Predictors of social risk for post-ischemic stroke reintegration

. 2024 May 02 ; 14 (1) : 10110. [epub] 20240502

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38698076

Grantová podpora
777107 European Union's Horizon 2020 RIA
101080875 Horizon Europe RIA
13/RC/2106_P2 European Regional Development Fund (ERDF)

Odkazy

PubMed 38698076
PubMed Central PMC11066106
DOI 10.1038/s41598-024-60507-7
PII: 10.1038/s41598-024-60507-7
Knihovny.cz E-zdroje

After stroke rehabilitation, patients need to reintegrate back into their daily life, workplace and society. Reintegration involves complex processes depending on age, sex, stroke severity, cognitive, physical, as well as socioeconomic factors that impact long-term outcomes post-stroke. Moreover, post-stroke quality of life can be impacted by social risks of inadequate family, social, economic, housing and other supports needed by the patients. Social risks and barriers to successful reintegration are poorly understood yet critical for informing clinical or social interventions. Therefore, the aim of this work is to predict social risk at rehabilitation discharge using sociodemographic and clinical variables at rehabilitation admission and identify factors that contribute to this risk. A Gradient Boosting modelling methodology based on decision trees was applied to a Catalan 217-patient cohort of mostly young (mean age 52.7), male (66.4%), ischemic stroke survivors. The modelling task was to predict an individual's social risk upon discharge from rehabilitation based on 16 different demographic, diagnostic and social risk variables (family support, social support, economic status, cohabitation and home accessibility at admission). To correct for imbalance in patient sample numbers with high and low-risk levels (prediction target), five different datasets were prepared by varying the data subsampling methodology. For each of the five datasets a prediction model was trained and the analysis involves a comparison across these models. The training and validation results indicated that the models corrected for prediction target imbalance have similarly good performance (AUC 0.831-0.843) and validation (AUC 0.881 - 0.909). Furthermore, predictor variable importance ranked social support and economic status as the most important variables with the greatest contribution to social risk prediction, however, sex and age had a lesser, but still important, contribution. Due to the complex and multifactorial nature of social risk, factors in combination, including social support and economic status, drive social risk for individuals.

Zobrazit více v PubMed

Jellema S, et al. What environmental factors influence resumption of valued activities post stroke: A systematic review of qualitative and quantitative findings. Clin. Rehab. 2016;31(7):936–947. doi: 10.1177/0269215516671013. PubMed DOI PMC

Trigg R, Wood VA, Hewer RL. Social reintegration after stroke: The first stages in the development of the Subjective Index of Physical and Social Outcome (SIPSO) Clin. Rehab. 1999;13(4):341–353. doi: 10.1191/026921599676390259. PubMed DOI

Wood-Dauphinee, S. Opzoomer, M. Williams, J. Marchand, B. & Spitzer, W. Assessment of global function: The reintegration to normal living index. Arch. Phys. Med. Rehab.69(8), 583–590. http://europepmc.org/abstract/MED/3408328 (1988). PubMed

Parvaneh S, Cocks E. Framework for describing community integration for people with acquired brain injury. Aust. Occup. Ther. J. 2012;59(2):131–137. doi: 10.1111/j.1440-1630.2012.01001.x. PubMed DOI

Tough H, Siegrist J, Fekete C. Social relationships, mental health and wellbeing in physical disability: A systematic review. BMC Public Health. 2017;17(1):1. doi: 10.1186/s12889-017-4308-6. PubMed DOI PMC

Walsh ME, Galvin R, Loughnane C, Macey C, Horgan NF. Factors associated with community reintegration in the first year after stroke: A qualitative meta-synthesis. Disabil. Rehabil. 2014;37(18):1599–1608. doi: 10.3109/09638288.2014.974834. PubMed DOI

Berkman, LF. Kawachi, I. & Glymour, MM. editors. Social Epidemiology (Oxford University Press, 2014). 10.1093/med/9780195377903.001.0001.

