Susceptibility of Staphylococcus aureus to Anti-Inflammatory Drugs with a Focus on the Combinatory Effect of Celecoxib with Oxacillin In Vitro
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
IGA 20243109
Internal Grant Agency of the Faculty of Tropical AgriSciences
PubMed
39125072
PubMed Central
PMC11314137
DOI
10.3390/molecules29153665
PII: molecules29153665
Knihovny.cz E-resources
- Keywords
- antibacterial activity, antistaphylococcal synergistic effect, methicillin-resistant S. aureus, musculoskeletal infections, non-steroidal anti-inflammatory drugs,
- MeSH
- Anti-Bacterial Agents * pharmacology MeSH
- Anti-Inflammatory Agents * pharmacology MeSH
- Celecoxib * pharmacology MeSH
- Humans MeSH
- Methicillin-Resistant Staphylococcus aureus * drug effects MeSH
- Microbial Sensitivity Tests * MeSH
- Oxacillin * pharmacology MeSH
- Staphylococcal Infections drug therapy microbiology MeSH
- Staphylococcus aureus * drug effects MeSH
- Drug Synergism * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents * MeSH
- Anti-Inflammatory Agents * MeSH
- Celecoxib * MeSH
- Oxacillin * MeSH
Musculoskeletal infections (MIs) are among the most difficult-to-treat staphylococcal diseases due to antibiotic resistance. This has encouraged the development of innovative strategies, such as combination therapy, to combat MI. The aim of this study was to investigate the in vitro antistaphylococcal activity of anti-inflammatory drugs and the combined antimicrobial effect of celecoxib and oxacillin. The minimum inhibitory concentrations (MICs) of 17 anti-inflammatory drugs against standard strains and clinical isolates of S. aureus, including methicillin-resistant strains (MRSAs), were determined using the broth microdilution method. The fractional inhibitory concentration indices (FICIs) were evaluated using checkerboard assays. Celecoxib produced the most potent antistaphylococcal effect against all tested strains (MICs ranging from 32 to 64 mg/L), followed by that of diacerein against MRSA3 and MRSA ATCC 33592 (MIC 64 mg/L). Several synergistic effects were observed against the tested S. aureus strains, including MRSA (FICI ranging from 0.087 to 0.471). The strongest synergistic interaction (FICI 0.087) was against MRSA ATCC 33592 at a celecoxib concentration of 2 mg/L, with a 19-fold oxacillin MIC reduction (from 512 to 26.888 mg/L). This is the first report on the combined antistaphylococcal effect of celecoxib and oxacillin. These findings suggest celecoxib and its combination with oxacillin as perspective agents for research focused on the development of novel therapies for MI caused by S. aureus. This study further indicates that celecoxib could resensitize certain MRSA strains, in some cases, to be susceptible to β-lactams (e.g., oxacillin) that were not previously tested. It is essential to mention that the in vitro concentrations of anti-inflammatory drugs are higher than those typically obtained in patients. Therefore, an alternative option for its administration could be the use of a drug delivery system for the controlled slow release from an implant at the infection site.
