Parvalbumin Gene: A Valuable Marker for Pike Authentication and Allergen Risk Assessment
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, hodnotící studie
PubMed
38778779
PubMed Central
PMC11157528
DOI
10.1021/acs.jafc.4c01410
Knihovny.cz E-zdroje
- Klíčová slova
- DNA, Esox, LAMP, PCR, food allergy, food fraud,
- MeSH
- alergeny * genetika analýza imunologie MeSH
- biologické markery analýza MeSH
- diagnostické techniky molekulární MeSH
- Esocidae * genetika imunologie MeSH
- hodnocení rizik MeSH
- kontaminace potravin analýza MeSH
- kvantitativní polymerázová řetězová reakce metody MeSH
- lidé MeSH
- parvalbuminy * genetika imunologie analýza MeSH
- potravinová alergie * imunologie MeSH
- rybí proteiny genetika imunologie MeSH
- techniky amplifikace nukleových kyselin metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- Názvy látek
- alergeny * MeSH
- biologické markery MeSH
- parvalbuminy * MeSH
- rybí proteiny MeSH
Fish from the pike (Esox) genus are valued in gastronomy for their superior meat quality. However, they can cause allergic reactions in sensitive consumers. This work aimed to fill the gap in the detection of pike allergens using molecular-biological techniques. New, fast, and accurate loop-mediated isothermal amplification (LAMP) and real-time PCR (qPCR) assays were designed to detect pike DNA using the parvalbumin gene as a marker. LAMP was assessed by electrophoresis, SYBR green optical detection, and real-time fluorescence detection. The latter was the most sensitive, detecting as little as 0.78 ng of pike DNA; the qPCR detection limit was 0.1 ng. The LAMP analysis took 20-70 min, which is significantly faster than qPCR. The study provides reliable detection and quantification of the parvalbumin gene in both fresh and processed samples and further highlights the versatility of the use of the parvalbumin gene for the authentication of food products and consumer protection via refined allergen risk assessment that is independent of the type of tissue or food processing method used.
Zobrazit více v PubMed
Nelson J. S.; Grande T. C.; Wilson M. V.. Fishes of the World; John Wiley & Sons, 2016.
Cain M. L.; Lauer T. E.; Lau J. K. Habitat use of Grass Pickerel Esox americanus vermiculatus in Indiana streams. Am. Midl. Nat. 2008, 160 (1), 96–109. 10.1674/0003-0031(2008)160[96:HUOGPE]2.0.CO;2. DOI
Skog A.; Vo̷llestad L. A.; Stenseth N. C.; Kasumyan A.; Jakobsen K. S. Circumpolar phylogeography of the northern pike (Esox lucius) and its relationship to the Amur pike (E. reichertii). Front. Zool. 2014, 11 (1), 1–8. 10.1186/s12983-014-0067-8. PubMed DOI
Denys G. P. J.; Dettai A.; Persat H.; Hautecœur M.; Keith P. Morphological and molecular evidence of three species of pikes Esox spp.(Actinopterygii, Esocidae) in France, including the description of a new species. C. R. Biol. 2014, 337 (9), 521–534. 10.1016/j.crvi.2014.07.002. PubMed DOI
Herke S. W.; Kornfield I.; Moran P.; Moring J. R. Molecular confirmation of hybridization between northern pike (Esox lucius) and chain pickerel (E. niger). Copeia 1990, 1990 (3), 846–850. 10.2307/1446451. DOI
Lin F.; Dabrowski K. Effects of sperm irradiation and heat shock on induction of gynogenesis in muskellunge (Esox masquinongy). Can. J. Fish. Aquat. Sci. 1996, 53 (9), 2067–2075. 10.1139/f96-140. DOI
Lucentini L.; Puletti M. E.; Ricciolini C.; Gigliarelli L.; Fontaneto D.; Lanfaloni L.; Bilò F.; Natali M.; Panara F. Molecular and phenotypic evidence of a new species of genus Esox (Esocidae, Esociformes, Actinopterygii): the southern pike, Esox flaviae. PLoS One 2011, 6 (12), e2521810.1371/journal.pone.0025218. PubMed DOI PMC
Bianco P. G.; Delmastro G. B.. Recenti novità tassonomiche riguardanti i pesci d’acqua dolce autoctoni in Italia e descrizione di una nuova specie di luccio; IGF publishing, 2011.
