Predictors of social risk for post-ischemic stroke reintegration
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
777107
European Union's Horizon 2020 RIA
101080875
Horizon Europe RIA
13/RC/2106_P2
European Regional Development Fund (ERDF)
PubMed
38698076
PubMed Central
PMC11066106
DOI
10.1038/s41598-024-60507-7
PII: 10.1038/s41598-024-60507-7
Knihovny.cz E-zdroje
- Klíčová slova
- Machine learning, Prediction model, Rehabilitation, Reintegration, SHAP analysis, Social risk, Socioeconomic support, Stroke,
- MeSH
- dospělí MeSH
- ischemická cévní mozková příhoda * rehabilitace psychologie MeSH
- kvalita života MeSH
- lidé středního věku MeSH
- lidé MeSH
- rehabilitace po cévní mozkové příhodě * MeSH
- rizikové faktory MeSH
- senioři MeSH
- sociální opora MeSH
- socioekonomické faktory MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
After stroke rehabilitation, patients need to reintegrate back into their daily life, workplace and society. Reintegration involves complex processes depending on age, sex, stroke severity, cognitive, physical, as well as socioeconomic factors that impact long-term outcomes post-stroke. Moreover, post-stroke quality of life can be impacted by social risks of inadequate family, social, economic, housing and other supports needed by the patients. Social risks and barriers to successful reintegration are poorly understood yet critical for informing clinical or social interventions. Therefore, the aim of this work is to predict social risk at rehabilitation discharge using sociodemographic and clinical variables at rehabilitation admission and identify factors that contribute to this risk. A Gradient Boosting modelling methodology based on decision trees was applied to a Catalan 217-patient cohort of mostly young (mean age 52.7), male (66.4%), ischemic stroke survivors. The modelling task was to predict an individual's social risk upon discharge from rehabilitation based on 16 different demographic, diagnostic and social risk variables (family support, social support, economic status, cohabitation and home accessibility at admission). To correct for imbalance in patient sample numbers with high and low-risk levels (prediction target), five different datasets were prepared by varying the data subsampling methodology. For each of the five datasets a prediction model was trained and the analysis involves a comparison across these models. The training and validation results indicated that the models corrected for prediction target imbalance have similarly good performance (AUC 0.831-0.843) and validation (AUC 0.881 - 0.909). Furthermore, predictor variable importance ranked social support and economic status as the most important variables with the greatest contribution to social risk prediction, however, sex and age had a lesser, but still important, contribution. Due to the complex and multifactorial nature of social risk, factors in combination, including social support and economic status, drive social risk for individuals.
Fundació Institute d'Investigació en Ciències de la Salut Germans Trias i Pujol Badalona Spain
Institut Guttmann Hospital de Neurorehabilitacio Badalona Spain
School of Computer Science University College Dublin Dublin Ireland
Universitat Autònoma de Barcelona Cerdanyola del Vallès Bellaterra Spain
Zobrazit více v PubMed
Jellema S, et al. What environmental factors influence resumption of valued activities post stroke: A systematic review of qualitative and quantitative findings. Clin. Rehab. 2016;31(7):936–947. doi: 10.1177/0269215516671013. PubMed DOI PMC
Trigg R, Wood VA, Hewer RL. Social reintegration after stroke: The first stages in the development of the Subjective Index of Physical and Social Outcome (SIPSO) Clin. Rehab. 1999;13(4):341–353. doi: 10.1191/026921599676390259. PubMed DOI
Wood-Dauphinee, S. Opzoomer, M. Williams, J. Marchand, B. & Spitzer, W. Assessment of global function: The reintegration to normal living index. Arch. Phys. Med. Rehab.69(8), 583–590. http://europepmc.org/abstract/MED/3408328 (1988). PubMed
Parvaneh S, Cocks E. Framework for describing community integration for people with acquired brain injury. Aust. Occup. Ther. J. 2012;59(2):131–137. doi: 10.1111/j.1440-1630.2012.01001.x. PubMed DOI
Tough H, Siegrist J, Fekete C. Social relationships, mental health and wellbeing in physical disability: A systematic review. BMC Public Health. 2017;17(1):1. doi: 10.1186/s12889-017-4308-6. PubMed DOI PMC
Walsh ME, Galvin R, Loughnane C, Macey C, Horgan NF. Factors associated with community reintegration in the first year after stroke: A qualitative meta-synthesis. Disabil. Rehabil. 2014;37(18):1599–1608. doi: 10.3109/09638288.2014.974834. PubMed DOI
Berkman, LF. Kawachi, I. & Glymour, MM. editors. Social Epidemiology (Oxford University Press, 2014). 10.1093/med/9780195377903.001.0001.
