Insectivorous birds and bats outperform ants in the top-down regulation of arthropods across strata of a Japanese temperate forest

. 2024 Nov ; 93 (11) : 1622-1638. [epub] 20240724

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39045801

Grantová podpora
BABE 805189 H2020 European Research Council
VAJVA-19-65 Grantová agentura Akademie věd ČR (CZ)
014/2022/P Grantová agentura Jihoceska Univerzita

Birds, bats and ants are recognised as significant arthropod predators. However, empirical studies reveal inconsistent trends in their relative roles in top-down control across strata. Here, we describe the differences between forest strata in the separate effects of birds, bats and ants on arthropod densities and their cascading effects on plant damage. We implemented a factorial design to exclude vertebrates and ants in both the canopy and understorey. Additionally, we separately excluded birds and bats from the understorey using diurnal and nocturnal exclosures. At the end of the experiments, we collected all arthropods and assessed herbivory damage. Arthropods responded similarly to predator exclusion across forest strata, with a density increase of 81% on trees without vertebrates and 53% without both vertebrates and ants. Additionally, bird exclusion alone led to an 89% increase in arthropod density, while bat exclusion resulted in a 63% increase. Herbivory increased by 42% when vertebrates were excluded and by 35% when both vertebrates and ants were excluded. Bird exclusion alone increased herbivory damage by 28%, while the exclusion of bats showed a detectable but non-significant increase (by 22%). In contrast, ant exclusion had no significant effect on arthropod density or herbivory damage across strata. Our results reveal that the effects of birds and bats on arthropod density and herbivory damage are similar between the forest canopy and understorey in this temperate forest. In addition, ants were not found to be significant predators in our system. Furthermore, birds, bats and ants appeared to exhibit antagonistic relationships in influencing arthropod density. These findings highlight, unprecedentedly, the equal importance of birds and bats in maintaining ecological balance across different strata of a temperate forest.

Zobrazit více v PubMed

Aceves‐Aparicio, A., Narendra, A., McLean, D. J., Lowe, E. C., Christian, M., Wolff, J. O., Schneider, J. M., & Herberstein, M. E. (2022). Fast acrobatic maneuvers enable arboreal spiders to hunt dangerous prey. Proceedings of the National Academy of Sciences of the United States of America, 119(40), e2205942119. https://doi.org/10.1073/pnas.2205942119

Agetsuma, N., Agetsuma‐Yanagihara, Y., & Takafumi, H. (2011). Autumn long‐distance movements of male Japanese sika deer Cervus nippon yesoensis in western Hokkaido, Japan. Eurasian Journal of Forest Research, 14(1), 13–19.

Aikens, K. R., Timms, L. L., & Buddle, C. M. (2013). Vertical heterogeneity in predation pressure in a temperate forest canopy. PeerJ, 1, e138. https://doi.org/10.7717/peerj.138

Bagchi, R., Gallery, R. E., Gripenberg, S., Gurr, S. J., Narayan, L., Addis, C. E., Freckleton, R. P., & Lewis, O. T. (2014). Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature, 506(7486), 85–88. https://doi.org/10.1038/nature12911

Balza, U., Lois, N. A., Polito, M. J., Pütz, K., Salom, A., & Raya Rey, A. (2020). The dynamic trophic niche of an Island bird of prey. Ecology and Evolution, 10(21), 12264–12276. https://doi.org/10.1002/ece3.6856

Barber, N. A., & Marquis, R. J. (2009). Spatial variation in top‐down direct and indirect effects on white oak (Quercus alba L.). The American Midland Naturalist, 162(1), 169–179. https://doi.org/10.1674/0003‐0031‐162.1.169

Basset, Y., Cizek, L., Cuénoud, P., Didham, R. K., Novotny, V., Ødegaard, F., Roslin, T., Tishechkin, A. K., Schmidl, J., & Winchester, N. N. (2015). Arthropod distribution in a tropical rainforest: Tackling a four dimensional puzzle. PLoS One, 10(12), e0144110. https://doi.org/10.1371/journal.pone.0144110

Basset, Y., Hammond, P. M., Barrios, H., Holloway, J. D., & Miller, S. E. (2003). Vertical stratification of arthropod assemblages. Arthropods of tropical forests. In Y. Basset, V. Novotny, S. E. Miller, & R. L. Kitching (Eds.), Spatio‐temporal dynamics and resource use in the canopy (pp. 17–27). Cambridge University Press.

Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. (2015). Parsimonious mixed models. arXiv Preprint arXiv:1506.04967. https://doi.org/10.48550/arXiv.1506.04967

Beilke, E. A., & O'Keefe, J. M. (2023). Bats reduce insect density and defoliation in temperate forests: An exclusion experiment. Ecology, 104(2), e3903. https://doi.org/10.1002/ecy.3903

Belovsky, G. E., & Slade, J. B. (2000). Insect herbivory accelerates nutrient cycling and increases plant production. Proceedings of the National Academy of Sciences of the United States of America, 97(26), 14412–14417. https://doi.org/10.1073/pnas.250483797

Benitez‐Lopez, A., Alkemade, R., Schipper, A. M., Ingram, D. J., Verweij, P. A., Eikelboom, J. A. J., & Huijbregts, M. A. J. (2017). The impact of hunting on tropical mammal and bird populations. Science, 356(6334), 180–183. https://doi.org/10.1126/science.aaj1891

Bjornstad, O. N. (2013). Package ‘ncf’: spatial nonparametric covariance functions. R package version 1.1‐5. http://onb.ent.psu.edu/onb1/R

Boege, K., & Marquis, R. J. (2006). Plant quality and predation risk mediated by plant ontogeny: Consequences for herbivores and plants. Oikos, 115(3), 559–572. https://doi.org/10.1111/j.2006.0030‐1299.15076.x

Böhm, S. M., Wells, K., & Kalko, E. K. (2011). Top‐down control of herbivory by birds and bats in the canopy of temperate broad‐leaved oaks (Quercus robur). PLoS One, 6(4), e17857. https://doi.org/10.1371/journal.pone.0017857

Bolker, B., & Bolker, M. B. (2017). Package ‘bbmle’. Tools for general maximum likelihood estimation, 641. R Foundation for Statistical Computing.

Bouarakia, O., Linden, V. M., Joubert, E., Weier, S. M., Grass, I., Tscharntke, T., Foord, S. H., & Taylor, P. J. (2023). Bats and birds control tortricid pest moths in South African macadamia orchards. Agriculture, Ecosystems & Environment, 352, 108527. https://doi.org/10.1016/J.Agee.2023.108527

Brandt, M., & Mahsberg, D. (2002). Bugs with a backpack: The function of nymphal camouflage in the West African assassin bugs Paredocla and Acanthaspis spp. Animal Behaviour, 63(2), 277–284. https://doi.org/10.1006/anbe.2001.1910

Brooks, M. E., Kristensen, K., Van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Machler, M., & Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero‐inflated generalized linear mixed modeling. The R Journal, 9(2), 378–400. https://doi.org/10.32614/Rj‐2017‐066

Brown, K. S. (1997). Diversity, disturbance, and sustainable use of Neotropical forests: Insects as indicators for conservation monitoring. Journal of Insect Conservation, 1(1), 25–42. https://doi.org/10.1023/A:1018422807610

Case, M., & Tidwell, A. (2007). Nippon changes: Climate impacts threatening Japan today and tomorrow. WWF International.

Cassano, C. R., Silva, R. M., Mariano‐Neto, E., Schroth, G., & Faria, D. (2016). Bat and bird exclusion but not shade cover influence arthropod abundance and cocoa leaf consumption in agroforestry landscape in northeast Brazil. Agriculture, Ecosystems & Environment, 232, 247–253.

Chapman, S. K., Hart, S. C., Cobb, N. S., Whitham, T. G., & Koch, G. W. (2003). Insect herbivory increases litter quality and decomposition: An extension of the acceleration hypothesis. Ecology, 84(11), 2867–2876. https://doi.org/10.1890/02‐0046

Coley, P. D. (1991). Comparison of herbivory and plant defenses in temperate and tropical broad‐leaved forest. In P. W. Price, T. M. Lewinsohn, G. W. Fernandes, & W. W. Benson (Eds.), Plant‐animal interactions: Evolutionary ecology in tropical and temperate regions (pp. 25–49). Wiley.

Coley, P. D., & Barone, J. A. (1996). Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics, 27(1), 305–335. https://doi.org/10.1146/annurev.ecolsys.27.1.305

Collins, J., & Jones, G. (2009). Differences in bat activity in relation to bat detector height: Implications for bat surveys at proposed windfarm sites. Acta Chiropterologica, 11(2), 343–350. https://doi.org/10.3161/150811009X485576

Compton, S. G., Ellwood, M. D., Davis, A. J., & Welch, K. (2000). The flight heights of chalcid wasps (hymenoptera, chalcidoidea) in a lowland Bornean rain forest: Fig wasps are the high fliers 1. Biotropica, 32(3), 515–522. https://doi.org/10.1111/j.1744‐7429.2000.tb00497.x

De Dijn, B. P. E. (2003). Vertical stratification of flying insects in a Surinam lowland rainforest. In Y. Basset, V. Novotny, S. E. Miller, & R. L. Kitching (Eds.), Arthropods of tropical forests: Spatio‐temporal dynamics and resource use in the canopy (pp. 110–122). Cambridge University Press.

