• This record comes from PubMed

No evidence of attentional prioritization for threatening targets in visual search

. 2024 Mar 07 ; 14 (1) : 5651. [epub] 20240307

Language English Country Great Britain, England Media electronic

Document type Journal Article

Grant support
ÚNKP-22-4 Nemzeti Kutatási, Fejlesztési és Innovaciós Alap
OTKA PD 137588 Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
OTKA K 143254 Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
János Bolyai Research Scholarship Magyar Tudományos Akadémia

Links

PubMed 38454142
PubMed Central PMC10920919
DOI 10.1038/s41598-024-56265-1
PII: 10.1038/s41598-024-56265-1
Knihovny.cz E-resources

Throughout human evolutionary history, snakes have been associated with danger and threat. Research has shown that snakes are prioritized by our attentional system, despite many of us rarely encountering them in our daily lives. We conducted two high-powered, pre-registered experiments (total N = 224) manipulating target prevalence to understand this heightened prioritization of threatening targets. Target prevalence refers to the proportion of trials wherein a target is presented; reductions in prevalence consistently reduce the likelihood that targets will be found. We reasoned that snake targets in visual search should experience weaker effects of low target prevalence compared to non-threatening targets (rabbits) because they should be prioritized by searchers despite appearing rarely. In both experiments, we found evidence of classic prevalence effects but (contrasting prior work) we also found that search for threatening targets was slower and less accurate than for nonthreatening targets. This surprising result is possibly due to methodological issues common in prior studies, including comparatively smaller sample sizes, fewer trials, and a tendency to exclusively examine conditions of relatively high prevalence. Our findings call into question accounts of threat prioritization and suggest that prior attention findings may be constrained to a narrow range of circumstances.

See more in PubMed

Subra B, Muller D, Fourgaisse L, Chauvin A, Alexopoulos T. Of guns and snakes: Testing a modern threat superiority effect. Cogn. Emot. 2017 doi: 10.1080/02699931.2017.1284044. PubMed DOI

Mulckhuyse M. The influence of emotional stimuli on the oculomotor system: A review of the literature. Cogn. Affect. Behav. Neurosci. 2018;18:411–425. doi: 10.3758/s13415-018-0590-8. PubMed DOI

Csathó Á, Tey F, Davis G. Threat perception and targeting: The brainstem–amygdala–cortex alarm system in action? Cogn. Neuropsychol. 2008;25:1039–1064. doi: 10.1080/02643290801996360. PubMed DOI

LoBue V, Matthews K. The snake in the grass revisited: An experimental comparison of threat detection paradigms. Cogn. Emot. 2014;28:22–35. doi: 10.1080/02699931.2013.790783. PubMed DOI

Öhman A, Flykt A, Esteves F. Emotion drives attention: Detecting the snake in the grass. J. Exp. Psychol. Gen. 2001;130:466–478. doi: 10.1037/0096-3445.130.3.466. PubMed DOI

Zsido AN, et al. Does threat have an advantage after all? Proposing a novel experimental design to investigate the advantages of threat-relevant cues in visual processing. Front. Psychol. 2001;10:2217. doi: 10.3389/fpsyg.2019.02217. PubMed DOI PMC

March DS, Gaertner L, Olson MA. In Harm’s Way: On preferential response to threatening stimuli. Pers. Soc. Psychol. Bull. 2017;43:1519–1529. doi: 10.1177/0146167217722558. PubMed DOI

Zsido AN, Deak A, Bernath L. Is a snake scarier than a gun? the ontogenetic-phylogenetic dispute from a new perspective: The role of arousal. Emotion. 2019;19:726–732. doi: 10.1037/emo0000478. PubMed DOI

Gao X, LoBue V, Irving J, Harvey T. The effect of spatial frequency information and visual similarity in threat detection. Cogn. Emot. 2017;31:912–922. doi: 10.1080/02699931.2016.1180280. PubMed DOI

Öhman A, Mineka S. The malicious serpent. Curr. Dir. Psychol. Sci. 2003;12:5–9. doi: 10.1111/1467-8721.01211. DOI

New JJ, German TC. Spiders at the cocktail party: An ancestral threat that surmounts inattentional blindness. Evol. Hum. Behav. 2015;36:165–173. doi: 10.1016/j.evolhumbehav.2014.08.004. DOI

Soares SC, Lindström B, Esteves F, Öhman A. The hidden snake in the grass: Superior detection of snakes in challenging attentional conditions. PLoS ONE. 2014;9:e114724. doi: 10.1371/journal.pone.0114724. PubMed DOI PMC

Kawai N, Koda H. Japanese monkeys (Macaca fuscata) quickly detect snakes but not spiders: Evolutionary origins of fear-relevant animals. J. Comp. Psychol. 2016;130:299–303. doi: 10.1037/com0000032. PubMed DOI

Kawai N, Qiu H. Humans detect snakes more accurately and quickly than other animals under natural visual scenes: A flicker paradigm study. Cogn. Emot. 2020;34:614–620. doi: 10.1080/02699931.2019.1657799. PubMed DOI