Wood-Dauphinee S, Williams JI. Reintegration to normal living as a proxy to quality of life. J. Chronic Dis. 1987;40(6):491–499. doi: 10.1016/0021-9681(87)90005-1. PubMed DOI
Holt-Lunstad J, Smith TB, Layton JB. Social relationships and mortality risk: A meta-analytic review. PLoS Med. 2010;7(7):e1000316. doi: 10.1371/journal.pmed.1000316. PubMed DOI PMC
Marcheschi E, Koch LV, Pessah-Rasmussen H, Elf M. Home setting after stroke, facilitators and barriers: A systematic literature review. Health Soc. Care Community. 2017;26(4):e451–e459. doi: 10.1111/hsc.12518. PubMed DOI
Elloker T, Rhoda A, Arowoiya A, Lawal IU. Factors predicting community participation in patients living with stroke, in the Western Cape. S. Afr. Disab. Rehab. 2018;41(22):2640–2647. doi: 10.1080/09638288.2018.1473509. PubMed DOI
Teoh V, Sims J, Milgrom J. Psychosocial Predictors of Quality of Life in a Sample of Community-Dwelling Stroke Survivors: A Longitudinal Study. Top. Stroke Rehabil. 2009;16(2):157–166. doi: 10.1310/tsr1602-157. PubMed DOI
White J, Magin P, Attia J, Sturm J, McElduff P, Carter G. Predictors of health-related quality of life in community-dwelling stroke survivors: A cohort study. Fam. Pract. 2016;33(4):382–387. doi: 10.1093/fampra/cmw011. PubMed DOI
Zawawi NSM, Aziz NA, Fisher R, Ahmad K, Walker MF. The unmet needs of stroke survivors and stroke caregivers: A systematic narrative review. J. Stroke Cerebrovasc. Dis. 2020;29(8):104875. doi: 10.1016/j.jstrokecerebrovasdis.2020.104875. PubMed DOI
Donkor ES. Stroke in the 21st Century: A snapshot of the burden, epidemiology, and quality of life. Stroke Res. Treatm. 2018;2018:1–10. doi: 10.1155/2018/3238165. PubMed DOI PMC
Sabartés O, Basseda RM, Ferrer MM, Esperanza A, García-Palleiro P, Llorach I, et al. Factores predictivos de retorno al domicilio en pacientes ancianos hospitalizados. Anales De Medicina Interna. 1999;16:1. PubMed
Cahuana-Cuentas M, Gallegos WLA, Rivera-Calcina R, Canaza KDC. Influencia de la familia sobre la resiliencia en personas con discapacidad física y sensorial de Arequipa, Perú. Revista chilena de neuro-psiquiatría. 2019;57(2):118–128. doi: 10.4067/s0717-92272019000200118. DOI
Ramírez-Duque N, Ollero-Baturone M, Bernabeu-Wittel M, Rincón-Gómez M, Ortiz-Camuñez MA, García-Morillo S. Características, clínicas, funcionales, mentales y sociales de pacientes pluripatológicos: Estudio prospectivo durante un año en Atención Primaria. Revista Clínica Española. 2008;208(1):4–11. doi: 10.1157/13115000. PubMed DOI
Varela-Pinedo, L., Chávez-Jimeno, H., Tello-Rodriguez, T., Ortiz-Saavedra, P., Gálvez-Cano, M., Casas-Vasquez, P. et al. Perfil clínico, funcional y sociofamiliar del adulto mayor de la comunidad en un distrito de Lima, Perú. Revista Peruana de Medicina Experimental y Salud Publica.32(4):709. 10.17843/rpmesp.2015.324.1762 (2015). PubMed
García-Rudolph A, Cegarra B, Opisso E, Tormos JM, Bernabeu M, Saurí J. Predicting length of stay in patients admitted to stroke rehabilitation with severe and moderate levels of functional impairments. Medicine. 2020;99(43):e22423. doi: 10.1097/md.0000000000022423. PubMed DOI PMC
García-Rudolph, A., Cegarra, B., Saurí, J., Kelleher, J. D., Cisek, K., Frey, D. et al. Intersection of resilience and COVID-19: Structural topic modelling and word embeddings from reddit titles (2023).