De Vries, P. J. (1988). Stratification offruit‐feeding nymphalid butterflies in. Journal of Research on the Lepidoptera, 26(1–4), 98–108.

De Vries, P. J., Murray, D., & Lande, R. (1997). Species diversity in vertical, horizontal, and temporal dimensions of a fruit‐feeding butterfly community in an Ecuadorian rainforest. Biological Journal of the Linnean Society, 62(3), 343–364. https://doi.org/10.1111/j.1095‐8312.1997.tb01630.x

Dekeukeleire, D., van Schrojenstein Lantman, I. M., Hertzog, L. R., Vandegehuchte, M. L., Strubbe, D., Vantieghem, P., Martel, A., Verheyen, K., Bonte, D., & Lens, L. (2019). Avian top‐down control affects invertebrate herbivory and sapling growth more strongly than overstorey species composition in temperate forest fragments. Forest Ecology and Management, 442, 1–9. https://doi.org/10.1016/j.foreco.2019.03.055

Del Hoyo, J., Elliot, A., & Sargatal, J. (1996). Handbook of the birds of the world. Lynx Edicions.

Denmead, L. H., Darras, K., Clough, Y., Diaz, P., Grass, I., Hoffmann, M. P., Nurdiansyah, F., Fardiansah, R., & Tscharntke, T. (2017). The role of ants, birds and bats for ecosystem functions and yield in oil palm plantations. Ecology, 98(7), 1945–1956. https://doi.org/10.1002/ecy.1882

Donald, P. F., Green, R. E., & Heath, M. F. (2001). Agricultural intensification and the collapse of Europe's farmland bird populations. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1462), 25–29. https://doi.org/10.1098/rspb.2000.1325

Emlen, J. M. (1966). The role of time and energy in food preference. The American Naturalist, 100(916), 611–617. https://doi.org/10.1086/282455

Ferguson, K. I., & Stiling, P. (1996). Non‐additive effects of multiple natural enemies on aphid populations. Oecologia, 108(2), 375–379. https://doi.org/10.1007/BF00334664

Ferreira, D. F., Jarrett, C., Wandji, A. C., Atagana, P. J., Rebelo, H., Maas, B., & Powell, L. L. (2023). Birds and bats enhance yields in Afrotropical cacao agroforests only under high tree‐level shade cover. Agriculture, Ecosystems & Environment, 345, 108325. https://doi.org/10.1016/j.agee.2022.108325

Fukui, D., Agetsuma, N., & Hill, D. A. (2004). Acoustic identification of eight species of bat (Mammalia: Chiroptera) inhabiting forests of southern Hokkaido, Japan: Potential for conservation monitoring. Zoological Science, 21(9), 947–955. https://doi.org/10.2108/zsj.21.947

Garcia, L. C., & Eubanks, M. D. (2019). Overcompensation for insect herbivory: A review and meta‐analysis of the evidence. Ecology, 100(3), e02585. https://doi.org/10.1002/ecy.2585

Garrett, D. R., Pelletier, F., Garant, D., & Bélisle, M. (2022). Combined influence of food availability and agricultural intensification on a declining aerial insectivore. Ecological Monographs, 92(3), e1518. https://doi.org/10.1002/Ecm.1518

Gossner, M. M., Pašalić, E., Lange, M., Lange, P., Boch, S., Hessenmöller, D., Müller, J., Socher, S. A., Fischer, M., & Schulze, E.‐D. (2014). Differential responses of herbivores and herbivory to management in temperate European beech. PLoS One, 9(8), e104876. https://doi.org/10.1371/journal.pone.0104876

Gras, P., Tscharntke, T., Maas, B., Tjoa, A., Hafsah, A., & Clough, Y. (2016). How ants, birds and bats affect crop yield along shade gradients in tropical cacao agroforestry. Journal of Applied Ecology, 53(3), 953–963. https://doi.org/10.1111/1365‐2664.12625

Greenberg, R., Bichier, P., Angon, A. C., MacVean, C., Perez, R., & Cano, E. (2000). The impact of avian insectivory on arthropods and leaf damage in some Guatemalan coffee plantations. Ecology, 81(6), 1750–1755. https://doi.org/10.2307/177321

Haack, N., Borges, P. A., Grimm‐Seyfarth, A., Schlegel, M., Wirth, C., Bernhard, D., Brunk, I., Henle, K., & Pereira, H. M. (2022). Response of common and rare beetle species to tree species and vertical stratification in a floodplain forest. Insects, 13(2), 161. https://doi.org/10.3390/insects13020161

Hayashi, M., Morimoto, K., & Kimoto, S. (1984). The coleoptera of Japan in color (Vol. IV). Hoikusha.

