Neurodevelopmental defects in a mouse model of O-GlcNAc transferase intellectual disability
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
Wellcome Trust - United Kingdom
110061
Wellcome Trust - United Kingdom
PubMed
38566589
PubMed Central
PMC11095632
DOI
10.1242/dmm.050671
PII: 347018
Knihovny.cz E-zdroje
- Klíčová slova
- O-GlcNAcylation, Intellectual disability, Vertebrate development,
- MeSH
- beta-N-acetylhexosaminidasy metabolismus MeSH
- fenotyp MeSH
- glykosylace MeSH
- mentální retardace * genetika MeSH
- modely nemocí na zvířatech * MeSH
- mozek patologie metabolismus MeSH
- myši MeSH
- N-acetylglukosaminyltransferasy * metabolismus genetika nedostatek MeSH
- neurovývojové poruchy patologie genetika enzymologie MeSH
- tělesná hmotnost MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- beta-N-acetylhexosaminidasy MeSH
- hexosaminidase C MeSH Prohlížeč
- N-acetylglukosaminyltransferasy * MeSH
- O-GlcNAc transferase MeSH Prohlížeč
The addition of O-linked β-N-acetylglucosamine (O-GlcNAc) to proteins (referred to as O-GlcNAcylation) is a modification that is crucial for vertebrate development. O-GlcNAcylation is catalyzed by O-GlcNAc transferase (OGT) and reversed by O-GlcNAcase (OGA). Missense variants of OGT have recently been shown to segregate with an X-linked syndromic form of intellectual disability, OGT-linked congenital disorder of glycosylation (OGT-CDG). Although the existence of OGT-CDG suggests that O-GlcNAcylation is crucial for neurodevelopment and/or cognitive function, the underlying pathophysiologic mechanisms remain unknown. Here we report a mouse line that carries a catalytically impaired OGT-CDG variant. These mice show altered O-GlcNAc homeostasis with decreased global O-GlcNAcylation and reduced levels of OGT and OGA in the brain. Phenotypic characterization of the mice revealed lower body weight associated with reduced body fat mass, short stature and microcephaly. This mouse model will serve as an important tool to study genotype-phenotype correlations in OGT-CDG in vivo and for the development of possible treatment avenues for this disorder.
Department of Molecular Biology and Genetics Aarhus University 8000 Aarhus Denmark
Division of Systems Medicine School of Medicine University of Dundee Dundee DD1 9SY UK
Zobrazit více v PubMed
Akimoto, Y., Comer, F. I., Cole, R. N., Kudo, A., Kawakami, H., Hirano, H. and Hart, G. W. (2003). Localization of the O-GlcNAc transferase and O-GlcNAc-modified proteins in rat cerebellar cortex. Brain Res. 966, 194-205. 10.1016/S0006-8993(02)04158-6 PubMed DOI
Balana, A. T. and Pratt, M. R. (2021). Mechanistic roles for altered O-GlcNAcylation in neurodegenerative disorders. Biochem. J. 478, 2733. 10.1042/BCJ20200609 PubMed DOI PMC
Bond, M. R. and Hanover, J. A. (2013). O-GlcNAc cycling: a link between metabolism and chronic disease. Annu. Rev. Nutr. 33, 205-229. 10.1146/annurev-nutr-071812-161240 PubMed DOI PMC
Capotosti, F., Guernier, S., Lammers, F., Waridel, P., Cai, Y., Jin, J., Conaway, J. W., Conaway, R. C. and Herr, W. (2011). O-GlcNAc transferase catalyzes site-specific proteolysis of HCF-1. Cell 144, 376-388. 10.1016/j.cell.2010.12.030 PubMed DOI
Castro, V. L. and Quintana, A. M. (2020). The role of HCFC1 in syndromic and non-syndromic intellectual disability. Med. Res. Arch. 8, mra.v8i6.212. 10.18103/mra.v8i6.2122 PubMed DOI PMC