Wood-Dauphinee S, Williams JI. Reintegration to normal living as a proxy to quality of life. J. Chronic Dis. 1987;40(6):491–499. doi: 10.1016/0021-9681(87)90005-1. PubMed DOI

Holt-Lunstad J, Smith TB, Layton JB. Social relationships and mortality risk: A meta-analytic review. PLoS Med. 2010;7(7):e1000316. doi: 10.1371/journal.pmed.1000316. PubMed DOI PMC

Marcheschi E, Koch LV, Pessah-Rasmussen H, Elf M. Home setting after stroke, facilitators and barriers: A systematic literature review. Health Soc. Care Community. 2017;26(4):e451–e459. doi: 10.1111/hsc.12518. PubMed DOI

Elloker T, Rhoda A, Arowoiya A, Lawal IU. Factors predicting community participation in patients living with stroke, in the Western Cape. S. Afr. Disab. Rehab. 2018;41(22):2640–2647. doi: 10.1080/09638288.2018.1473509. PubMed DOI

Teoh V, Sims J, Milgrom J. Psychosocial Predictors of Quality of Life in a Sample of Community-Dwelling Stroke Survivors: A Longitudinal Study. Top. Stroke Rehabil. 2009;16(2):157–166. doi: 10.1310/tsr1602-157. PubMed DOI

White J, Magin P, Attia J, Sturm J, McElduff P, Carter G. Predictors of health-related quality of life in community-dwelling stroke survivors: A cohort study. Fam. Pract. 2016;33(4):382–387. doi: 10.1093/fampra/cmw011. PubMed DOI

Zawawi NSM, Aziz NA, Fisher R, Ahmad K, Walker MF. The unmet needs of stroke survivors and stroke caregivers: A systematic narrative review. J. Stroke Cerebrovasc. Dis. 2020;29(8):104875. doi: 10.1016/j.jstrokecerebrovasdis.2020.104875. PubMed DOI

Donkor ES. Stroke in the 21st Century: A snapshot of the burden, epidemiology, and quality of life. Stroke Res. Treatm. 2018;2018:1–10. doi: 10.1155/2018/3238165. PubMed DOI PMC

Sabartés O, Basseda RM, Ferrer MM, Esperanza A, García-Palleiro P, Llorach I, et al. Factores predictivos de retorno al domicilio en pacientes ancianos hospitalizados. Anales De Medicina Interna. 1999;16:1. PubMed

Cahuana-Cuentas M, Gallegos WLA, Rivera-Calcina R, Canaza KDC. Influencia de la familia sobre la resiliencia en personas con discapacidad física y sensorial de Arequipa, Perú. Revista chilena de neuro-psiquiatría. 2019;57(2):118–128. doi: 10.4067/s0717-92272019000200118. DOI

Ramírez-Duque N, Ollero-Baturone M, Bernabeu-Wittel M, Rincón-Gómez M, Ortiz-Camuñez MA, García-Morillo S. Características, clínicas, funcionales, mentales y sociales de pacientes pluripatológicos: Estudio prospectivo durante un año en Atención Primaria. Revista Clínica Española. 2008;208(1):4–11. doi: 10.1157/13115000. PubMed DOI

Varela-Pinedo, L., Chávez-Jimeno, H., Tello-Rodriguez, T., Ortiz-Saavedra, P., Gálvez-Cano, M., Casas-Vasquez, P. et al. Perfil clínico, funcional y sociofamiliar del adulto mayor de la comunidad en un distrito de Lima, Perú. Revista Peruana de Medicina Experimental y Salud Publica.32(4):709. 10.17843/rpmesp.2015.324.1762 (2015). PubMed

García-Rudolph A, Cegarra B, Opisso E, Tormos JM, Bernabeu M, Saurí J. Predicting length of stay in patients admitted to stroke rehabilitation with severe and moderate levels of functional impairments. Medicine. 2020;99(43):e22423. doi: 10.1097/md.0000000000022423. PubMed DOI PMC

García-Rudolph, A., Cegarra, B., Saurí, J., Kelleher, J. D., Cisek, K., Frey, D. et al. Intersection of resilience and COVID-19: Structural topic modelling and word embeddings from reddit titles (2023).