Hill, C. J., Gillison, A. N., & Jones, R. E. (1992). The spatial distribution of rain forest butterflies at three sites in North Queensland, Australia. Journal of Tropical Ecology, 8(1), 37–46. https://doi.org/10.1017/S0266467400006064

Hirata, R., Takagi, K., Ito, A., Hirano, T., & Saigusa, N. (2014). The impact of climate variation and disturbances on the carbon balance of forests in Hokkaido, Japan. Biogeosciences, 11(18), 5139–5154.

Ichinose, K. (1990). The ant fauna of the Tomakomai Experiment Forest, Hokkaido University (Hymenoptera: Formicidae) with notes on the nuptial season. Research Bulletins of College Experiment Forests, 47(1), 137–144.

Imai, H. T., Kihara, A., Kondoh, M., Kubota, M., Kuribayashi, S., Ogata, K., Onoyama, K., Taylor, R. W., Terayama, M., Tsukii, Y., Yoshimura, M., & Ugawa, Y. (2003). Ants of Japan. Gakken.

Intachat, J., & Holloway, J. D. (2000). Is there stratification in diversity or preferred flight height of geometroid moths in Malaysian lowland tropical forest? Biodiversity and Conservation, 9(10), 1417–1439. https://doi.org/10.1023/A:1008926814229

Janzen, D. H. (1970). Herbivores and the number of tree species in tropical forests. The American Naturalist, 104(940), 501–528. https://doi.org/10.1086/282687

Johnson, M. D., Kellermann, J. L., & Stercho, A. M. (2010). Pest reduction services by birds in shade and sun coffee in Jamaica. Animal Conservation, 13(2), 140–147. https://doi.org/10.1111/j.1469‐1795.2009.00310.x

Kalcounis, M. C., Hobson, K. A., Brigham, R. M., & Hecker, K. R. (1999). Bat activity in the boreal forest: Importance of stand type and vertical strata. Journal of Mammalogy, 80(2), 673–682. https://doi.org/10.2307/1383311

Kalka, M. B., Smith, A. R., & Kalko, E. K. (2008). Bats limit arthropods and herbivory in a tropical forest. Science, 320(5872), 71. https://doi.org/10.1126/science.1153352

Karp, D. S., & Daily, G. C. (2014). Cascading effects of insectivorous birds and bats in tropical coffee plantations. Ecology, 95(4), 1065–1074. https://doi.org/10.1890/13‐1012.1

Kerbiriou, C., Bas, Y., Le Viol, I., Lorrilliere, R., Mougnot, J., & Julien, J. F. (2019). Potential of bat pass duration measures for studies of bat activity. Bioacoustics, 28(2), 177–192. https://doi.org/10.1080/09524622.2017.1423517

Kollross, J., Jancuchova‐Laskova, J., Kleckova, I., Freiberga, I., Kodrik, D., & Sam, K. (2023). Nonlethal effects of predation: The presence of insectivorous birds (Parus major) affects the behavior and level of stress in locusts (Schistocerca gregaria). Journal of Insect Behavior, 36(1), 68–80. https://doi.org/10.1007/s10905‐023‐09820‐z

Kunz, T. H., Braun de Torrez, E., Bauer, D., Lobova, T., & Fleming, T. H. (2011). Ecosystem services provided by bats. Annals of the New York Academy of Sciences, 1223(1), 1–38. https://doi.org/10.1111/j.1749‐6632.2011.06004.x

Larrivée, M., & Buddle, C. M. (2009). Diversity of canopy and understorey spiders in north‐temperate hardwood forests. Agricultural and Forest Entomology, 11(2), 225–237. https://doi.org/10.1111/j.1461‐9563.2008.00421.x

Lenth, R. V. (2021). emmeans: Estimated marginal means, aka least‐squares means. Retrieved from, https://CRAN.R‐project.org/package=emmeans

Lichtenberg, J. S., & Lichtenberg, D. A. (2002). Weak trophic interactions among birds, insects and white oak saplings (Quercus alba). The American Midland Naturalist, 148(2), 338–349. https://doi.org/10.1674/0003‐0031(2002)148[0338:Wtiabi]2.0.Co;2

