Elsevier. 2nd ed.
Kanold PO, Luhmann HJ. 2010. The subplate and early cortical circuits. Annu. Rev. Neurosci. 33:23–48 PubMed
Kanold PO, Nelken I, Polley DB. 2014. Local versus global scales of organization in auditory cortex. Trends Neurosci. 37:502–10 PubMed PMC
Karmakar K, Narita Y, Fadok J, Ducret S, Loche A, et al. 2017. Hox2 genes are required for tonotopic map precision and sound discrimination in the mouse auditory brainstem. Cell Rep. 18:185–97 PubMed
Kersigo J, D’Angelo A, Gray BD, Soukup GA, Fritzsch B. 2011. The role of sensory organs and the forebrain for the development of the craniofacial shape as revealed by Foxg1-cre-mediated microRNA loss. Genesis 49:326–41 PubMed PMC
Kersigo J, Fritzsch B. 2015. Inner ear hair cells deteriorate in mice engineered to have no or diminished innervation. Front. Aging Neurosci. 7:33. PubMed PMC
Kiernan AE, Pelling AL, Leung KK, Tang AS, Bell DM, et al. 2005. Sox2 is required for sensory organ development in the mammalian inner ear. Nature 434:1031–35 PubMed
Kopp-Scheinpflug C, Forsythe ID. 2018. Integration of synaptic and intrinsic conductances shapes microcircuits in the superior olivary complex. In The Mammalian Auditory Pathways, ed. Oliver D, Cant N, Fay R, Popper A, pp. 101–26. Cham, Switz.: Springer
Kopp-Scheinpflug C, Linden JF. 2020. Coding of temporal information. In The Senses: A Comprehensive Reference, ed. Fritzsch B, pp. 691–712. Oxford, UK: Elsevier. 2nd ed.
Kral A, Pallas SL. 2011. Development of the auditory cortex. In The Auditory Cortex, ed. Winer JA, Schreiner CE, pp. 443–63. New York: Springer
Krasewicz J, Yu WM. 2023. Eph and ephrin signaling in the development of the central auditory system. Dev. Dyn. 252:10–26 PubMed PMC
Li S, He S, Lu Y, Jia S, Liu Z. 2023. Epistatic genetic interactions between Insm1 and Ikzf2 during cochlear outer hair cell development. Cell Rep. 42:112504. PubMed
Liu M, Pleasure SJ, Collins AE, Noebels JL, Naya FJ, et al. 2000. Loss of BETA2/NeuroD leads to malformation of the dentate gyrus and epilepsy. PNAS 97:865–70 PubMed PMC
Lu H-W, Smith PH, Joris PX. 2022. Mammalian octopus cells are direction selective to frequency sweeps by excitatory synaptic sequence detection. PNAS 119:e2203748119. PubMed PMC
Luhmann HJ, Kanold PO, Molnár Z, Vanhatalo S. 2022. Early brain activity: translations between bedside and laboratory. Prog. Neurobiol. 213:102268. PubMed PMC
Ma Q, Anderson DJ, Fritzsch B. 2000. Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J. Assoc. Res. Otolaryngol. 1:129–43 PubMed PMC
Macova I, Pysanenko K, Chumak T, Dvorakova M, Bohuslavova R, et al. 2019. Neurod1 is essential for the primary tonotopic organization and related auditory information processing in the midbrain. J. Neurosci. 39:984–1004 PubMed PMC
Malmierca MS. 2015. Auditory system. In The Rat Nervous System, ed. Paxinos G, pp. 865–946. London: Elsevier
Malone BJ, Hasenstaub AR, Schreiner CE. 2020. Primary auditory cortex II. Some functional considerations. In The Senses: A Comprehensive Reference, ed. Fritzsch B, pp. 657–80. Oxford, UK: Elsevier. 2nd ed.
