Neurodevelopmental defects in a mouse model of O-GlcNAc transferase intellectual disability

. 2024 Apr 01 ; 17 (4) : . [epub] 20240425

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid38566589

Grantová podpora
Wellcome Trust - United Kingdom
110061 Wellcome Trust - United Kingdom

The addition of O-linked β-N-acetylglucosamine (O-GlcNAc) to proteins (referred to as O-GlcNAcylation) is a modification that is crucial for vertebrate development. O-GlcNAcylation is catalyzed by O-GlcNAc transferase (OGT) and reversed by O-GlcNAcase (OGA). Missense variants of OGT have recently been shown to segregate with an X-linked syndromic form of intellectual disability, OGT-linked congenital disorder of glycosylation (OGT-CDG). Although the existence of OGT-CDG suggests that O-GlcNAcylation is crucial for neurodevelopment and/or cognitive function, the underlying pathophysiologic mechanisms remain unknown. Here we report a mouse line that carries a catalytically impaired OGT-CDG variant. These mice show altered O-GlcNAc homeostasis with decreased global O-GlcNAcylation and reduced levels of OGT and OGA in the brain. Phenotypic characterization of the mice revealed lower body weight associated with reduced body fat mass, short stature and microcephaly. This mouse model will serve as an important tool to study genotype-phenotype correlations in OGT-CDG in vivo and for the development of possible treatment avenues for this disorder.

Zobrazit více v PubMed

Akimoto, Y., Comer, F. I., Cole, R. N., Kudo, A., Kawakami, H., Hirano, H. and Hart, G. W. (2003). Localization of the O-GlcNAc transferase and O-GlcNAc-modified proteins in rat cerebellar cortex. Brain Res. 966, 194-205. 10.1016/S0006-8993(02)04158-6 PubMed DOI

Balana, A. T. and Pratt, M. R. (2021). Mechanistic roles for altered O-GlcNAcylation in neurodegenerative disorders. Biochem. J. 478, 2733. 10.1042/BCJ20200609 PubMed DOI PMC

Bond, M. R. and Hanover, J. A. (2013). O-GlcNAc cycling: a link between metabolism and chronic disease. Annu. Rev. Nutr. 33, 205-229. 10.1146/annurev-nutr-071812-161240 PubMed DOI PMC

Capotosti, F., Guernier, S., Lammers, F., Waridel, P., Cai, Y., Jin, J., Conaway, J. W., Conaway, R. C. and Herr, W. (2011). O-GlcNAc transferase catalyzes site-specific proteolysis of HCF-1. Cell 144, 376-388. 10.1016/j.cell.2010.12.030 PubMed DOI

Castro, V. L. and Quintana, A. M. (2020). The role of HCFC1 in syndromic and non-syndromic intellectual disability. Med. Res. Arch. 8, mra.v8i6.212. 10.18103/mra.v8i6.2122 PubMed DOI PMC

Chen, J., Dong, X., Cheng, X., Zhu, Q., Zhang, J., Li, Q., Huang, X., Wang, M., Li, L., Guo, W.et al. (2021). Ogt controls neural stem/progenitor cell pool and adult neurogenesis through modulating Notch signaling. Cell Rep. 34, 108905. 10.1016/j.celrep.2021.108905 PubMed DOI

Cheng, J., Wu, Y., Chen, L., Li, Y., Liu, F., Shao, J., Huang, M., Fan, M. and Wu, H. (2020). Loss of O-GlcNAc transferase in neural stem cells impairs corticogenesis. Biochem. Biophys. Res. Commun. 532, 541-547. 10.1016/j.bbrc.2020.08.084 PubMed DOI

Ciraku, L., Esquea, E. M. and Reginato, M. J. (2022). O-GlcNAcylation regulation of cellular signaling in cancer. Cell. Signal. 90, 110201. 10.1016/j.cellsig.2021.110201 PubMed DOI PMC

Clement, J. P., Aceti, M., Creson, T. K., Ozkan, E. D., Shi, Y., Reish, N. J., Almonte, A. G., Miller, B. H., Wiltgen, B. J., Miller, C. A.et al. (2012). Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell 151, 709-723. 10.1016/j.cell.2012.08.045 PubMed DOI PMC