Losey, J. E., & Denno, R. F. (1998). Positive predator–predator interactions: Enhanced predation rates and synergistic suppression of aphid populations. Ecology, 79(6), 2143–2152. https://doi.org/10.2307/176717

Lüdecke, D., Ben‐Shachar, M. S., Patil, I., Waggoner, P., & Makowski, D. (2021). Performance: An R package for assessment, comparison and testing of statistical models. Journal of Open Source Software, 6(60), 31–39. https://doi.org/10.21105/joss.03139

Maas, B., Clough, Y., & Tscharntke, T. (2013). Bats and birds increase crop yield in tropical agroforestry landscapes. Ecology Letters, 16(12), 1480–1487. https://doi.org/10.1111/ele.12194

Maas, B., Heath, S., Grass, I., Cassano, C., Classen, A., Faria, D., Gras, P., Williams‐Guillén, K., Johnson, M., & Karp, D. S. (2019). Experimental field exclosure of birds and bats in agricultural systems—Methodological insights, potential improvements, and cost‐benefit trade‐offs. Basic and Applied Ecology, 35, 1–12. https://doi.org/10.1016/j.baae.2018.12.002

MacArthur, R. H., & Pianka, E. R. (1966). On optimal use of a patchy environment. The American Naturalist, 100(916), 603–609. https://doi.org/10.1086/282454

Maguire, D. Y., Nicole, T., Buddle, C. M., & Bennett, E. M. (2015). Effect of fragmentation on predation pressure of insect herbivores in a north temperate deciduous forest ecosystem. Ecological Entomology, 40(2), 182–186. https://doi.org/10.1111/een.12166

Mäntylä, E., Klemola, T., & Laaksonen, T. (2011). Birds help plants: A meta‐analysis of top‐down trophic cascades caused by avian predators. Oecologia, 165, 143–151. https://doi.org/10.1007/s00442‐010‐1774‐2

Marra, P. P., & Remsen, J. V., Jr. (1997). Insights into the maintenance of high species diversity in the Neotropics: Habitat selection and foraging behavior in understory birds of tropical and temperate forests. Ornithological Monographs, 40, 445–483. https://doi.org/10.2307/40157547

Matsuo, T., Hiura, T., & Onoda, Y. (2022). Vertical and horizontal light heterogeneity along gradients of secondary succession in cool‐and warm‐temperate forests. Journal of Vegetation Science, 33(3), e13135. https://doi.org/10.1111/jvs.13135

Mestre, L., Piñol, J., Barrientos, J. A., Cama, A., & Espadaler, X. (2012). Effects of ant competition and bird predation on the spider assemblage of a citrus grove. Basic and Applied Ecology, 13(4), 355–362. https://doi.org/10.1016/j.baae.2012.04.002

Mols, C. M., & Visser, M. E. (2002). Great tits can reduce caterpillar damage in apple orchards. Journal of Applied Ecology, 39(6), 888–899. https://doi.org/10.1046/j.1365‐2664.2002.00761.x

Mooney, K. A. (2007). Tritrophic effects of birds and ants on a canopy food web, tree growth, and phytochemistry. Ecology, 88(8), 2005–2014. https://doi.org/10.1890/06‐1095.1

Mooney, K. A., Gruner, D. S., Barber, N. A., Van Bael, S. A., Philpott, S. M., & Greenberg, R. (2010). Interactions among predators and the cascading effects of vertebrate insectivores on arthropod communities and plants. Proceedings of the National Academy of Sciences of the United States of America, 107(16), 7335–7340. https://doi.org/10.1073/pnas.1001934107

Morrison, E. B., & Lindell, C. A. (2012). Birds and bats reduce insect biomass and leaf damage in tropical forest restoration sites. Ecological Applications, 22(5), 1526–1534. https://doi.org/10.1890/11‐1118.1

Murakami, M. (2002). Foraging mode shifts of four insectivorous bird species under temporally varying resource distribution in a Japanese deciduous forest. Ornithological Science, 1(1), 63–69. https://doi.org/10.2326/osj.1.63

Nakamura, A., Kitching, R. L., Cao, M., Creedy, T. J., Fayle, T. M., Freiberg, M., Hewitt, C. N., Itioka, T., Koh, L. P., & Ma, K. (2017). Forests and their canopies: Achievements and horizons in canopy science. Trends in Ecology & Evolution, 32(6), 438–451. https://doi.org/10.1016/j.tree.2017.02.020

Nyffeler, M., Şekercioğlu, Ç. H., & Whelan, C. J. (2018). Insectivorous birds consume an estimated 400–500 million tons of prey annually. The Science of Nature, 105, 1–13. https://doi.org/10.1007/s00114‐018‐1571‐z