Chen, J., Dong, X., Cheng, X., Zhu, Q., Zhang, J., Li, Q., Huang, X., Wang, M., Li, L., Guo, W.et al. (2021). Ogt controls neural stem/progenitor cell pool and adult neurogenesis through modulating Notch signaling. Cell Rep. 34, 108905. 10.1016/j.celrep.2021.108905 PubMed DOI
Cheng, J., Wu, Y., Chen, L., Li, Y., Liu, F., Shao, J., Huang, M., Fan, M. and Wu, H. (2020). Loss of O-GlcNAc transferase in neural stem cells impairs corticogenesis. Biochem. Biophys. Res. Commun. 532, 541-547. 10.1016/j.bbrc.2020.08.084 PubMed DOI
Ciraku, L., Esquea, E. M. and Reginato, M. J. (2022). O-GlcNAcylation regulation of cellular signaling in cancer. Cell. Signal. 90, 110201. 10.1016/j.cellsig.2021.110201 PubMed DOI PMC
Clement, J. P., Aceti, M., Creson, T. K., Ozkan, E. D., Shi, Y., Reish, N. J., Almonte, A. G., Miller, B. H., Wiltgen, B. J., Miller, C. A.et al. (2012). Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell 151, 709-723. 10.1016/j.cell.2012.08.045 PubMed DOI PMC
Cole, R. N. and Hart, G. W. (2001). Cytosolic O-glycosylation is abundant in nerve terminals. J. Neurochem. 79, 1080-1089. 10.1046/j.1471-4159.2001.00655.x PubMed DOI
Constable, S., Lim, J. M., Vaidyanathan, K. and Wells, L. (2017). O-GlcNAc transferase regulates transcriptional activity of human Oct4. Glycobiology 27, 927-937. 10.1093/glycob/cwx055 PubMed DOI PMC
Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J. C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M.et al. (2012). 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network. Magn. Reson. Imaging 30, 1323-1341. 10.1016/j.mri.2012.05.001 PubMed DOI PMC
Francisco, H., Kollins, K., Varghis, N., Vocadlo, D., Vosseller, K. and Gallo, G. (2009). O-GLcNAc post-translational modifications regulate the entry of neurons into an axon branching program. Dev. Neurobiol. 69, 162-173. 10.1002/dneu.20695 PubMed DOI PMC
Gao, Y., Wells, L., Comer, F. I., Parker, G. J. and Hart, G. W. (2001). Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. J. Biol. Chem. 276, 9838-9845. 10.1074/jbc.M010420200 PubMed DOI
Gu, B. and Dalton, K. A. (2017). Models and detection of spontaneous recurrent seizures in laboratory rodents. Zool. Res. 38, 171-179. 10.24272/j.issn.2095-8137.2017.042 PubMed DOI PMC
Gundogdu, M., Llabrés, S., Gorelik, A., Ferenbach, A. T., Zachariae, U. and van Aalten, D. M. F. F. (2018). The O-GlcNAc transferase intellectual disability mutation L254F distorts the TPR Helix. Cell Chem. Biol. 25, 513-518.e4. 10.1016/j.chembiol.2018.03.004 PubMed DOI PMC
Hart, G. W., Slawson, C., Ramirez-Correa, G. and Lagerlof, O. (2011). Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 80, 825-858. 10.1146/annurev-biochem-060608-102511 PubMed DOI PMC
Keembiyehetty, C., Love, D. C., Harwood, K. R., Gavrilova, O., Comly, M. E. and Hanover, J. A. (2015). Conditional knock-out reveals a requirement for O-linked N-acetylglucosaminase (O-GlcNAcase) in metabolic homeostasis. J. Biol. Chem. 290, 7097. 10.1074/jbc.M114.617779 PubMed DOI PMC
Khidekel, N., Ficarro, S. B., Peters, E. C. and Hsieh-Wilson, L. C. (2004). Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Proc. Natl. Acad. Sci. USA 101, 13132-13137. 10.1073/pnas.0403471101 PubMed DOI PMC
Kreppel, L. K. and Hart, G. W. (1999). Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J. Biol. Chem. 274, 32015-32022. 10.1074/jbc.274.45.32015 PubMed DOI
Lagerlof, O., Hart, G. W. and Huganir, R. L. (2017). O-GlcNAc transferase regulates excitatory synapse maturity. Proc. Natl. Acad. Sci. USA 114, 1684-1689. 10.1073/pnas.1621367114 PubMed DOI PMC