García-Rudolph A, Saurí J, Garcia-Molina A, Cegarra B, Opisso E, Tormos JM, et al. The impact of coronavirus disease 2019 on emotional and behavioral stress of informal family caregivers of individuals with stroke or traumatic brain injury at chronic phase living in a Mediterranean setting. Brain Behav. 2021;12(1):1. doi: 10.1002/brb3.2440. PubMed DOI PMC
García-Rudolph A, Saurí J, Cegarra B, Opisso E, Tormos JM, Frey D, et al. The impact of COVID-19 on home, social, and productivity integration of people with chronic traumatic brain injury or stroke living in the community. Medicine. 2022;101(8):e28695. doi: 10.1097/md.0000000000028695. PubMed DOI PMC
Shavelle RM, Brooks JC, Strauss DJ, Turner-Stokes L. Life Expectancy after Stroke Based On Age, Sex, and Rankin Grade of Disability: A Synthesis. J. Stroke Cerebrovasc. Dis. 2019;28(12):104450. doi: 10.1016/j.jstrokecerebrovasdis.2019.104450. PubMed DOI
GBD 2016 Lifetime Risk of Stroke Collaborators, Feigin, V. L., Nguyen, G., Cercy, K., Johnson, C. O., Alam, T., et al. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N. Engl. J. Med.379(25), 2429–2437. https://europepmc.org/articles/PMC6247346 (2018). PubMed PMC
Amaya Pascasio L, Blanco Ruiz M, Milán Pinilla R, García Torrecillas JM, Arjona Padillo A, Del Toro PC, et al. Stroke in young adults in Spain: Epidemiology and risk factors by age. J. Pers. Med. 2023;13(5):768. doi: 10.3390/jpm13050768. PubMed DOI PMC
Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. Strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ. 2007;335(7624):806–808. doi: 10.1136/bmj.39335.541782.ad. PubMed DOI PMC
Maaijwee NAMM, Rutten-Jacobs LCA, Schaapsmeerders P, Dijk EJ, Leeuw FE. Ischaemic stroke in young adults: Risk factors and long-term consequences. Nat. Rev. Neurol. 2014;10(6):315–325. doi: 10.1038/nrneurol.2014.72. PubMed DOI
Stack CA, Cole JW. Ischemic stroke in young adults. Curr. Opin. Cardiol. 2018;33(6):594–604. doi: 10.1097/hco.0000000000000564. PubMed DOI
García-Rudolph A, Saurí J, Cisek K, Kelleher JD, Madai VI, Frey D, et al. Long-term trajectories of community integration: Identification, characterization, and prediction using inpatient rehabilitation variables. Top. Stroke Rehab. 2023;1:1–13. doi: 10.1080/10749357.2023.2188756. PubMed DOI
Matos I, Fernandes A, Maso I, Oliveira-Filho J, de Jesus PA, Fraga-Maia H, et al. Investigating predictors of community integration in individuals after stroke in a residential setting: A longitutinal study. PLoS ONE. 2020;15(5):e0233015. doi: 10.1371/journal.pone.0233015. PubMed DOI PMC
García-Rudolph A, Saurí J, Cegarra B, Madai VI, Frey D, Kelleher JD, et al. Long-term trajectories of motor functional independence after ischemic stroke in young adults: Identification and characterization using inpatient baseline assessments. NeuroRehabilitation. 2022;50(4):453–465. doi: 10.3233/nre-210293. PubMed DOI
Martinez HB, Cisek K, Garcia-Rudolph A, Kelleher JD, Hines A. Understanding and Predicting Cognitive Improvement of Young Adults in Ischemic Stroke Rehabilitation Therapy. Front. Neurol. 2022;13:1. doi: 10.3389/fneur.2022.886477. PubMed DOI PMC
Current Topics in Technology-Enabled Stroke Rehabilitation and Reintegration: A Scoping Review and Content Analysis IEEE Transactions on Neural Systems and Rehabilitation Engineering 313341–3352 10.1109/TNSRE.2023.3304758 (2023). PubMed
Cisek, K., Nguyen, T. N. Q., García-Rudolph, A., Saurí, J., & Kelleher, J. D. Understanding social risk variation across reintegration of post-ischemic stroke patients. In: Cerebral Ischemia, pp. 201–220 (Exon Publications, 2021). 10.36255/exonpublications.cerebralischemia.2021.reintegration. PubMed