Forsman A.; Tibblin P.; Berggren H.; Nordahl O.; Koch-Schmidt P.; Larsson P. Pike Esox lucius as an emerging model organism for studies in ecology and evolutionary biology: a review. J. Fish. Biol. 2015, 87 (2), 472–479. 10.1111/jfb.12712. PubMed DOI PMC
Froese R.; Pauly D. F.. The Global Database of Fishes. Catalogue Of Life Checklist. 2023.
Wahl D. H.; Stein R. A. Comparative population characteristics of muskellunge (Esox masquinongy), northern pike (E. lucius), and their hybrid (E. masquinongy× E. lucius). Can. J. Fish. Aquat. Sci. 1993, 50 (9), 1961–1968. 10.1139/f93-218. DOI
Brecka B. J.; Hooe M. L.; Wahl D. H. Comparison of growth, survival, and body composition of muskellunge and tiger muskellunge fed four commercial diets. Prog. Fish-Cult. 1995, 57 (1), 37–43. 10.1577/1548-8640(1995)057<0037:COGSAB>2.3.CO;2. DOI
Raat A. J.Synopsis of biological data on the northern pike, Esox lucius Linneaus, 1758; Food & Agriculture Org, 1988.
Pan Q.; Feron R.; Yano A.; Guyomard R.; Jouanno E.; Vigouroux E.; Wen M.; Busnel J.-M.; Bobe J.; Concordet J.-P.; et al. Identification of the master sex determining gene in Northern pike (Esox lucius) reveals restricted sex chromosome differentiation. PloS Genet. 2019, 15 (8), e100801310.1371/journal.pgen.1008013. PubMed DOI PMC
Reilly A.Overview of food fraud in the fisheries sector. FAO Fish. Aquacult. Circ. 2018, I–21..
Dasanayaka B. P.; Li Z.; Pramod S. N.; Chen Y.; Khan M. U.; Lin H. A review on food processing and preparation methods for altering fish allergenicity. Crit. Rev. Food Sci. Nutr. 2022, 62 (7), 1951–1970. 10.1080/10408398.2020.1848791. PubMed DOI
Pérez-Tavarez R.; Carrera M.; Pedrosa M.; Quirce S.; Rodríguez-Pérez R.; Gasset M.. Reconstruction of fish allergenicity from the content and structural traits of the component β-parvalbumin isoforms. Sci. Rep.; 2019, 9, (1), , 16298. 10.1038/s41598-019-52801-6. PubMed DOI PMC
Sepulveda A. J.; Hutchins P. R.; Massengill R. L.; Dunker K. J. Tradeoffs of a portable, field-based environmental DNA platform for detecting invasive northern pike (Esox lucius) in Alaska. Manage. Biol. Invasions 2018, 9 (3), 253–258. 10.3391/mbi.2018.9.3.07. DOI
Scheibel N. C.; Dembkowski D. J.; Davis J. L.; Chipps S. R. Impacts of northern pike on stocked rainbow trout in Pactola Reservoir, south Dakota. North Am. J. Fish. Manage. 2016, 36 (2), 230–240. 10.1080/02755947.2015.1116472. DOI
Olsen J. B.; Lewis C. J.; Massengill R. L.; Dunker K. J.; Wenburg J. K. An evaluation of target specificity and sensitivity of three qPCR assays for detecting environmental DNA from Northern Pike (Esox lucius). Conserv. Genet. Resour. 2015, 7 (3), 615–617. 10.1007/s12686-015-0459-x. DOI
Denys G. P.; Lauga T.; Delamstro G. B.; Dettaï A. S7 characterization of Western European pikes Esox spp.(Actinopterygii, Esociformes). Cybium: revue Internationale d’Ichtyologie 2018, 42 (3), 221–228. 10.26028/cybium/2018-423-001. DOI
Takács P.; Bánó B.; Czeglédi I.; Erős T.; Ferincz Á.; Gál B.; Bánó-Kern B.; Kovács B.; Nagy A. A.; Nyeste K. The mixed phylogenetic origin of northern pike (Esox lucius Linnaeus 1758) populations in the Middle Danubian drainage. BMC Zool. 2022, 7 (1), 28.10.1186/s40850-022-00129-6. PubMed DOI PMC
Liu Y.; Yang J. Complete mitochondrial genome of Esox reichertii (Amur pike). Mitochondrial DNA 2015, 26 (6), 927–928. 10.3109/19401736.2013.863294. PubMed DOI
Gandolfi A.; Fontaneto D.; Natali M.; Lucentini L. Mitochondrial genome of Esox flaviae (Southern pike): announcement and comparison with other Esocidae. Mitochondrial DNA Part A 2016, 27 (4), 3037–3038. 10.3109/19401736.2015.1063123. PubMed DOI
Bachevskaja L.; Pereverzeva V.; Agapova G.; Grunin S. Genetic Diversity of the Population of Northern Pike Esox lucius L. from the Rivers of the Northeastern Part of Russia. Biol. Bull. 2019, 46 (2), 154–160. 10.1134/S1062359019020031. DOI