Ocampo‐Ariza, C., Vansynghel, J., Bertleff, D., Maas, B., Schumacher, N., Ulloque‐Samatelo, C., Yovera, F. F., Thomas, E., Steffan‐Dewenter, I., & Tscharntke, T. (2023). Birds and bats enhance cacao yield despite suppressing arthropod mesopredation. Ecological Applications, 33(5), e2886. https://doi.org/10.1002/eap.2886

Offenberg, J. (2001). Balancing between mutualism and exploitation: The symbiotic interaction between Lasius ants and aphids. Behavioral Ecology and Sociobiology, 49(4), 304–310. https://doi.org/10.1007/s002650000303

Ozanne, C. M., Anhuf, D., Boulter, S. L., Keller, M., Kitching, R. L., Korner, C., Meinzer, F. C., Mitchell, A. W., Nakashizuka, T., Dias, P. L., Stork, N. E., Wright, S. J., & Yoshimura, M. (2003). Biodiversity meets the atmosphere: A global view of forest canopies. Science, 301(5630), 183–186. https://doi.org/10.1126/science.1084507

Paine, R. T. (1966). Food web complexity and species diversity. The American Naturalist, 100(910), 65–75. https://doi.org/10.1086/282400

Paine, R. T. (1980). Food webs: Linkage, interaction strength and community infrastructure. Journal of Animal Ecology, 49(3), 667–685. https://doi.org/10.2307/4220

Parker, G. G. (1995). Structure and microclimate of forest canopies. In M. D. Lowman & N. M. Nadkarni (Eds.), Forest canopies (pp. 73–106). Academic Press Inc.

Pérez‐Espona, S. (2021). Eciton Army ants—Umbrella species for conservation in neotropical forests. Diversity, 13(3), 136. https://doi.org/10.3390/d13030136

Perfecto, I., & Vandermeer, J. (1996). Microclimatic changes and the indirect loss of ant diversity in a tropical agroecosystem. Oecologia, 108(3), 577–582. https://doi.org/10.1007/BF00333736

Philpott, S. M., & Armbrecht, I. (2006). Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecological Entomology, 31(4), 369–377. https://doi.org/10.1111/j.1365‐2311.2006.00793.x

Philpott, S. M., Greenberg, R., Bichier, P., & Perfecto, I. (2004). Impacts of major predators on tropical agroforest arthropods: Comparisons within and across taxa. Oecologia, 140(1), 140–149. https://doi.org/10.1007/s00442‐004‐1561‐z

Philpott, S. M., Perfecto, I., & Vandermeer, J. (2008). Effects of predatory ants on lower trophic levels across a gradient of coffee management complexity. The Journal of Animal Ecology, 77(3), 505–511. https://doi.org/10.1111/j.1365‐2656.2008.01358.x

Piel, G., Tallamy, D. W., & Narango, D. L. (2021). Lepidoptera host records accurately predict tree use by foraging birds. Northeastern Naturalist, 28(4), 527–540. https://doi.org/10.1656/045.028.0410

Plank, M., Fiedler, K., & Reiter, G. (2012). Use of forest strata by bats in temperate forests. Journal of Zoology, 286(2), 154–162. https://doi.org/10.1111/j.1469‐7998.2011.00859.x

R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical computing. https://www.R‐project.org/

Reynolds, B. C., & Crossley, D. A., Jr. (1997). Spatial variation in herbivory by forest canopy arthropods along an elevation gradient. Environmental Entomology, 26(6), 1232–1239. https://doi.org/10.1093/Ee/26.6.1232

Richards, L. A., & Coley, P. D. (2007). Seasonal and habitat differences affect the impact of food and predation on herbivores: A comparison between gaps and understory of a tropical forest. Oikos, 116(1), 31–40. https://doi.org/10.1111/j.2006.0030‐1299.15043.x

Rosumek, F. B., Silveira, F. A., de Neves, F. S., de Barbosa, U. N. P., Diniz, L., Oki, Y., Pezzini, F., Fernandes, G. W., & Cornelissen, T. (2009). Ants on plants: A meta‐analysis of the role of ants as plant biotic defenses. Oecologia, 160(3), 537–549. https://doi.org/10.1007/s00442‐009‐1309‐x

Sam, K., Jorge, L. R., Koane, B., Amick, P. K., & Sivault, E. (2023). Vertebrates, but not ants, protect rainforest from herbivorous insects across elevations in Papua New Guinea. Journal of Biogeography, 50(10), 1803–1816. https://doi.org/10.1111/jbi.14686