Amarilla-Donoso FJ, Roncero-Martin R, Lavado-Garcia JM, Toribio-Felipe R, Moran-Garcia JM, Lopez-Espuela F. Quality of life after hip fracture: A 12-month prospective study. PeerJ. 2020;8:e9215. doi: 10.7717/peerj.9215. PubMed DOI PMC
García González J, Díaz Palacios E, Salamea García A, Cabrera González D, Menéndez Caicoya A, Fernández Sánchez A, et al. An evaluation of the feasibility and validity of a scale of social assessment of the elderly. Atencion Primaria. 1999;23(7):434–440. PubMed
Pellico-López A, Fernández-Feito A, Cantarero D, Herrero-Montes M, Cayón-de las Cuevas J, Parás-Bravo P, et al. Cost of stay and characteristics of patients with stroke and delayed discharge for non-clinical reasons. Sci. Rep. 2022;12(1):1. doi: 10.1038/s41598-022-14502-5. PubMed DOI PMC
Pérez LM, Inzitari M, Quinn TJ, Montaner J, Gavaldà R, Duarte E, et al. Rehabilitation profiles of older adult stroke survivors admitted to intermediate care units: A multi-centre study. PLoS ONE. 2016;11(11):e0166304. doi: 10.1371/journal.pone.0166304. PubMed DOI PMC
Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat.29(5), 1189–1232. http://www.jstor.org/stable/2699986 (2001).
Manning CD, Schütze H. Foundations of Statistical Natural Language Processing. Cambridge, MA, USA: MIT Press; 1999.
Team RC. R: A Language and environment for statistical computing. Vienna, Austria: CRAN; https://www.R-project.org/ (2021).
Kim C, Park T. Predicting determinants of lifelong learning intention using gradient boosting machine (GBM) with grid search. Sustainability. 2022;14(9):5256. doi: 10.3390/su14095256. DOI
Natekin A, Knoll A. Gradient boosting machines, a tutorial. Front. Neurorobot. 2013;7:1. doi: 10.3389/fnbot.2013.00021. PubMed DOI PMC
Friedman JH. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002;38(4):367–378. doi: 10.1016/s0167-9473(01)00065-2. DOI
Ridgeway, G. Generalized Boosted Models: A guide to the gbm package. CRAN; R package version 1.1. https://CRAN.R-project.org/package=gbm (2007).
Hastie, T. Tibshirani, R. & Friedman, J. The elements of statistical learning (Springer, New York). 10.1007/978-0-387-84858-7 (2009).
Lakshmanan, V., Robinson, S., & Munn, M. Machine learning design patterns. O’Reilly Media, Inc. (2020).
Schratz P, Muenchow J, Iturritxa E, Richter J, Brenning A. Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data. Ecol. Model. 2019;406:109–120. doi: 10.1016/j.ecolmodel.2019.06.002. DOI
Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw.28(5), 1. 10.18637/jss.v028.i05 (2008).
Kuhn, M., & Johnson, K. Applied predictive modeling (Springer, New York, 2013). 10.1007/978-1-4614-6849-3.
Powers D. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Technol. 2011;2(1):37–63. doi: 10.9735/2229-3981. DOI
Tharwat A. Classification assessment methods. Appl. Comput. Inf. 2020;17(1):168–192. doi: 10.1016/j.aci.2018.08.003. DOI
Lundberg, S. M., & Lee, S. I. A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S. et al., editors. Advances in Neural Information Processing Systems. vol. 30, pp. 1–10 (Curran Associates, Inc., 2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf.
Štrumbelj E, Kononenko I. Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. 2013;41(3):647–665. doi: 10.1007/s10115-013-0679-x. DOI
Greenwell, B. Package ‘fastshap’. CRAN; R package version 0.0.7. https://CRAN.R-project.org/package=fastshap (2020).