Campbell M. A.; López J. A.; Sado T.; Miya M. Pike and salmon as sister taxa: detailed intraclade resolution and divergence time estimation of Esociformes+ Salmoniformes based on whole mitochondrial genome sequences. Gene 2013, 530 (1), 57–65. 10.1016/j.gene.2013.07.068. PubMed DOI
Rondeau E. B.; Minkley D. R.; Leong J. S.; Messmer A. M.; Jantzen J. R.; von Schalburg K. R.; Lemon C.; Bird N. H.; Koop B. F. The Genome and Linkage Map of the Northern Pike (Esox lucius): Conserved Synteny Revealed between the Salmonid Sister Group and the Neoteleostei. PLoS One 2014, 9 (7), e10208910.1371/journal.pone.0102089. PubMed DOI PMC
Lee P. L. M. DNA amplification in the field: move over PCR, here comes LAMP. Mol. Ecol. Resour. 2017, 17, 138.10.1111/1755-0998.12548. PubMed DOI
Xiong X.; Xu W.; Guo L.; An J.; Huang L.; Qian H.; Cui X.; Li Y.; Cao M.; Xiong X. Development of loop-mediated isothermal amplification (LAMP) assay for rapid screening of skipjack tuna (Katsuwonus pelamis) in processed fish products. J. Food Compos. Anal. 2021, 102, 104038.10.1016/j.jfca.2021.104038. DOI
Notomi T.; Okayama H.; Masubuchi H.; Yonekawa T.; Watanabe K.; Amino N.; Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. Nucleic Acids Res. 2000, 28 (12), 63e–63. 10.1093/nar/28.12.e63. PubMed DOI PMC
Wang C.; Li R.; Quan S.; Shen P.; Zhang D.; Shi J.; Yang L. GMO detection in food and feed through screening by visual loop-mediated isothermal amplification assays. Anal. Bioanal. Chem. 2015, 407, 4829–4834. 10.1007/s00216-015-8652-z. PubMed DOI
Li Y.; Fan P.; Zhou S.; Zhang L. Loop-mediated isothermal amplification (LAMP): a novel rapid detection platform for pathogens. Microb. Pathog. 2017, 107, 54–61. 10.1016/j.micpath.2017.03.016. PubMed DOI
Fu S.; Qu G.; Guo S.; Ma L.; Zhang N.; Zhang S.; Gao S.; Shen Z. Applications of loop-mediated isothermal DNA amplification. Appl. Biochem. Biotechnol. 2011, 163 (7), 845–850. 10.1007/s12010-010-9088-8. PubMed DOI
Zhang F.; Gao C.; Bai L.; Chen Y.; Liang S.; Lv X.; Sun J.; Wang S. Dual-color blending based visual LAMP for food allergen detection: a strategy with enlarged color variation range and contrast. Food Chemistry: x 2022, 13, 100201.10.1016/j.fochx.2021.100201. PubMed DOI PMC
Allgöwer S. M.; Hartmann C. A.; Lipinski C.; Mahler V.; Randow S.; Völker E.; Holzhauser T. LAMP-LFD based on isothermal amplification of multicopy gene ORF160b: Applicability for highly sensitive low-tech screening of allergenic soybean (Glycine max) in food. Foods 2020, 9 (12), 1741.10.3390/foods9121741. PubMed DOI PMC
Sheu S.-C.; Yu M.-T.; Lien Y.-Y.; Lee M.-S. Development of a specific isothermal nucleic acid amplification for the rapid and sensitive detection of shrimp allergens in processed food. Food Chem. 2020, 332, 127389.10.1016/j.foodchem.2020.127389. PubMed DOI
Katoh K.; Misawa K.; Kuma K. I.; Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30 (14), 3059–3066. 10.1093/nar/gkf436. PubMed DOI PMC
Katoh K.; Standley D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013, 30 (4), 772–780. 10.1093/molbev/mst010. PubMed DOI PMC
Sun M.; Liang C.; Gao H.; Lin C.; Deng M. Detection of parvalbumin, a common fish allergen gene in food, by real-time polymerase chain reaction. J. AOAC Int. 2009, 92 (1), 234–240. 10.1093/jaoac/92.1.234. PubMed DOI
Laube I.; Zagon J.; Spiegelberg A.; Butschke A.; Kroh L. W.; Broll H. Development and design of a ‘ready-to-use’reaction plate for a PCR-based simultaneous detection of animal species used in foods. Int. J. Food Sci. Technol. 2007, 42 (1), 9–17. 10.1111/j.1365-2621.2006.01154.x. DOI
Hanák P.; Laknerová I.; švátora M. Second intron in the protein-coding region of the fish parvalbumin gene–a promising platform for polymerase chain reaction-based discrimination of fish meat of various species. J. Food Nutr. Res. 2012, 51 (2), 81–88.