Sam, K., Koane, B., Bardos, D. C., Jeppy, S., & Novotny, V. (2019). Species richness of birds along a complete rain forest elevational gradient in the tropics: Habitat complexity and food resources matter. Journal of Biogeography, 46(2), 279–290. https://doi.org/10.1111/jbi.13482

Sam, K., Koane, B., Sam, L., Mrazova, A., Segar, S., Volf, M., Moos, M., Simek, P., Sisol, M., & Novotny, V. (2020). Insect herbivory and herbivores of Ficus species along a rain forest elevational gradient in Papua New Guinea. Biotropica, 52(2), 263–276. https://doi.org/10.1111/btp.12741

Sanders, D., & van Veen, F. F. (2011). Ecosystem engineering and predation: The multi‐trophic impact of two ant species. The Journal of Animal Ecology, 80(3), 569–576. https://doi.org/10.1111/j.1365‐2656.2010.01796.x

Sayama, K., Ito, M., Tabuchi, K., Ueda, A., Ozaki, K., & Hironaga, T. (2012). Seasonal trends of forest moth assemblages in Central Hokkaido, Northern Japan. The Journal of the Lepidopterists' Society, 66(1), 11–26. https://doi.org/10.18473/lepi.v66i1.a2

Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M., & Roy, K. (2009). Is there a latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology, Evolution, and Systematics, 40, 245–269. https://doi.org/10.1146/annurev.ecolsys.39.110707.173430

Schifani, E., Castracani, C., Giannetti, D., Spotti, F. A., Reggiani, R., Leonardi, S., Mori, A., & Grasso, D. A. (2020). New tools for conservation biological control: Testing ant‐attracting artificial Nectaries to employ ants as plant defenders. Insects, 11(2), 129. https://doi.org/10.3390/Insects11020129

Schulze, C. H., Linsenmair, K. E., & Fiedler, K. (2001). Understorey versus canopy: Patterns of vertical stratification and diversity among Lepidoptera in a Bornean rain forest. https://doi.org/10.1023/A:1017589711553

Seifert, B. (2008). The ants of Central European tree canopies (Hymenoptera: Formicidae)—an underestimated population? In A. Floren & J. Schmidl (Eds.), Canopy arthropod research in Europe (pp. 131–143). Bioform entomology.

Sih, A., Englund, G., & Wooster, D. (1998). Emergent impacts of multiple predators on prey. Trends in Ecology & Evolution, 13(9), 350–355. https://doi.org/10.1016/s0169‐5347(98)01437‐2

Singer, M. S., Clark, R. E., Lichter‐Marck, I. H., Johnson, E. R., & Mooney, K. A. (2017). Predatory birds and ants partition caterpillar prey by body size and diet breadth. Journal of Animal Ecology, 86(6), 1363–1371. https://doi.org/10.1111/1365‐2656.12727

Sivault, E., Amick, P. K., Armstrong, K. N., Novotny, V., & Sam, K. (2023). Species richness and assemblages of bats along a forest elevational transect in Papua New Guinea. Biotropica, 55(1), 81–94. https://doi.org/10.1111/btp.13161

Sivault, E., Kollross, J., Jorge, L. R., Finnie, S., Mendez, D. D., Garzon, S. F., Maraia, K., Lenc, J., Libra, M., Masashi, M., Nakaji, T., Nakamura, M., Sreekar, R., Sam, L., Abe, T., Weiss, M., & Sam, K. (2024). Data from: Insectivorous birds and bats outperform ants in the top‐down regulation of arthropods across strata of a Japanese temperate forest. Dryad Digital Repository. https://doi.org/10.5061/dryad.xpnvx0kq2

Stephens, P. A., Mason, L. R., Green, R. E., Gregory, R. D., Sauer, J. R., Alison, J., Aunins, A., Brotons, L., Butchart, S. H., & Campedelli, T. (2016). Consistent response of bird populations to climate change on two continents. Science, 352(6281), 84–87. https://doi.org/10.1126/science.aac4858

Tanaka, H. O., Haraguchi, T. F., Tayasu, I., & Hyodo, F. (2018). Stable and radio‐isotopic signatures reveal how the feeding habits of ants respond to natural secondary succession in a cool‐temperate forest. Insectes Sociaux, 66(1), 37–46. https://doi.org/10.1007/s00040‐018‐0665‐0

Thomine, E., Jeavons, E., Rusch, A., Bearez, P., & Desneux, N. (2020). Effect of crop diversity on predation activity and population dynamics of the mirid predator Nesidiocoris tenuis. Journal of Pest Science, 93(4), 1255–1265. https://doi.org/10.1007/s10340‐020‐01222‐w