Zsido AN, Stecina DT, Hout MC. Task demands determine whether shape or arousal of a stimulus modulates competition for visual working memory resources. Acta Psychol. 2022;224:103523. doi: 10.1016/j.actpsy.2022.103523. PubMed DOI

Zsido AN, Stecina DT, Cseh R, Hout MC. The effects of task-irrelevant threatening stimuli on orienting- and executive attentional processes under cognitive load. Br. J. Psychol. 2021;113:412–433. doi: 10.1111/bjop.12540. PubMed DOI PMC

LoBue V. Deconstructing the snake: The relative roles of perception, cognition, and emotion on threat detection. Emotion. 2014;14:701–711. doi: 10.1037/a0035898. PubMed DOI

Larson CL, Aronoff J, Sarinopoulos IC, Zhu DC. Recognizing threat: A simple geometric shape activates neural circuitry for threat detection. J. Cogn. Neurosci. 2009;21:1523–1535. doi: 10.1162/jocn.2009.21111. PubMed DOI

Van Strien JW, Isbell LA. Snake scales, partial exposure, and the Snake Detection Theory: A human event-related potentials study. Sci. Rep. 2017;7:1–9. PubMed PMC

Sander D, Grafman J, Zalla T. The human amygdala: An evolved system for relevance detection. Rev. Neurosci. 2003;14:303–316. doi: 10.1515/REVNEURO.2003.14.4.303. PubMed DOI

Vuilleumier P. Affective and motivational control of vision. Curr. Opin. Neurol. 2015;28:29–35. doi: 10.1097/WCO.0000000000000159. PubMed DOI

Liddell BJ, et al. A direct brainstem–amygdala–cortical ‘alarm’ system for subliminal signals of fear. Neuroimage. 2005;24:235–243. doi: 10.1016/j.neuroimage.2004.08.016. PubMed DOI

Fox E, Griggs L, Mouchlianitis E. The detection of fear-relevant stimuli: Are guns noticed as quickly as snakes? Emotion. 2007;7:691–696. doi: 10.1037/1528-3542.7.4.691. PubMed DOI PMC

Armstrong T, Hemminger A, Olatunji BO. Attentional bias in injection phobia: Overt components, time course, and relation to behavior. Behav. Res. Ther. 2013;51:266–273. doi: 10.1016/j.brat.2013.02.008. PubMed DOI

LoBue V. What’s so scary about needles and knives? Examining the role of experience in threat detection. Cogn. Emot. 2010;24:180–187. doi: 10.1080/02699930802542308. DOI

Hout MC, Goldinger SD. Target templates: The precision of mental representations affects attentional guidance and decision-making in visual search. Attent. Percept. Psychophys. 2014;77:128–149. doi: 10.3758/s13414-014-0764-6. PubMed DOI PMC

Fox E, Russo R, Bowles R, Dutton K. Do threatening stimuli draw or hold visual attention in subclinical anxiety? J. Exp. Psychol. Gen. 2001;130:681–700. doi: 10.1037/0096-3445.130.4.681. PubMed DOI PMC

Godwin HJ, Menneer T, Riggs CA, Cave KR, Donnelly N. Perceptual failures in the selection and identification of low-prevalence targets in relative prevalence visual search. Attent. Percept. Psychophys. 2015;77:150–159. doi: 10.3758/s13414-014-0762-8. PubMed DOI

Hout MC, Walenchok SC, Goldinger SD, Wolfe JM. Failures of perception in the low-prevalence effect: Evidence from active and passive visual search. J. Exp. Psychol. Hum. Percept. Perform. 2015;41:977–994. doi: 10.1037/xhp0000053. PubMed DOI PMC

Evans KK, Birdwell RL, Wolfe JM. If you don’t find it often, you often don’t find it: Why some cancers are missed in breast cancer screening. PLoS ONE. 2013;8:e64366. doi: 10.1371/journal.pone.0064366. PubMed DOI PMC

Wolfe JM, Horowitz TS, Kenner NM. Cognitive psychology: Rare items often missed in visual searches. Nature. 2005;435:439–440. doi: 10.1038/435439a. PubMed DOI PMC

Wolfe JM, Van Wert MJ. Varying target prevalence reveals two dissociable decision criteria in visual search. Curr. Biol. 2010;20:121–124. doi: 10.1016/j.cub.2009.11.066. PubMed DOI PMC

Hout MC, Robbins A, Godwin HJ, Fitzsimmons G, Scarince C. Categorical templates are more useful when features are consistent: Evidence from eye movements during search for societally important vehicles. Attent. Percept. Psychophys. 2017;79:1578–1592. doi: 10.3758/s13414-017-1354-1. PubMed DOI

Robbins A, Hout MC. Typicality guides attention during categorical search, but not universally so. Q. J. Exp. Psychol. 2020;73:1977–1999. doi: 10.1177/1747021820936472. PubMed DOI

Song J, Wolfe B. Highly dangerous road hazards are not immune from the low prevalence effect. Cogn. Res. 2024;9:6. doi: 10.1186/s41235-024-00531-3. PubMed DOI PMC

Liesefeld HR, Janczyk M. Combining speed and accuracy to control for speed-accuracy trade-offs(?) Behav. Res. Methods. 2019;51:40–60. doi: 10.3758/s13428-018-1076-x. PubMed DOI

Townsend J, Ashby F. Stochastic Modeling of Elementary Psychological Processes. Cambridge University Press; 1983.

Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 2007;39:175–191. doi: 10.3758/BF03193146. PubMed DOI

Rádlová S, et al. Snakes represent emotionally salient stimuli that may evoke both fear and disgust. Front. Psychol. 2019;10:1085. doi: 10.3389/fpsyg.2019.01085. PubMed DOI PMC

Brady TF, Konkle T, Alvarez GA, Oliva A. Visual long-term memory has a massive storage capacity for object details. Proc. Natl. Acad. Sci. U. S. A. 2008;105:14325–14329. doi: 10.1073/pnas.0803390105. PubMed DOI PMC

Hout MC, Goldinger SD, Brady KJ. MM-MDS: A multidimensional scaling database with similarity ratings for 240 object categories from the massive memory picture database. PLoS ONE. 2014;9:e112644. doi: 10.1371/journal.pone.0112644. PubMed DOI PMC

Hout MC, Goldinger SD. Learning in repeated visual search. Attent. Percept. Psychophys. 2010;72:1267–1282. doi: 10.3758/APP.72.5.1267. PubMed DOI PMC

Hout MC, Goldinger SD. Incidental learning speeds visual search by lowering response thresholds, not by improving efficiency: Evidence from eye movements. J. Exp. Psychol. Hum. Percept. Perform. 2012;38:90. doi: 10.1037/a0023894. PubMed DOI PMC

Psychology Software Tools Inc. E-Prime. (2020).

Polák J, et al. Scary and nasty beasts: Self-reported fear and disgust of common phobic animals. Br. J. Psychol. 2020;111:297–321. doi: 10.1111/bjop.12409. PubMed DOI

Bar-Haim Y, Lamy D, Pergamin L, Bakermans-Kranenburg MJ, van IJzendoorn MH. Threat-related attentional bias in anxious and nonanxious individuals: A meta-analytic study. Psychol. Bull. 2007;133:1–24. doi: 10.1037/0033-2909.133.1.1. PubMed DOI

Quinlan PT. The visual detection of threat: A cautionary tale. Psychon. Bull. Rev. 2013;20:1080–1101. doi: 10.3758/s13423-013-0421-4. PubMed DOI

Lazarević LB, et al. Highly dangerous road hazards are not immune from the low prevalence effect. Adv. Methods Pract. Psychol. Sci. 2024;3(3):377–386. doi: 10.1177/2515245920953350. DOI

Quinlan PT, Yue Y, Cohen DJ. The processing of images of biological threats in visual short-term memory. Proc. Biol. Sci. 2017;284:20171283. PubMed PMC

Hedger N, Garner M, Adams WJ. Supplemental material for do emotional faces capture attention, and does this depend on awareness? Evidence from the visual probe paradigm. J. Exp. Psychol. Hum. Percept. Perform. 2019 doi: 10.1037/xhp0000640.supp. PubMed DOI

Loucks J, Reise B, Gahite R, Fleming S. Animate monitoring is not uniform: Implications for the animate monitoring hypothesis. Front. Psychol. 2023;14:1146248. doi: 10.3389/fpsyg.2023.1146248. PubMed DOI PMC

Bonin P, Gelin M, Bugaiska A. Animates are better remembered than inanimates: Further evidence from word and picture stimuli. Mem. Cogn. 2014;42:370–382. doi: 10.3758/s13421-013-0368-8. PubMed DOI

Bugaiska A, et al. Animacy and attentional processes: Evidence from the stroop task. Q. J. Exp. Psychol. 2019;72:882–889. doi: 10.1177/1747021818771514. PubMed DOI

Calvillo DP, Hawkins WC. Animate objects are detected more frequently than inanimate objects in inattentional blindness tasks independently of threat. J. Gen. Psychol. 2016;143:101–115. doi: 10.1080/00221309.2016.1163249. PubMed DOI

Gao H, Jia Z. Detection of threats under inattentional blindness and perceptual load. Curr. Psychol. 2017;36:733–739. doi: 10.1007/s12144-016-9460-0. DOI

McKinley GL, Peterson DJ, Hout MC. How does searching for faces among similar-looking distractors affect distractor memory? Mem. Cogn. 2023;51:1404–1415. doi: 10.3758/s13421-023-01405-7. PubMed DOI

Guevara Pinto JD, Papesh MH, Hout MC. The detail is in the difficulty: Challenging search facilitates rich incidental object encoding. Mem. Cogn. 2020;48:1214–1233. doi: 10.3758/s13421-020-01051-3. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...