Cole, R. N. and Hart, G. W. (2001). Cytosolic O-glycosylation is abundant in nerve terminals. J. Neurochem. 79, 1080-1089. 10.1046/j.1471-4159.2001.00655.x PubMed DOI

Constable, S., Lim, J. M., Vaidyanathan, K. and Wells, L. (2017). O-GlcNAc transferase regulates transcriptional activity of human Oct4. Glycobiology 27, 927-937. 10.1093/glycob/cwx055 PubMed DOI PMC

Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J. C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M.et al. (2012). 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network. Magn. Reson. Imaging 30, 1323-1341. 10.1016/j.mri.2012.05.001 PubMed DOI PMC

Francisco, H., Kollins, K., Varghis, N., Vocadlo, D., Vosseller, K. and Gallo, G. (2009). O-GLcNAc post-translational modifications regulate the entry of neurons into an axon branching program. Dev. Neurobiol. 69, 162-173. 10.1002/dneu.20695 PubMed DOI PMC

Gao, Y., Wells, L., Comer, F. I., Parker, G. J. and Hart, G. W. (2001). Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. J. Biol. Chem. 276, 9838-9845. 10.1074/jbc.M010420200 PubMed DOI

Gu, B. and Dalton, K. A. (2017). Models and detection of spontaneous recurrent seizures in laboratory rodents. Zool. Res. 38, 171-179. 10.24272/j.issn.2095-8137.2017.042 PubMed DOI PMC

Gundogdu, M., Llabrés, S., Gorelik, A., Ferenbach, A. T., Zachariae, U. and van Aalten, D. M. F. F. (2018). The O-GlcNAc transferase intellectual disability mutation L254F distorts the TPR Helix. Cell Chem. Biol. 25, 513-518.e4. 10.1016/j.chembiol.2018.03.004 PubMed DOI PMC

Hart, G. W., Slawson, C., Ramirez-Correa, G. and Lagerlof, O. (2011). Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 80, 825-858. 10.1146/annurev-biochem-060608-102511 PubMed DOI PMC

Keembiyehetty, C., Love, D. C., Harwood, K. R., Gavrilova, O., Comly, M. E. and Hanover, J. A. (2015). Conditional knock-out reveals a requirement for O-linked N-acetylglucosaminase (O-GlcNAcase) in metabolic homeostasis. J. Biol. Chem. 290, 7097. 10.1074/jbc.M114.617779 PubMed DOI PMC

Khidekel, N., Ficarro, S. B., Peters, E. C. and Hsieh-Wilson, L. C. (2004). Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Proc. Natl. Acad. Sci. USA 101, 13132-13137. 10.1073/pnas.0403471101 PubMed DOI PMC

Kreppel, L. K. and Hart, G. W. (1999). Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J. Biol. Chem. 274, 32015-32022. 10.1074/jbc.274.45.32015 PubMed DOI

Lagerlof, O., Hart, G. W. and Huganir, R. L. (2017). O-GlcNAc transferase regulates excitatory synapse maturity. Proc. Natl. Acad. Sci. USA 114, 1684-1689. 10.1073/pnas.1621367114 PubMed DOI PMC

Lamarre-Vincent, N. and Hsieh-Wilson, L. C. (2003). Dynamic glycosylation of the transcription factor CREB: a potential role in gene regulation. J. Am. Chem. Soc. 125, 6612-6613. 10.1021/ja028200t PubMed DOI

Levinea, Z. G., Pottera, S. C., Joinerb, C. M., Feia, G. Q., Nabetc, B., Sonnette, M., Zachara, N. E., Gray, N. S., Paulo, J. A. and Walker, S. (2021). Mammalian cell proliferation requires noncatalytic functions of O-GlcNAc transferase. Proc. Natl. Acad. Sci. USA 118, e2016778118. 10.1073/pnas.2016778118 PubMed DOI PMC

Livak, K. J. and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402-408. 10.1006/meth.2001.1262 PubMed DOI

Lv, P., Du, Y., He, C., Peng, L., Zhou, X., Wan, Y., Zeng, M., Zhou, W., Zou, P., Li, C.et al. (2022). O-GlcNAcylation modulates liquid-liquid phase separation of SynGAP/PSD-95. Nat. Chem. 14, 831-840. 10.1038/s41557-022-00946-9 PubMed DOI