Lamarre-Vincent, N. and Hsieh-Wilson, L. C. (2003). Dynamic glycosylation of the transcription factor CREB: a potential role in gene regulation. J. Am. Chem. Soc. 125, 6612-6613. 10.1021/ja028200t PubMed DOI
Levinea, Z. G., Pottera, S. C., Joinerb, C. M., Feia, G. Q., Nabetc, B., Sonnette, M., Zachara, N. E., Gray, N. S., Paulo, J. A. and Walker, S. (2021). Mammalian cell proliferation requires noncatalytic functions of O-GlcNAc transferase. Proc. Natl. Acad. Sci. USA 118, e2016778118. 10.1073/pnas.2016778118 PubMed DOI PMC
Livak, K. J. and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402-408. 10.1006/meth.2001.1262 PubMed DOI
Lv, P., Du, Y., He, C., Peng, L., Zhou, X., Wan, Y., Zeng, M., Zhou, W., Zou, P., Li, C.et al. (2022). O-GlcNAcylation modulates liquid-liquid phase separation of SynGAP/PSD-95. Nat. Chem. 14, 831-840. 10.1038/s41557-022-00946-9 PubMed DOI
Maulik, P. K., Mascarenhas, M. N., Mathers, C. D., Dua, T. and Saxena, S. (2011). Prevalence of intellectual disability: a meta-analysis of population-based studies. Res. Dev. Disabil. 32, 419-436. 10.1016/j.ridd.2010.12.018 PubMed DOI
Mitchell, C. W., Czajewski, I. and van Aalten, D. M. F. (2022). Bioinformatic prediction of putative conveyers of O-GlcNAc transferase intellectual disability. J. Biol. Chem. 298, 102276. 10.1016/j.jbc.2022.102276 PubMed DOI PMC
Muha, V., Authier, F., Szoke-Kovacs, Z., Johnson, S., Gallagher, J., McNeilly, A., McCrimmon, R. J., Teboul, L. and van Aalten, D. M. F. (2021). Loss of O-GlcNAcase catalytic activity leads to defects in mouse embryogenesis. J. Biol. Chem. 296, 100439. 10.1016/j.jbc.2021.100439 PubMed DOI PMC
Musumeci, S. A., Bosco, P., Calabrese, G., Bakker, C., De Sarro, G. B., Elia, M., Ferri, R. and Oostra, B. A. (2000). Audiogenic seizures susceptibility in transgenic mice with Fragile X syndrome. Epilepsia 41, 19-23. 10.1111/j.1528-1157.2000.tb01499.x PubMed DOI
O'Donnell, N., Zachara, N. E., Hart, G. W. and Marth, J. D. (2004). Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol. Cell. Biol. 24, 1680-1690. 10.1128/MCB.24.4.1680-1690.2004 PubMed DOI PMC
Okuyama, R. and Marshall, S. (2003). UDP-N-acetylglucosaminyl transferase (OGT) in brain tissue: temperature sensitivity and subcellular distribution of cytosolic and nuclear enzyme. J. Neurochem. 86, 1271-1280. 10.1046/j.1471-4159.2003.01939.x PubMed DOI
Omelková, M., Fenger, C. D., Murray, M., Hammer, T. B., Pravata, V. M., Bartual, S. G., Czajewski, I., Bayat, A., Ferenbach, A. T., Stavridis, M. P.et al. (2023). An O-GlcNAc transferase pathogenic variant linked to intellectual disability affects pluripotent stem cell self-renewal. Dis. Model. Mech. 16, dmm049132. 10.1242/dmm.049132 PubMed DOI PMC
Ong, Q., Han, W. and Yang, X. (2018). O-GlcNAc as an integrator of signaling pathways. Front. Endocrinol. 9, 599. 10.3389/fendo.2018.00599 PubMed DOI PMC
Posada de la Paz, M., Taruscio, D. and Groft, S. C. (editors) (2017). Rare Diseases Epidemiology: Update and Overview (Advances in Experimental Medicine and Biology, Vol. 1031 ). 2nd edn. Cham: Springer. 10.1007/978-3-319-67144-4 DOI
Pravata, V. M., Muha, V., Gundogdu, M., Ferenbach, A. T., Kakade, P. S., Vandadi, V., Wilmes, A. C., Borodkin, V. S., Joss, S., Stavridis, M. P.et al. (2019a). Catalytic deficiency of O-GlcNAc transferase leads to X-linked intellectual disability. Proc. Natl. Acad. Sci. USA 116, 14961-14970. 10.1073/pnas.1900065116 PubMed DOI PMC