García-Rudolph A, Saurí J, Garcia-Molina A, Cegarra B, Opisso E, Tormos JM, et al. The impact of coronavirus disease 2019 on emotional and behavioral stress of informal family caregivers of individuals with stroke or traumatic brain injury at chronic phase living in a Mediterranean setting. Brain Behav. 2021;12(1):1. doi: 10.1002/brb3.2440. PubMed DOI PMC

García-Rudolph A, Saurí J, Cegarra B, Opisso E, Tormos JM, Frey D, et al. The impact of COVID-19 on home, social, and productivity integration of people with chronic traumatic brain injury or stroke living in the community. Medicine. 2022;101(8):e28695. doi: 10.1097/md.0000000000028695. PubMed DOI PMC

Shavelle RM, Brooks JC, Strauss DJ, Turner-Stokes L. Life Expectancy after Stroke Based On Age, Sex, and Rankin Grade of Disability: A Synthesis. J. Stroke Cerebrovasc. Dis. 2019;28(12):104450. doi: 10.1016/j.jstrokecerebrovasdis.2019.104450. PubMed DOI

GBD 2016 Lifetime Risk of Stroke Collaborators, Feigin, V. L., Nguyen, G., Cercy, K., Johnson, C. O., Alam, T., et al. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N. Engl. J. Med.379(25), 2429–2437. https://europepmc.org/articles/PMC6247346 (2018). PubMed PMC

Amaya Pascasio L, Blanco Ruiz M, Milán Pinilla R, García Torrecillas JM, Arjona Padillo A, Del Toro PC, et al. Stroke in young adults in Spain: Epidemiology and risk factors by age. J. Pers. Med. 2023;13(5):768. doi: 10.3390/jpm13050768. PubMed DOI PMC

Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. Strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ. 2007;335(7624):806–808. doi: 10.1136/bmj.39335.541782.ad. PubMed DOI PMC

Maaijwee NAMM, Rutten-Jacobs LCA, Schaapsmeerders P, Dijk EJ, Leeuw FE. Ischaemic stroke in young adults: Risk factors and long-term consequences. Nat. Rev. Neurol. 2014;10(6):315–325. doi: 10.1038/nrneurol.2014.72. PubMed DOI

Stack CA, Cole JW. Ischemic stroke in young adults. Curr. Opin. Cardiol. 2018;33(6):594–604. doi: 10.1097/hco.0000000000000564. PubMed DOI

García-Rudolph A, Saurí J, Cisek K, Kelleher JD, Madai VI, Frey D, et al. Long-term trajectories of community integration: Identification, characterization, and prediction using inpatient rehabilitation variables. Top. Stroke Rehab. 2023;1:1–13. doi: 10.1080/10749357.2023.2188756. PubMed DOI

Matos I, Fernandes A, Maso I, Oliveira-Filho J, de Jesus PA, Fraga-Maia H, et al. Investigating predictors of community integration in individuals after stroke in a residential setting: A longitutinal study. PLoS ONE. 2020;15(5):e0233015. doi: 10.1371/journal.pone.0233015. PubMed DOI PMC

García-Rudolph A, Saurí J, Cegarra B, Madai VI, Frey D, Kelleher JD, et al. Long-term trajectories of motor functional independence after ischemic stroke in young adults: Identification and characterization using inpatient baseline assessments. NeuroRehabilitation. 2022;50(4):453–465. doi: 10.3233/nre-210293. PubMed DOI

Martinez HB, Cisek K, Garcia-Rudolph A, Kelleher JD, Hines A. Understanding and Predicting Cognitive Improvement of Young Adults in Ischemic Stroke Rehabilitation Therapy. Front. Neurol. 2022;13:1. doi: 10.3389/fneur.2022.886477. PubMed DOI PMC

Current Topics in Technology-Enabled Stroke Rehabilitation and Reintegration: A Scoping Review and Content Analysis IEEE Transactions on Neural Systems and Rehabilitation Engineering 313341–3352 10.1109/TNSRE.2023.3304758 (2023). PubMed

Cisek, K., Nguyen, T. N. Q., García-Rudolph, A., Saurí, J., & Kelleher, J. D. Understanding social risk variation across reintegration of post-ischemic stroke patients. In: Cerebral Ischemia, pp. 201–220 (Exon Publications, 2021). 10.36255/exonpublications.cerebralischemia.2021.reintegration. PubMed

Amarilla-Donoso FJ, Roncero-Martin R, Lavado-Garcia JM, Toribio-Felipe R, Moran-Garcia JM, Lopez-Espuela F. Quality of life after hip fracture: A 12-month prospective study. PeerJ. 2020;8:e9215. doi: 10.7717/peerj.9215. PubMed DOI PMC