Laknerová I.; Zdeňková K.; Purkrtová S.; Piknová Ĺ.; Vyroubalová Š.; Hanák P. Interlaboratory Identification of Black Seabream (S pondyliosoma cantharus) as a Model Species on Basis of Polymerase Chain Reaction Targeting the Second Intron of the Parvalbumin Gene. J. Food Qual. 2014, 37 (6), 429–436. 10.1111/jfq.12114. DOI
Kolaskar A. S.; Tongaonkar P. C. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett. 1990, 276 (1–2), 172–174. 10.1016/0014-5793(90)80535-Q. PubMed DOI
Piskata Z.; Servusova E.; Babak V.; Nesvadbova M.; Borilova G. The quality of DNA isolated from processed food and feed via different extraction procedures. Molecules 2019, 24 (6), 1188.10.3390/molecules24061188. PubMed DOI PMC
Hellberg R. S.; Kawalek M. D.; Van K. T.; Shen Y.; Williams-Hill D. M. Comparison of DNA extraction and PCR setup methods for use in high-throughput DNA barcoding of fish species. Food Anal. Methods 2014, 7, 1950–1959. 10.1007/s12161-014-9865-z. DOI
Čermáková E.; Zdeňková K.; Demnerová K.; Ovesná J. Comparison of methods to extract PCR-amplifiable DNA from fruit, herbal and black teas. Czech J. Food Sci. 2021, 39 (5), 410–417. 10.17221/24/2021-CJFS. DOI
Ballantyne K.; Van Oorschot R.; Mitchell R. Locked nucleic acids in PCR primers increase sensitivity and performance. Genomics 2008, 91 (3), 301–305. 10.1016/j.ygeno.2007.10.016. PubMed DOI
Levin J. D.; Fiala D.; Samala M. F.; Kahn J. D.; Peterson R. J. Position-dependent effects of locked nucleic acid (LNA) on DNA sequencing and PCR primers. Nucleic Acids Res. 2006, 34 (20), e142–e14210.1093/nar/gkl756. PubMed DOI PMC
Cai X.; Xu M.; Wang Y.; Qiu D.; Liu G.; Lin A.; Tang J.; Zhang R.; Zhu X. Sensitive and rapid detection of Clonorchis sinensis infection in fish by loop-mediated isothermal amplification (LAMP). Parasitol. Res. 2010, 106 (6), 1379–1383. 10.1007/s00436-010-1812-3. PubMed DOI
Fernández-Soto P.; Mvoulouga P. O.; Akue J. P.; Abán J. L.; Santiago B. V.; Sánchez M. C.; Muro A. Development of a highly sensitive loop-mediated isothermal amplification (LAMP) method for the detection of Loa loa. PLoS One 2014, 9 (4), e9466410.1371/journal.pone.0094664. PubMed DOI PMC
Caipang C. M. A.; Haraguchi I.; Ohira T.; Hirono I.; Aoki T. Rapid detection of a fish iridovirus using loop-mediated isothermal amplification (LAMP). J. Virol. Methods 2004, 121 (2), 155–161. 10.1016/j.jviromet.2004.06.011. PubMed DOI
Savan R.; Igarashi A.; Matsuoka S.; Sakai M. Sensitive and rapid detection of edwardsiellosis in fish by a loop-mediated isothermal amplification method. Appl. Environ. Microbiol. 2004, 70 (1), 621–624. 10.1128/AEM.70.1.621-624.2004. PubMed DOI PMC
Xiong X.; Huang M.; Xu W.; Cao M.; Li Y.; Xiong X. Tracing Atlantic Salmon (Salmo salar) in processed fish products using the novel loop-mediated isothermal amplification (LAMP) and PCR assays. Food Anal. Methods 2020, 13 (6), 1235–1245. 10.1007/s12161-020-01738-y. DOI