Pravata, V. M., Gundogdu, M., Bartual, S. G., Ferenbach, A. T., Stavridis, M., Õunap, K., Pajusalu, S., Žordania, R., Wojcik, M. H. and van Aalten, D. M. F. (2019b). A missense mutation in the catalytic domain of O-GlcNAc transferase links perturbations in protein O-GlcNAcylation to X-linked intellectual disability. FEBS Lett. 594, 717-727. 10.1002/1873-3468.13640 PubMed DOI PMC
Pravata, V. M., Omelková, M., Stavridis, M. P., Desbiens, C. M., Stephen, H. M., Lefeber, D. J., Gecz, J., Gundogdu, M., Õunap, K., Joss, S.et al. (2020). An intellectual disability syndrome with single-nucleotide variants in O-GlcNAc transferase. Eur. J. Hum. Genet. 28, 706-714. 10.1038/s41431-020-0589-9 PubMed DOI PMC
Rexach, J. E., Clark, P. M., Mason, D. E., Neve, R. L., Peters, E. C. and Hsieh-Wilson, L. C. (2012). Dynamic O-GlcNAc modification regulates CREB-mediated gene expression and memory formation. Nat. Chem. Biol. 8, 253. 10.1038/nchembio.770 PubMed DOI PMC
Ruan, H. B., Dietrich, M. O., Liu, Z. W., Zimmer, M. R., Li, M. D., Singh, J. P., Zhang, K., Yin, R., Wu, J., Horvath, T.et al. (2014). O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat. Cell 159, 306-317. 10.1016/j.cell.2014.09.010 PubMed DOI PMC
Savage, J. E., Jansen, P. R., Stringer, S., Watanabe, K., Bryois, J., De Leeuw, C. A., Nagel, M., Awasthi, S., Barr, P. B., Coleman, J. R. I.et al. (2018). Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat. Genet. 50, 912-919. 10.1038/s41588-018-0152-6 PubMed DOI PMC
Selvan, N., George, S., Serajee, F. J., Shaw, M., Hobson, L., Kalscheuer, V., Prasad, N., Levy, S. E., Taylor, J., Aftimos, S.et al. (2018). O-GlcNAc transferase missense mutations linked to X-linked intellectual disability deregulate genes involved in cell fate determination and signaling. J. Biol. Chem. 293, 10810-10824. 10.1074/jbc.RA118.002583 PubMed DOI PMC
Shaffer, L. G. (2005). American College of Medical Genetics guideline on the cytogenetic evaluation of the individual with developmental delay or mental retardation. Genet. Med. 7, 650-654. 10.1097/01.gim.0000186545.83160.1e PubMed DOI PMC
Shafi, R., Iyer, S. P., Ellies, L. G., O'Donnell, N., Marek, K. W., Chui, D., Hart, G. W. and Marth, J. D. (2000). The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc. Natl. Acad. Sci. USA 97, 5735-5739. 10.1073/pnas.100471497 PubMed DOI PMC
Shahbazian, M. D., Young, J. I., Yuva-Paylor, L. A., Spencer, C. M., Antalffy, B. A., Noebels, J. L., Armstrong, D. L., Paylor, R. and Zoghbi, H. Y. (2002). Mice with truncated MeCP2 recapitulate many rett syndrome features and display hyperacetylation of histone H3. Neuron 35, 243-254. 10.1016/S0896-6273(02)00768-7 PubMed DOI
Shao, M. S., Yang, X., Zhang, C. C., Jiang, C. Y., Mao, Y., Xu, W. D., Ma, L. and Wang, F.-F. (2022). O-GlcNAcylation in ventral tegmental area dopaminergic neurons regulates motor learning and the response to natural reward. Neurosci. Bull. 38, 263-274. 10.1007/s12264-021-00776-8 PubMed DOI PMC
Shen, H., Zhao, X., Chen, J., Qu, W., Huang, X., Wang, M., Shao, Z., Shu, Q. and Li, X. (2021). O-GlcNAc transferase Ogt regulates embryonic neuronal development through modulating Wnt/β-catenin signaling. Hum. Mol. Genet. 31, 57-68. 10.1093/hmg/ddab223 PubMed DOI
Speakman, J. R. (2013). Measuring energy metabolism in the mouse – theoretical, practical, and analytical considerations. Front. Physiol. 4, 34. 10.3389/fphys.2013.00034 PubMed DOI PMC
Stichelen, S. O.-V., Wang, P., Comly, M., Love, D. C. and Hanover, J. A. (2017). Nutrient-driven O-linked N-acetylglucosamine (O-GlcNAc) cycling impacts neurodevelopmental timing and metabolism. J. Biol. Chem. 292, 6076-6085. 10.1074/jbc.M116.774042 PubMed DOI PMC