Maulik, P. K., Mascarenhas, M. N., Mathers, C. D., Dua, T. and Saxena, S. (2011). Prevalence of intellectual disability: a meta-analysis of population-based studies. Res. Dev. Disabil. 32, 419-436. 10.1016/j.ridd.2010.12.018 PubMed DOI

Mitchell, C. W., Czajewski, I. and van Aalten, D. M. F. (2022). Bioinformatic prediction of putative conveyers of O-GlcNAc transferase intellectual disability. J. Biol. Chem. 298, 102276. 10.1016/j.jbc.2022.102276 PubMed DOI PMC

Muha, V., Authier, F., Szoke-Kovacs, Z., Johnson, S., Gallagher, J., McNeilly, A., McCrimmon, R. J., Teboul, L. and van Aalten, D. M. F. (2021). Loss of O-GlcNAcase catalytic activity leads to defects in mouse embryogenesis. J. Biol. Chem. 296, 100439. 10.1016/j.jbc.2021.100439 PubMed DOI PMC

Musumeci, S. A., Bosco, P., Calabrese, G., Bakker, C., De Sarro, G. B., Elia, M., Ferri, R. and Oostra, B. A. (2000). Audiogenic seizures susceptibility in transgenic mice with Fragile X syndrome. Epilepsia 41, 19-23. 10.1111/j.1528-1157.2000.tb01499.x PubMed DOI

O'Donnell, N., Zachara, N. E., Hart, G. W. and Marth, J. D. (2004). Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol. Cell. Biol. 24, 1680-1690. 10.1128/MCB.24.4.1680-1690.2004 PubMed DOI PMC

Okuyama, R. and Marshall, S. (2003). UDP-N-acetylglucosaminyl transferase (OGT) in brain tissue: temperature sensitivity and subcellular distribution of cytosolic and nuclear enzyme. J. Neurochem. 86, 1271-1280. 10.1046/j.1471-4159.2003.01939.x PubMed DOI

Omelková, M., Fenger, C. D., Murray, M., Hammer, T. B., Pravata, V. M., Bartual, S. G., Czajewski, I., Bayat, A., Ferenbach, A. T., Stavridis, M. P.et al. (2023). An O-GlcNAc transferase pathogenic variant linked to intellectual disability affects pluripotent stem cell self-renewal. Dis. Model. Mech. 16, dmm049132. 10.1242/dmm.049132 PubMed DOI PMC

Ong, Q., Han, W. and Yang, X. (2018). O-GlcNAc as an integrator of signaling pathways. Front. Endocrinol. 9, 599. 10.3389/fendo.2018.00599 PubMed DOI PMC

Posada de la Paz, M., Taruscio, D. and Groft, S. C. (editors) (2017). Rare Diseases Epidemiology: Update and Overview (Advances in Experimental Medicine and Biology, Vol. 1031 ). 2nd edn. Cham: Springer. 10.1007/978-3-319-67144-4 DOI

Pravata, V. M., Muha, V., Gundogdu, M., Ferenbach, A. T., Kakade, P. S., Vandadi, V., Wilmes, A. C., Borodkin, V. S., Joss, S., Stavridis, M. P.et al. (2019a). Catalytic deficiency of O-GlcNAc transferase leads to X-linked intellectual disability. Proc. Natl. Acad. Sci. USA 116, 14961-14970. 10.1073/pnas.1900065116 PubMed DOI PMC

Pravata, V. M., Gundogdu, M., Bartual, S. G., Ferenbach, A. T., Stavridis, M., Õunap, K., Pajusalu, S., Žordania, R., Wojcik, M. H. and van Aalten, D. M. F. (2019b). A missense mutation in the catalytic domain of O-GlcNAc transferase links perturbations in protein O-GlcNAcylation to X-linked intellectual disability. FEBS Lett. 594, 717-727. 10.1002/1873-3468.13640 PubMed DOI PMC

Pravata, V. M., Omelková, M., Stavridis, M. P., Desbiens, C. M., Stephen, H. M., Lefeber, D. J., Gecz, J., Gundogdu, M., Õunap, K., Joss, S.et al. (2020). An intellectual disability syndrome with single-nucleotide variants in O-GlcNAc transferase. Eur. J. Hum. Genet. 28, 706-714. 10.1038/s41431-020-0589-9 PubMed DOI PMC