Agarwal V, McRae MP, Bhardwaj A, Teasell RW. A model to aid in the prediction of discharge location for stroke rehabilitation patients. Arch. Phys. Med. Rehabil. 2003;84(11):1703–1709. doi: 10.1053/s0003-9993(03)00362-9. PubMed DOI
Everink IHJ, van Haastregt JCM, van Hoof SJM, Schols JMGA, Kempen GIJM. Factors influencing home discharge after inpatient rehabilitation of older patients: A systematic review. BMC Geriatr. 2016;16(1):1. doi: 10.1186/s12877-016-0187-4. PubMed DOI PMC
Nguyen VQC, PrvuBettger J, Guerrier T, Hirsch MA, Thomas JG, Pugh TM, et al. Factors associated with discharge to home versus discharge to institutional care after inpatient stroke rehabilitation. Arch. Phys. Med. Rehabil. 2015;96(7):1297–1303. doi: 10.1016/j.apmr.2015.03.007. PubMed DOI
Pereira S, Foley N, Salter K, McClure JA, Meyer M, Brown J, et al. Discharge destination of individuals with severe stroke undergoing rehabilitation: A predictive model. Disabil. Rehabil. 2014;36(9):727–731. doi: 10.3109/09638288.2014.902510. PubMed DOI
Pohl PS, Billinger SA, Lentz A, Gajewski B. The role of patient demographics and clinical presentation in predicting discharge placement after inpatient stroke rehabilitation: Analysis of a large, US data base. Disab. Rehab. 2012;35(12):990–994. doi: 10.3109/09638288.2012.717587. PubMed DOI
Wee JY, Wong H, Palepu A. Validation of the Berg balance scale as a predictor of length of stay and discharge destination in stroke rehabilitation. Arch. Phys. Med. Rehabil. 2003;84(5):731–735. doi: 10.1016/s0003-9993(02)04940-7. PubMed DOI
Wasserman A, Thiessen M, Pooyania S. Factors associated with community versus personal care home discharges after inpatient stroke rehabilitation: The need for a pre-admission predictive model. Top. Stroke Rehabil. 2019;27(3):173–180. doi: 10.1080/10749357.2019.1682369. PubMed DOI
Reeves MJ, Hughes AK, Woodward AT, Freddolino PP, Coursaris CK, Swierenga SJ, et al. Improving transitions in acute stroke patients discharged to home: the Michigan stroke transitions trial (MISTT) protocol. BMC Neurol. 2017;17(1):1. doi: 10.1186/s12883-017-0895-1. PubMed DOI PMC
Lai W, Buttineau M, Harvey JK, Pucci RA, Wong APM, Dell’Erario L, et al. Clinical and psychosocial predictors of exceeding target length of stay during inpatient stroke rehabilitation. Top. Stroke Rehabil. 2017;24(7):510–516. doi: 10.1080/10749357.2017.1325589. PubMed DOI
Ezekiel L, Collett J, Mayo NE, Pang L, Field L, Dawes H. Factors associated with participation in life situations for adults with stroke: A systematic review. Arch. Phys. Med. Rehabil. 2019;100(5):945–955. doi: 10.1016/j.apmr.2018.06.017. PubMed DOI
Wood JP, Connelly DM, Maly MR. ‘Getting back to real living’: A qualitative study of the process of community reintegration after stroke. Clin. Rehabil. 2010;24(11):1045–1056. doi: 10.1177/0269215510375901. PubMed DOI
Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, et al. Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 2013;14(5):365–376. doi: 10.1038/nrn3475. PubMed DOI
Jimenez-Mesa C, Ramirez J, Suckling J, Vöglein J, Levin J, Gorriz JM. A non-parametric statistical inference framework for Deep Learning in current neuroimaging. Inf. Fusion. 2023;91:598–611. doi: 10.1016/j.inffus.2022.11.007. DOI
Varoquaux G. Cross-validation failure: Small sample sizes lead to large error bars. Neuroimage. 2018;180:68–77. doi: 10.1016/j.neuroimage.2017.06.061. PubMed DOI
James, G., Witten, D., Hastie, T., & Tibshirani, R. An Introduction to Statistical Learning (Springer, New York, 2013). 10.1007/978-1-4614-7138-7.
Refaeilzadeh, P. Tang, L. & Liu, H. In: Cross-Validation, pp. 532–538 (Springer, US, 2009). 10.1007/978-0-387-39940-9_565.
Hawkins DM. The Problem of Overfitting. J. Chem. Inf. Comput. Sci. 2003;44(1):1–12. doi: 10.1021/ci0342472. PubMed DOI
Boot E, Ekker MS, Putaala J, Kittner S, De Leeuw FE, Tuladhar AM. Ischaemic stroke in young adults: A global perspective. J. Neurol. Neurosurg. Psychiatry. 2020;91(4):411–417. doi: 10.1136/jnnp-2019-322424. PubMed DOI