García González J, Díaz Palacios E, Salamea García A, Cabrera González D, Menéndez Caicoya A, Fernández Sánchez A, et al. An evaluation of the feasibility and validity of a scale of social assessment of the elderly. Atencion Primaria. 1999;23(7):434–440. PubMed

Pellico-López A, Fernández-Feito A, Cantarero D, Herrero-Montes M, Cayón-de las Cuevas J, Parás-Bravo P, et al. Cost of stay and characteristics of patients with stroke and delayed discharge for non-clinical reasons. Sci. Rep. 2022;12(1):1. doi: 10.1038/s41598-022-14502-5. PubMed DOI PMC

Pérez LM, Inzitari M, Quinn TJ, Montaner J, Gavaldà R, Duarte E, et al. Rehabilitation profiles of older adult stroke survivors admitted to intermediate care units: A multi-centre study. PLoS ONE. 2016;11(11):e0166304. doi: 10.1371/journal.pone.0166304. PubMed DOI PMC

Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat.29(5), 1189–1232. http://www.jstor.org/stable/2699986 (2001).

Manning CD, Schütze H. Foundations of Statistical Natural Language Processing. Cambridge, MA, USA: MIT Press; 1999.

Team RC. R: A Language and environment for statistical computing. Vienna, Austria: CRAN; https://www.R-project.org/ (2021).

Kim C, Park T. Predicting determinants of lifelong learning intention using gradient boosting machine (GBM) with grid search. Sustainability. 2022;14(9):5256. doi: 10.3390/su14095256. DOI

Natekin A, Knoll A. Gradient boosting machines, a tutorial. Front. Neurorobot. 2013;7:1. doi: 10.3389/fnbot.2013.00021. PubMed DOI PMC

Friedman JH. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002;38(4):367–378. doi: 10.1016/s0167-9473(01)00065-2. DOI

Ridgeway, G. Generalized Boosted Models: A guide to the gbm package. CRAN; R package version 1.1. https://CRAN.R-project.org/package=gbm (2007).

Hastie, T. Tibshirani, R. & Friedman, J. The elements of statistical learning (Springer, New York). 10.1007/978-0-387-84858-7 (2009).

Lakshmanan, V., Robinson, S., & Munn, M. Machine learning design patterns. O’Reilly Media, Inc. (2020).

Schratz P, Muenchow J, Iturritxa E, Richter J, Brenning A. Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data. Ecol. Model. 2019;406:109–120. doi: 10.1016/j.ecolmodel.2019.06.002. DOI

Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw.28(5), 1. 10.18637/jss.v028.i05 (2008).

Kuhn, M., & Johnson, K. Applied predictive modeling (Springer, New York, 2013). 10.1007/978-1-4614-6849-3.

Powers D. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Technol. 2011;2(1):37–63. doi: 10.9735/2229-3981. DOI

Tharwat A. Classification assessment methods. Appl. Comput. Inf. 2020;17(1):168–192. doi: 10.1016/j.aci.2018.08.003. DOI

Lundberg, S. M., & Lee, S. I. A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S. et al., editors. Advances in Neural Information Processing Systems. vol. 30, pp. 1–10 (Curran Associates, Inc., 2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf.

Štrumbelj E, Kononenko I. Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. 2013;41(3):647–665. doi: 10.1007/s10115-013-0679-x. DOI

Greenwell, B. Package ‘fastshap’. CRAN; R package version 0.0.7. https://CRAN.R-project.org/package=fastshap (2020).

Agarwal V, McRae MP, Bhardwaj A, Teasell RW. A model to aid in the prediction of discharge location for stroke rehabilitation patients. Arch. Phys. Med. Rehabil. 2003;84(11):1703–1709. doi: 10.1053/s0003-9993(03)00362-9. PubMed DOI

Everink IHJ, van Haastregt JCM, van Hoof SJM, Schols JMGA, Kempen GIJM. Factors influencing home discharge after inpatient rehabilitation of older patients: A systematic review. BMC Geriatr. 2016;16(1):1. doi: 10.1186/s12877-016-0187-4. PubMed DOI PMC