Rexach, J. E., Clark, P. M., Mason, D. E., Neve, R. L., Peters, E. C. and Hsieh-Wilson, L. C. (2012). Dynamic O-GlcNAc modification regulates CREB-mediated gene expression and memory formation. Nat. Chem. Biol. 8, 253. 10.1038/nchembio.770 PubMed DOI PMC

Ruan, H. B., Dietrich, M. O., Liu, Z. W., Zimmer, M. R., Li, M. D., Singh, J. P., Zhang, K., Yin, R., Wu, J., Horvath, T.et al. (2014). O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat. Cell 159, 306-317. 10.1016/j.cell.2014.09.010 PubMed DOI PMC

Savage, J. E., Jansen, P. R., Stringer, S., Watanabe, K., Bryois, J., De Leeuw, C. A., Nagel, M., Awasthi, S., Barr, P. B., Coleman, J. R. I.et al. (2018). Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat. Genet. 50, 912-919. 10.1038/s41588-018-0152-6 PubMed DOI PMC

Selvan, N., George, S., Serajee, F. J., Shaw, M., Hobson, L., Kalscheuer, V., Prasad, N., Levy, S. E., Taylor, J., Aftimos, S.et al. (2018). O-GlcNAc transferase missense mutations linked to X-linked intellectual disability deregulate genes involved in cell fate determination and signaling. J. Biol. Chem. 293, 10810-10824. 10.1074/jbc.RA118.002583 PubMed DOI PMC

Shaffer, L. G. (2005). American College of Medical Genetics guideline on the cytogenetic evaluation of the individual with developmental delay or mental retardation. Genet. Med. 7, 650-654. 10.1097/01.gim.0000186545.83160.1e PubMed DOI PMC

Shafi, R., Iyer, S. P., Ellies, L. G., O'Donnell, N., Marek, K. W., Chui, D., Hart, G. W. and Marth, J. D. (2000). The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc. Natl. Acad. Sci. USA 97, 5735-5739. 10.1073/pnas.100471497 PubMed DOI PMC

Shahbazian, M. D., Young, J. I., Yuva-Paylor, L. A., Spencer, C. M., Antalffy, B. A., Noebels, J. L., Armstrong, D. L., Paylor, R. and Zoghbi, H. Y. (2002). Mice with truncated MeCP2 recapitulate many rett syndrome features and display hyperacetylation of histone H3. Neuron 35, 243-254. 10.1016/S0896-6273(02)00768-7 PubMed DOI

Shao, M. S., Yang, X., Zhang, C. C., Jiang, C. Y., Mao, Y., Xu, W. D., Ma, L. and Wang, F.-F. (2022). O-GlcNAcylation in ventral tegmental area dopaminergic neurons regulates motor learning and the response to natural reward. Neurosci. Bull. 38, 263-274. 10.1007/s12264-021-00776-8 PubMed DOI PMC

Shen, H., Zhao, X., Chen, J., Qu, W., Huang, X., Wang, M., Shao, Z., Shu, Q. and Li, X. (2021). O-GlcNAc transferase Ogt regulates embryonic neuronal development through modulating Wnt/β-catenin signaling. Hum. Mol. Genet. 31, 57-68. 10.1093/hmg/ddab223 PubMed DOI

Speakman, J. R. (2013). Measuring energy metabolism in the mouse – theoretical, practical, and analytical considerations. Front. Physiol. 4, 34. 10.3389/fphys.2013.00034 PubMed DOI PMC

Stichelen, S. O.-V., Wang, P., Comly, M., Love, D. C. and Hanover, J. A. (2017). Nutrient-driven O-linked N-acetylglucosamine (O-GlcNAc) cycling impacts neurodevelopmental timing and metabolism. J. Biol. Chem. 292, 6076-6085. 10.1074/jbc.M116.774042 PubMed DOI PMC

Su, C. and Schwarz, T. L. (2017). O-GlcNAc transferase is essential for sensory neuron survival and maintenance. J. Neurosci. 37, 2125. 10.1523/JNEUROSCI.3384-16.2017 PubMed DOI PMC