Manuel M, Martynoga B, Yu T, West JD, Mason JO, Price DJ. 2010. The transcription factor Foxg1 regulates the competence of telencephalic cells to adopt subpallial fates in mice. Development 137:487–97 PubMed PMC
Manuel M, Tan KB, Kozic Z, Molinek M, Marcos TS, et al. 2022. Pax6 limits the competence of developing cerebral cortical cells to respond to inductive intercellular signals. PLOS Biol. 20:e3001563. PubMed PMC
Mao Y, Reiprich S, Wegner M, Fritzsch B. 2014. Targeted deletion of Sox10 by Wnt1-cre defects neuronal migration and projection in the mouse inner ear. PLOS ONE 9:e94580. PubMed PMC
Maricich SM, Xia A, Mathes EL, Wang VY, Oghalai JS, et al. 2009. Atoh1-lineal neurons are required for hearing and for the survival of neurons in the spiral ganglion and brainstem accessory auditory nuclei. J. Neurosci. 29:11123–33 PubMed PMC
Mastick GS, Fan CM, Tessier-Lavigne M, Serbedzija GN, McMahon AP, Easter SS Jr. 1996. Early deletion of neuromeres in Wnt-1−/− mutant mice: evaluation by morphological and molecular markers. J. Comp. Neurol. 374:246–58 PubMed
Matei V, Pauley S, Kaing S, Rowitch D, Beisel K, et al. 2005. Smaller inner ear sensory epithelia in Neurog1 null mice are related to earlier hair cell cycle exit. Dev. Dyn. 234:633–50 PubMed PMC
Michalski N, Petit C. 2019. Genes involved in the development and physiology of both the peripheral and central auditory systems. Annu. Rev. Neurosci. 42:67–86 PubMed
Michalski N, Petit C. 2022. Central auditory deficits associated with genetic forms of peripheral deafness. Hum. Genet. 141:335–45 PubMed PMC
Milinkeviciute G, Cramer K. 2020. Development of the ascending auditory pathway. In The Senses: A Comprehensive Reference, ed. Fritzsch B, pp. 337–53. Oxford, UK: Elsevier. 2nd ed.
Miyata T, Maeda T, Lee JE. 1999. NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev. 13:1647–52 PubMed PMC
Molnár Z, Luhmann HJ, Kanold PO. 2020. Transient cortical circuits match spontaneous and sensory-driven activity during development. Science 370:eabb2153. PubMed PMC
Morris JK, Maklad A, Hansen LA, Feng F, Sorensen C, et al. 2006. A disorganized innervation of the inner ear persists in the absence of ErbB2. Brain Res. 1091:186–99 PubMed PMC
Mukherjee D, Meng X, Kao JPY, Kanold PO. 2022. Impaired hearing and altered subplate circuits during the first and second postnatal weeks of otoferlin-deficient mice. Cereb. Cortex 32:2816–30 PubMed PMC
Muniak MA, Connelly CJ, Suthakar K, Milinkeviciute G, Ayeni FE, Ryugo DK. 2016. Central projections of spiral ganglion neurons. In The Primary Auditory Neurons of the Mammalian Cochlea, ed. Dabdoub A, Fritzsch B, Popper AN, Fay RR, pp. 157–90. New York: Springer
Nakamura H 2020. Midbrain patterning: polarity formation of the tectum, midbrain regionalization, and isthmus organizer. In Patterning and Cell Type Specification in the Developing CNS and PNS, ed. Rubenstein J, Rakic P, Chen B, Kwan KY, Grove EA, et al., pp. 87–106. London: Elsevier. 2nd ed.
Nakano Y, Wiechert S, Fritzsch B, Banfi B. 2020. Inhibition of a transcriptional repressor rescues hearing in a splicing factor-deficient mouse. Life Sci. Alliance 3:e202000841. PubMed PMC
Newman EA, Kim DW, Wan J, Wang J, Qian J, Blackshaw S. 2018. Foxd1 is required for terminal differentiation of anterior hypothalamic neuronal subtypes. Dev. Biol. 439:102–11 PubMed PMC
Ngodup T, Romero GE, Trussell LO. 2020. Identification of an inhibitory neuron subtype, the L-stellate cell of the cochlear nucleus. eLife 9:e54350. PubMed PMC
Nothwang HG. 2016. Evolution of mammalian sound localization circuits: a developmental perspective. Progr. Neurobiol. 141:1–24 PubMed
Nusse R, Clevers H. 2017. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169:985–99 PubMed
Oertel D, Cao X-J. 2020. The ventral cochlear nucleus. In The Senses: A Comprehensive Reference, ed. Fritzsch B, pp. 517–32. Oxford, UK: Elsevier. 2nd ed.
Pan N, Jahan I, Kersigo J, Duncan JS, Kopecky B, Fritzsch B. 2012. A novel Atoh1 “self-terminating” mouse model reveals the necessity of proper Atoh1 level and duration for hair cell differentiation and viability. PLOS ONE 7:e30358. PubMed PMC
Park Y, Page N, Salamon I, Li D, Rasin MR. 2022. Making sense of mRNA landscapes: translation control in neurodevelopment. Wiley Interdiscip. Rev. RNA 13:e1674. PubMed
Patisaul HB. 2020. Achieving CLARITY on bisphenol A, brain and behaviour. J. Neuroendocrinol. 32:e12730. PubMed PMC
Pecka M, Encke J. 2020. Coding of spatial information. In The Senses: A Comprehensive Reference, ed. Fritzsch B, pp. 713–31. Oxford, UK: Elsevier. 2nd ed.