Nguyen VQC, PrvuBettger J, Guerrier T, Hirsch MA, Thomas JG, Pugh TM, et al. Factors associated with discharge to home versus discharge to institutional care after inpatient stroke rehabilitation. Arch. Phys. Med. Rehabil. 2015;96(7):1297–1303. doi: 10.1016/j.apmr.2015.03.007. PubMed DOI

Pereira S, Foley N, Salter K, McClure JA, Meyer M, Brown J, et al. Discharge destination of individuals with severe stroke undergoing rehabilitation: A predictive model. Disabil. Rehabil. 2014;36(9):727–731. doi: 10.3109/09638288.2014.902510. PubMed DOI

Pohl PS, Billinger SA, Lentz A, Gajewski B. The role of patient demographics and clinical presentation in predicting discharge placement after inpatient stroke rehabilitation: Analysis of a large, US data base. Disab. Rehab. 2012;35(12):990–994. doi: 10.3109/09638288.2012.717587. PubMed DOI

Wee JY, Wong H, Palepu A. Validation of the Berg balance scale as a predictor of length of stay and discharge destination in stroke rehabilitation. Arch. Phys. Med. Rehabil. 2003;84(5):731–735. doi: 10.1016/s0003-9993(02)04940-7. PubMed DOI

Wasserman A, Thiessen M, Pooyania S. Factors associated with community versus personal care home discharges after inpatient stroke rehabilitation: The need for a pre-admission predictive model. Top. Stroke Rehabil. 2019;27(3):173–180. doi: 10.1080/10749357.2019.1682369. PubMed DOI

Reeves MJ, Hughes AK, Woodward AT, Freddolino PP, Coursaris CK, Swierenga SJ, et al. Improving transitions in acute stroke patients discharged to home: the Michigan stroke transitions trial (MISTT) protocol. BMC Neurol. 2017;17(1):1. doi: 10.1186/s12883-017-0895-1. PubMed DOI PMC

Lai W, Buttineau M, Harvey JK, Pucci RA, Wong APM, Dell’Erario L, et al. Clinical and psychosocial predictors of exceeding target length of stay during inpatient stroke rehabilitation. Top. Stroke Rehabil. 2017;24(7):510–516. doi: 10.1080/10749357.2017.1325589. PubMed DOI

Ezekiel L, Collett J, Mayo NE, Pang L, Field L, Dawes H. Factors associated with participation in life situations for adults with stroke: A systematic review. Arch. Phys. Med. Rehabil. 2019;100(5):945–955. doi: 10.1016/j.apmr.2018.06.017. PubMed DOI

Wood JP, Connelly DM, Maly MR. ‘Getting back to real living’: A qualitative study of the process of community reintegration after stroke. Clin. Rehabil. 2010;24(11):1045–1056. doi: 10.1177/0269215510375901. PubMed DOI

Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, et al. Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 2013;14(5):365–376. doi: 10.1038/nrn3475. PubMed DOI

Jimenez-Mesa C, Ramirez J, Suckling J, Vöglein J, Levin J, Gorriz JM. A non-parametric statistical inference framework for Deep Learning in current neuroimaging. Inf. Fusion. 2023;91:598–611. doi: 10.1016/j.inffus.2022.11.007. DOI

Varoquaux G. Cross-validation failure: Small sample sizes lead to large error bars. Neuroimage. 2018;180:68–77. doi: 10.1016/j.neuroimage.2017.06.061. PubMed DOI

James, G., Witten, D., Hastie, T., & Tibshirani, R. An Introduction to Statistical Learning (Springer, New York, 2013). 10.1007/978-1-4614-7138-7.

Refaeilzadeh, P. Tang, L. & Liu, H. In: Cross-Validation, pp. 532–538 (Springer, US, 2009). 10.1007/978-0-387-39940-9_565.

Hawkins DM. The Problem of Overfitting. J. Chem. Inf. Comput. Sci. 2003;44(1):1–12. doi: 10.1021/ci0342472. PubMed DOI

Boot E, Ekker MS, Putaala J, Kittner S, De Leeuw FE, Tuladhar AM. Ischaemic stroke in young adults: A global perspective. J. Neurol. Neurosurg. Psychiatry. 2020;91(4):411–417. doi: 10.1136/jnnp-2019-322424. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...