Xiong X.; Huang M.; Xu W.; Li Y.; Cao M.; Xiong X. Using real time fluorescence loop-mediated isothermal amplification for rapid species authentication of Atlantic salmon (Salmo salar). J. Food Compos. Anal. 2021, 95, 103659.10.1016/j.jfca.2020.103659. DOI
Xiong X.; Huang M.; Xu W.; Li Y.; Cao M.; Xiong X. Rainbow trout (Oncorhynchus mykiss) identification in processed fish products using loop-mediated isothermal amplification and polymerase chain reaction assays. J. Sci. Food Agric. 2020, 100 (13), 4696–4704. 10.1002/jsfa.10526. PubMed DOI
Ali A.; Kreitlow A.; Plötz M.; Normanno G.; Abdulmawjood A. Development of loop-mediated isothermal amplification (LAMP) assay for rapid and direct screening of yellowfin tuna (Thunnus albacares) in commercial fish products. PLoS One 2022, 17 (10), e027545210.1371/journal.pone.0275452. PubMed DOI PMC
Spielmann G.; Ziegler S.; Haszprunar G.; Busch U.; Huber I.; Pavlovic M. Using loop-mediated isothermal amplification for fast species delimitation in eels (genus Anguilla With Special Reference To The European Eel (Anguilla Anguilla). Food Control 2019, 101, 156–162. 10.1016/j.foodcont.2019.02.022. DOI
Saull J.; Duggan C.; Hobbs G.; Edwards T. The detection of Atlantic cod (Gadus morhua) using loop mediated isothermal amplification in conjunction with a simplified DNA extraction process. Food Control 2016, 59, 306–313. 10.1016/j.foodcont.2015.05.038. DOI
Deconinck D.; Robbens J.; Volckaert F. A.; Derycke S. Rapid and low-cost identification of common sole (Solea solea) in the field using a fast DNA isolation protocol and loop-mediated isothermal amplification (LAMP). J. Food Compos. Anal. 2023, 118, 105166.10.1016/j.jfca.2023.105166. DOI
Xie R.; Gao J.; Li H.; Yu W.; Zhang J.; Wang N.; Chen A. Rapid detection of Arothron species by real-time fluorescence and colorimetric loop-mediated isothermal amplification assays targeting the mitochondrial cytochrome b gene. J. Food Compos. Anal. 2022, 111, 104631.10.1016/j.jfca.2022.104631. DOI
Xie R.; Gao J.; Li H.; Yu W.; Zhang J.; Wang N.; Chen A. Real-time Fluorescence and Visual Colorimetric Loop–Mediated Isothermal Amplification Assays for the Rapid and Visual Identification of the Genus Diodon. Food Anal. Methods 2022, 15 (9), 2487–2495. 10.1007/s12161-022-02307-1. DOI
Nanayakkara I. A.; White I. M. Demonstration of a quantitative triplex LAMP assay with an improved probe-based readout for the detection of MRSA. Analyst 2019, 144 (12), 3878–3885. 10.1039/C9AN00671K. PubMed DOI
Abdulmawjood A.; Grabowski N.; Fohler S.; Kittler S.; Nagengast H.; Klein G. Development of loop-mediated isothermal amplification (LAMP) assay for rapid and sensitive identification of ostrich meat. PLoS One 2014, 9 (6), e10071710.1371/journal.pone.0100717. PubMed DOI PMC
Sheu S.; Tsou P.; Lien Y.; Lee M. Development of loop-mediated isothermal amplification (LAMP) assays for the rapid detection of allergic peanut in processed food. Food Chem. 2018, 257, 67.10.1016/j.foodchem.2018.02.124. PubMed DOI