Tan, Z. W., Fei, G., Paulo, J. A., Bellaousov, S., Martin, S. E. S., Duveau, D. Y., Thomas, C. J., Gygi, S. P., Boutz, P. L. and Walker, S. (2020). O-GlcNAc regulates gene expression by controlling detained intron splicing. Nucleic Acids Res. 48, 5656-5669. 10.1093/nar/gkaa263 PubMed DOI PMC

Taylor, E. W., Wang, K., Nelson, A. R., Bredemann, T. M., Fraser, K. B., Clinton, S. M., Puckett, R., Marchase, R. B., Chatham, J. C. and McMahon, L. L. (2014). O-GlcNAcylation of AMPA receptor GluA2 is associated with a novel form of long-term depression at hippocampal synapses. J. Neurosci. 34, 10-21. 10.1523/JNEUROSCI.4761-12.2014 PubMed DOI PMC

Vaidyanathan, K., Niranjan, T., Selvan, N., Teo, C. F., May, M., Patel, S., Weatherly, B., Skinner, C., Opitz, J., Carey, J.et al. (2017). Identification and characterization of a missense mutation in the O-linked β-N-acetylglucosamine (O-GlcNAc) transferase gene that segregates with X-linked intellectual disability. J. Biol. Chem. 292, 8948-8963. 10.1074/jbc.M116.771030 PubMed DOI PMC

Vosseller, K., Trinidad, J. C., Chalkley, R. J., Specht, C. G., Thalhammer, A., Lynn, A. J., Snedecor, J. O., Guan, S., Medzihradszky, K. F., Maltby, D. A.et al. (2006). O-linked N-acetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry. Mol. Cell. Proteomic 5, 923-934. 10.1074/mcp.T500040-MCP200 PubMed DOI

Wang, A. C., Jensen, E. H., Rexach, J. E., Vinters, H. V. and Hsieh-Wilson, L. C. (2016). Loss of O-GlcNAc glycosylation in forebrain excitatory neurons induces neurodegeneration. Proc. Natl. Acad. Sci. USA 113, 15120-15125. 10.1073/pnas.1606899113 PubMed DOI PMC

Wheatley, E. G., Albarran, E., White, C. W., Bieri, G., Sanchez-Diaz, C., Pratt, K., Snethlage, C. E., Ding, J. B. and Villeda, S. A. (2019). Neuronal O-GlcNAcylation improves cognitive function in the aged mouse brain. Curr. Biol. 29, 3359-3369.e4. 10.1016/j.cub.2019.08.003 PubMed DOI PMC

Whelan, S. A., Lane, M. D. and Hart, G. W. (2008). Regulation of the O-linked β-N-acetylglucosamine transferase by insulin signaling*. J. Biol. Chem. 283, 21411-21417. 10.1074/jbc.M800677200 PubMed DOI PMC

Willems, A. P., Gundogdu, M., Kempers, M. J. E., Giltay, J. C., Pfundt, R., Elferink, M., Loza, B. F., Fuijkschot, J., Ferenbach, A. T., van Gassen, K. L. I.et al. (2017). Mutations in N-acetylglucosamine (O-GlcNAc) transferase in patients with X-linked intellectual disability. J. Biol. Chem. 292, 12621-12631. 10.1074/jbc.M117.790097 PubMed DOI PMC

Yang, Y. R., Jang, H. J., Choi, S. S., Lee, Y. H., Lee, G. H., Seo, Y. K., Choi, J. H., Park, D., Koh, A., Kim, I. S.et al. (2015). Obesity resistance and increased energy expenditure by white adipose tissue browning in Oga +/- mice. Diabetologia 58, 2867-2876. 10.1007/s00125-015-3736-z PubMed DOI

Yang, Y. R., Song, S., Hwang, H., Jung, J. H., Kim, S. J., Yoon, S., Hur, J.-H., Park, J.-I., Lee, C., Nam, D.et al. (2017). Memory and synaptic plasticity are impaired by dysregulated hippocampal O-GlcNAcylation. Sci. Rep. 7, 44921. 10.1038/srep44921 PubMed DOI PMC

Zaqout, S. and Kaindl, A. M. (2022). Autosomal recessive primary microcephaly: not just a small brain. Front. Cell Dev. Biol. 9, 3635. 10.3389/fcell.2021.784700 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...