Thurman, J. H., Northfield, T. D., & Snyder, W. E. (2019). Weaver ants provide ecosystem services to tropical tree crops. Frontiers in Ecology and Evolution, 7, 120. https://doi.org/10.3389/Fevo.2019.00120

Tobing, M. C., & Kuswardani, R. A. (2018). The potential of Myopopone castanea (Hymenoptera: Formicidae) as a predator for Oryctes rhinoceros Linn. larvae (Coleoptera: Scarabaeidae). Journal of Physics: Conference Series, 1116, 052074. https://doi.org/10.1088/1742‐6596/1116/5/052074

Ulyshen, M. D. (2011). Arthropod vertical stratification in temperate deciduous forests: Implications for conservation‐oriented management. Forest Ecology and Management, 261(9), 1479–1489. https://doi.org/10.1016/j.foreco.2011.01.033

Van Bael, S. A., Brawn, J. D., & Robinson, S. K. (2003). Birds defend trees from herbivores in a neotropical forest canopy. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8304–8307. https://doi.org/10.1073/pnas.1431621100

Vansynghel, J., Ocampo‐Ariza, C., Maas, B., Martin, E. A., Thomas, E., Hanf‐Dressler, T., Schumacher, N.‐C., Ulloque‐Samatelo, C., Yovera, F. F., & Tscharntke, T. (2022). Quantifying services and disservices provided by insects and vertebrates in cacao agroforestry landscapes. Proceedings of the Royal Society B, 289(1982), 20221309. https://doi.org/10.1098/rspb.2022.1309

Verboven, N., Tinbergen, J. M., & Verhulst, S. (2001). Food, reproductive success and multiple breeding in the great tit Parus major. Ardea, 89(2), 387–406.

Vidal, M. C., & Murphy, S. M. (2018). Bottom‐up vs. top‐down effects on terrestrial insect herbivores: A meta‐analysis. Ecology Letters, 21(1), 138–150. https://doi.org/10.1111/ele.12874

Wang, X.‐F., Liu, J.‐F., Gao, W.‐Q., Deng, Y.‐P., Ni, Y.‐Y., Xiao, Y.‐H., Kang, F.‐F., Wang, Q., Lei, J.‐P., & Jiang, Z.‐P. (2016). Defense pattern of Chinese cork oak across latitudinal gradients: Influences of ontogeny, herbivory, climate and soil nutrients. Scientific Reports, 6(1), 27269. https://doi.org/10.1038/srep27269

Whelan, C. J., Wenny, D. G., & Marquis, R. J. (2008). Ecosystem services provided by birds. Annals of the New York Academy of Sciences, 1134(1), 25–60. https://doi.org/10.1196/annals.1439.003

Wielgoss, A., Clough, Y., Fiala, B., Rumede, A., & Tscharntke, T. (2012). A minor pest reduces yield losses by a major pest: Plant‐mediated herbivore interactions in Indonesian cacao. Journal of Applied Ecology, 49(2), 465–473. https://doi.org/10.1111/j.1365‐2664.2012.02122.x

Williams‐Guillén, K., Perfecto, I., & Vandermeer, J. (2008). Bats limit insects in a neotropical agroforestry system. Science, 320(5872), 70. https://doi.org/10.1126/science.1152944

Wilson, D. E., & Mittermeier, R. A. (Eds.). (2019). Handbook of the mammals of the world (Vol. 9). Bats: Lynx Editions.

Wilson, E. O. (2000). Sociobiology: The new synthesis. Harvard University Press.

Wu, L., Kato, T., Sato, H., Hirano, T., & Yazaki, T. (2019). Sensitivity analysis of the typhoon disturbance effect on forest dynamics and carbon balance in the future in a cool‐temperate forest in northern Japan by using SEIB‐DGVM. Forest Ecology and Management, 451, 117529. https://doi.org/10.1016/J.Foreco.2019.117529

Zeus, V. M., Puechmaille, S. J., & Kerth, G. (2017). Conspecific and heterospecific social groups affect each other's resource use: A study on roost sharing among bat colonies. Animal Behaviour, 123, 329–338. https://doi.org/10.1016/j.anbehav.2016.11.015

Zverev, V., Zvereva, E. L., & Kozlov, M. V. (2017). Ontogenetic changes in insect herbivory in birch (Betula pubesecens): The importance of plant apparency. Functional Ecology, 31(12), 2224–2232. https://doi.org/10.1111/1365‐2435.12920

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...