Petitpré C, Faure L, Uhl P, Fontanet P, Filova I, et al. 2022. Single-cell RNA-sequencing analysis of the developing mouse inner ear identifies molecular logic of auditory neuron diversification. Nat. Commun. 13:3878. PubMed PMC
Petitpré C, Wu H, Sharma A, Tokarska A, Fontanet P, et al. 2018. Neuronal heterogeneity and stereotyped connectivity in the auditory afferent system. Nat. Commun. 9:3691. PubMed PMC
Piwecka M, Glažar P, Hernandez-Miranda LR, Memczak S, Wolf SA, et al. 2017. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357:eaam8526. PubMed
Polley DB, Read HL, Storace DA, Merzenich MM. 2007. Multiparametric auditory receptive field organization across five cortical fields in the albino rat. J. Neurophysiol. 97:3621–38 PubMed
Polley DB, Takesian AE. 2022. Thalamocortical circuits for auditory processing, plasticity, and perception. In The Thalamus, ed. Halassa MM, pp. 237–68. Cambridge, UK: Cambridge Univ. Press
Puelles L 2019. Survey of midbrain, diencephalon, and hypothalamus neuroanatomic terms whose prosomeric definition conflicts with columnar tradition. Front. Neuroanat. 13:20. PubMed PMC
Puelles L, Martínez S, Martínez-De-La-Torre M, Rubenstein JL. 2015. Gene maps and related histogenetic domains in the forebrain and midbrain. In The Rat Nervous System, ed. Paxinos G, pp. 3–24. London: Elsevier
Puelles L, Martinez-de-la-Torre M, Ferran J-L, Watson C. 2012. Diencephalon. In The Mouse Nervous System, ed. Watson C, Paxinos G, Puelles L, pp. 313–36. London: Elsevier
Pyott SJ, von Gersdorff H. 2020. Auditory afferents: sound encoding in the cochlea. In The Senses: A Comprehensive Reference, ed. Fritzsch B, pp. 487–500. Oxford, UK: Elsevier. 2nd ed.
Raft S, Nowotschin S, Liao J, Morrow BE. 2004. Suppression of neural fate and control of inner ear morphogenesis by Tbx1. Development 131:1801–12 PubMed
Rauschecker JP. 2020. The auditory cortex of primates including man with reference to speech. In The Senses: A Comprehensive Reference, ed. Fritzsch B, pp. 791–811. Oxford, UK: Elsevier. 2nd ed.
Rees A 2020. The inferior colliculus. In The Senses: A Comprehensive Reference, ed. Fritzsch B, pp. 566–600. Oxford, UK: Elsevier. 2nd ed.
Rim EY, Clevers H, Nusse R. 2022. The Wnt pathway: from signaling mechanisms to synthetic modulators. Annu. Rev. Biochem. 91:571–98 PubMed
Rolls ET, Rauschecker JP, Deco G, Huang C-C, Feng J. 2023. Auditory cortical connectivity in humans. Cereb. Cortex 33:6207–27 PubMed PMC
Rubel EW, Fritzsch B. 2002. Auditory system development: primary auditory neurons and their targets. Annu. Rev. Neurosci. 25:51–101 PubMed
Scharff C, Petri J. 2011. Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language. Philos. Trans. R. Soc. B 366:2124–40 PubMed PMC
Schinzel F, Seyfer H, Ebbers L, Nothwang HG. 2021. The Lbx1 lineage differentially contributes to inhibitory cell types of the dorsal cochlear nucleus, a cerebellum-like structure, and the cerebellum. J. Comp. Neurol. 529:3032–45 PubMed
Schmidt H, Fritzsch B. 2019. Npr2 null mutants show initial overshooting followed by reduction of spiral ganglion axon projections combined with near-normal cochleotopic projection. Cell Tissue Res. 378:15–32 PubMed PMC
Shrestha BR, Chia C, Wu L, Kujawa SG, Liberman MC, Goodrich LV. 2018. Sensory neuron diversity in the inner ear is shaped by activity. Cell 174:1229–46.e17 PubMed PMC
Shrestha BR, Wu L, Goodrich LV. 2023. Runx1 controls auditory sensory neuron diversity in mice. Dev. Cell 58:306–19.e5 PubMed PMC
Siebald C, Vincent PFY, Bottom RT, Sun S, Reijntjes DOJ, et al. 2023. Molecular signatures define subtypes of auditory afferents with distinct peripheral projection patterns and physiological properties. PNAS 120:e2217033120. PubMed PMC
Song H, Morrow BE. 2023. Tbx2 and Tbx3 regulate cell fate progression of the otic vesicle for inner ear development. Dev. Biol. 494:71–84 PubMed PMC