Su, C. and Schwarz, T. L. (2017). O-GlcNAc transferase is essential for sensory neuron survival and maintenance. J. Neurosci. 37, 2125. 10.1523/JNEUROSCI.3384-16.2017 PubMed DOI PMC
Tan, Z. W., Fei, G., Paulo, J. A., Bellaousov, S., Martin, S. E. S., Duveau, D. Y., Thomas, C. J., Gygi, S. P., Boutz, P. L. and Walker, S. (2020). O-GlcNAc regulates gene expression by controlling detained intron splicing. Nucleic Acids Res. 48, 5656-5669. 10.1093/nar/gkaa263 PubMed DOI PMC
Taylor, E. W., Wang, K., Nelson, A. R., Bredemann, T. M., Fraser, K. B., Clinton, S. M., Puckett, R., Marchase, R. B., Chatham, J. C. and McMahon, L. L. (2014). O-GlcNAcylation of AMPA receptor GluA2 is associated with a novel form of long-term depression at hippocampal synapses. J. Neurosci. 34, 10-21. 10.1523/JNEUROSCI.4761-12.2014 PubMed DOI PMC
Vaidyanathan, K., Niranjan, T., Selvan, N., Teo, C. F., May, M., Patel, S., Weatherly, B., Skinner, C., Opitz, J., Carey, J.et al. (2017). Identification and characterization of a missense mutation in the O-linked β-N-acetylglucosamine (O-GlcNAc) transferase gene that segregates with X-linked intellectual disability. J. Biol. Chem. 292, 8948-8963. 10.1074/jbc.M116.771030 PubMed DOI PMC
Vosseller, K., Trinidad, J. C., Chalkley, R. J., Specht, C. G., Thalhammer, A., Lynn, A. J., Snedecor, J. O., Guan, S., Medzihradszky, K. F., Maltby, D. A.et al. (2006). O-linked N-acetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry. Mol. Cell. Proteomic 5, 923-934. 10.1074/mcp.T500040-MCP200 PubMed DOI
Wang, A. C., Jensen, E. H., Rexach, J. E., Vinters, H. V. and Hsieh-Wilson, L. C. (2016). Loss of O-GlcNAc glycosylation in forebrain excitatory neurons induces neurodegeneration. Proc. Natl. Acad. Sci. USA 113, 15120-15125. 10.1073/pnas.1606899113 PubMed DOI PMC
Wheatley, E. G., Albarran, E., White, C. W., Bieri, G., Sanchez-Diaz, C., Pratt, K., Snethlage, C. E., Ding, J. B. and Villeda, S. A. (2019). Neuronal O-GlcNAcylation improves cognitive function in the aged mouse brain. Curr. Biol. 29, 3359-3369.e4. 10.1016/j.cub.2019.08.003 PubMed DOI PMC
Whelan, S. A., Lane, M. D. and Hart, G. W. (2008). Regulation of the O-linked β-N-acetylglucosamine transferase by insulin signaling*. J. Biol. Chem. 283, 21411-21417. 10.1074/jbc.M800677200 PubMed DOI PMC
Willems, A. P., Gundogdu, M., Kempers, M. J. E., Giltay, J. C., Pfundt, R., Elferink, M., Loza, B. F., Fuijkschot, J., Ferenbach, A. T., van Gassen, K. L. I.et al. (2017). Mutations in N-acetylglucosamine (O-GlcNAc) transferase in patients with X-linked intellectual disability. J. Biol. Chem. 292, 12621-12631. 10.1074/jbc.M117.790097 PubMed DOI PMC
Yang, Y. R., Jang, H. J., Choi, S. S., Lee, Y. H., Lee, G. H., Seo, Y. K., Choi, J. H., Park, D., Koh, A., Kim, I. S.et al. (2015). Obesity resistance and increased energy expenditure by white adipose tissue browning in Oga +/- mice. Diabetologia 58, 2867-2876. 10.1007/s00125-015-3736-z PubMed DOI
Yang, Y. R., Song, S., Hwang, H., Jung, J. H., Kim, S. J., Yoon, S., Hur, J.-H., Park, J.-I., Lee, C., Nam, D.et al. (2017). Memory and synaptic plasticity are impaired by dysregulated hippocampal O-GlcNAcylation. Sci. Rep. 7, 44921. 10.1038/srep44921 PubMed DOI PMC
Zaqout, S. and Kaindl, A. M. (2022). Autosomal recessive primary microcephaly: not just a small brain. Front. Cell Dev. Biol. 9, 3635. 10.3389/fcell.2021.784700 PubMed DOI PMC