Sun S, Babola T, Pregernig G, So KS, Nguyen M, et al. 2018. Hair cell mechanotransduction regulates spontaneous activity and spiral ganglion subtype specification in the auditory system. Cell 174:1247–63.e15 PubMed PMC
Sun Y, Liu Z. 2023. Recent advances in molecular studies on cochlear development and regeneration. Curr. Opin. Neurobiol. 81:102745. PubMed
Tang P-C, Chen L, Singh S, Groves AK, Koehler KR, et al. 2023. Early Wnt signaling activation promotes inner ear differentiation via cell caudalization in mouse stem cell-derived organoids. Stem Cells 41:26–38 PubMed PMC
ten Donkelaar HJ, Copp AJ, Bekker M, Renier WO, Hori A, Shiota K. 2023a. Neurulation and neural tube defects. In Clinical Neuroembryology: Development and Developmental Disorders of the Human Central Nervous System, ed. ten Donkelaar H, Lammens M, Hori A, pp. 249–312. Berlin: Springer
ten Donkelaar HJ, Fritzsch B, Cruysberg JR, Pennings RJ, Smits JJ, Lammens M. 2023b. Development and developmental disorders of the brain stem. In Clinical Neuroembryology: Development and Developmental Disorders of the Human Central Nervous System, ed. ten Donkelaar H, Lammens M, Hori A, pp. 445–521. Berlin: Springer
Thawani A, Maunsell HR, Zhang H, Ankamreddy H, Groves AK. 2023. The Foxi3 transcription factor is necessary for the fate restriction of placodal lineages at the neural plate border. Development 150:dev202047. PubMed PMC
Tran H-N, Nguyen Q-H, Jeong J-E, Loi D-L, Nam YH, et al. 2023. The embryonic patterning gene Dbx1 governs the survival of the auditory midbrain via Tcf7l2-Ap2δ transcriptional cascade. Cell Death Differ. 30:1563–74 PubMed PMC
Trussell LO, Oertel D. 2018. Microcircuits of the dorsal cochlear nucleus. In The Mammalian Auditory Pathways, ed. Oliver D, Cant N, Fay R, Popper A, pp. 73–99. Cham, Switz.: Springer
Urbánek P, Fetka I, Meisler MH, Busslinger M. 1997. Cooperation of Pax2 and Pax5 in midbrain and cerebellum development. PNAS 94:5703–8 PubMed PMC
Wang VY, Rose MF, Zoghbi HY. 2005. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48:31–43 PubMed
Watson C, Shimogori T, Puelles L. 2017. Mouse Fgf8-Cre-LacZ lineage analysis defines the territory of the postnatal mammalian isthmus. J. Comp. Neurol. 525:2782–99 PubMed
Wiwatpanit T, Lorenzen SM, Cantú JA, Foo CZ, Hogan AK, et al. 2018. Trans-differentiation of outer hair cells into inner hair cells in the absence of INSM1. Nature 563:691–95 PubMed PMC
Xu J, Li J, Zhang T, Jiang H, Ramakrishnan A, et al. 2021. Chromatin remodelers and lineage-specific factors interact to target enhancers to establish proneurosensory fate within otic ectoderm. PNAS 118:e2025196118. PubMed PMC
Yamoah EN, Li M, Shah A, Elliott KL, Cheah K, et al. 2020. Using Sox2 to alleviate the hallmarks of age-related hearing loss. Ageing Res. Rev. 59:101042. PubMed PMC
Yamoah EN, Pavlinkova G, Fritzsch B. 2023. The development of speaking and singing in infants may play a role in genomics and dementia in humans. Brain Sci. 13:1190. PubMed PMC
You D, Ni W, Huang Y, Zhou Q, Zhang Y, et al. 2023. The proper timing of Atoh1 expression is pivotal for hair cell subtype differentiation and the establishment of inner ear function. Res. Sq. 3118124. https://www.researchsquare.com/article/rs-3118124/v1 PubMed PMC
Yu X, Wang Y. 2022. Tonotopic differentiation of presynaptic neurotransmitter-releasing machinery in the auditory brainstem during the prehearing period and its selective deficits in Fmr1 knockout mice. J. Comp. Neurol. 530:3248–69 PubMed PMC
Żak M, Daudet N. 2021. A gradient of Wnt activity positions the neurosensory domains of the inner ear. eLife 10:e59540. PubMed PMC
Zine A, Fritzsch B. 2023. Early steps towards hearing: placodes and sensory development. Int. J. Mol. Sci. 24:6994. PubMed PMC