See more in PubMed
Sakr A., Bregeon F., Mege J.L., Rolain J.M., Blin O. Staphylococcus aureus nasal colonisation: An update on mechanisms, epidemiology, risk factors, and subsequent infections. Front. Microbiol. 2018;9:2419. doi: 10.3389/fmicb.2018.02419. PubMed DOI PMC
Brouillette E., Goetz C., Droppa-Almeida D., Chamberland S., Jacques M., Malouin F. Secondary Staphylococcus aureus intramammary colonisation is reduced by non-aureus staphylococci exoproducts. Microbes Infect. 2022;24:104879. doi: 10.1016/j.micinf.2021.104879. PubMed DOI
Kavanagh N., Ryan J.E., Widaa A., Sexton G., Fennell J., O’Rourke S., Cahill K.C., Kearney C.J., O’Brien F.J., Kerrigan S.W. Staphylococcal osteomyelitis: Disease progression, treatment challenges, and future directions. Clin. Microbiol. Rev. 2018;31:e00084-17. doi: 10.1128/CMR.00084-17. PubMed DOI PMC
Kock R., Becker K., Cookson B., van Gemert-Pijnen J.E., Harbarth S., Kluytmans J., Mielke M., Peters G., Skov R.L., Struelens M.J., et al. Methicillin-resistant Staphylococcus aureus (MRSA): Burden of disease and control challenges in Europe. Euro Surveill. 2010;15:pii-19688. doi: 10.2807/ese.15.41.19688-en. PubMed DOI
Davis J.S. Management of bone and joint infections due to Staphylococcus aureus. Intern. Med. J. 2005;35:S79–S96. doi: 10.1111/j.1444-0903.2005.00982.x. PubMed DOI
Masters E.A., Ricciardi B.F., Bentley K.L.D.M., Moriarty T.F., Schwarz E.M., Muthukrishnan G. Skeletal infections: Microbial pathogenesis, immunity, and clinical management. Nat. Rev. Microbial. 2022;20:385–400. doi: 10.1038/s41579-022-00686-0. PubMed DOI PMC
Lang R., Minion J., Skinner S., Wong A. Disseminated Exophiala dermatitidis causing septic arthritis and osteomyelitis. BMC Infect. Dis. 2018;18:255. doi: 10.1186/s12879-018-3171-0. PubMed DOI PMC
Sommer T., Karsy M., Driscoll M.J., Jensen R.L. Varicella-zoster virus infection and osteomyelitis of the skull. World Neurosurg. 2018;115:297–300. doi: 10.1016/j.wneu.2018.04.194. PubMed DOI
Tong S.Y.C., Davis J.S., Eichenberger E., Holland T.L., Fowler V.G. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbial. Rev. 2015;28:603–661. doi: 10.1128/CMR.00134-14. PubMed DOI PMC
Ferrand J., El Samad Y., Brunschweiler B., Grados F., Dehamchia-Rehailia N., Sejourne A., Schmit J.L., Gabrion A., Fardellone P., Paccou J. Morbimortality in adult patients with septic arthritis: A three-year hospital-based study. BMC. Infect. Dis. 2016;16:239. doi: 10.1186/s12879-016-1540-0. PubMed DOI PMC
Huang J.F., Wu Q.N., Zheng X.Q., Sun X.L., Wu C.Y., Wang X.B., Wu C.W., Wang B., Wang X.Y., Bergman M., et al. The characteristics and mortality of osteoporosis, osteomyelitis, or rheumatoid arthritis in the diabetes population: A retrospective study. Int. J. Endocrinol. 2020;2020:8821978. doi: 10.1155/2020/8821978. PubMed DOI PMC
Walter N., Baertl S., Alt V., Rupp M. What is the burden of osteomyelitis in Germany? An analysis of inpatient data from 2008 through 2018. BMC Infect. Dis. 2021;21:550. doi: 10.1186/s12879-021-06274-6. PubMed DOI PMC
Minguez S., Molinos S., Mateo L., Gimenez M., Mateu L., Cabello J., Olive A. Septic arthritis due to methicillin-resistant Staphylococcus aureus in adults. Reumatol. Clin. 2015;11:381–386. doi: 10.1016/j.reuma.2014.12.009. PubMed DOI
Abram S.G.F., Alvand A., Judge A., Beard D.J., Price A.J. Mortality and adverse joint outcomes following septic arthritis of the native knee: A longitudinal cohort study of patients receiving arthroscopic washout. Lancet Infect. Dis. 2020;20:341–349. doi: 10.1016/S1473-3099(19)30419-0. PubMed DOI
Lew D.P., Waldvogel F.A. Osteomyelitis. Lancet. 2004;364:369–379. doi: 10.1016/S0140-6736(04)16727-5. PubMed DOI
Stake S., Scully R., Swenson S., Lee D., Lee R., Sparks A., Pandarinath R. Repeat irrigation and debridement for patients with acute septic knee arthritis: Incidence and risk factors. J. Clin. Orthop. Trauma. 2020;11:S177–S183. doi: 10.1016/j.jcot.2019.12.006. PubMed DOI PMC
Vowden K.R., Vowden P. Wound debridement part 2: Sharp techniques. J. Wound Care. 1999;8:291–294. doi: 10.12968/jowc.1999.8.6.25888. PubMed DOI
Urish K.L., Cassat J.E. Staphylococcus aureus osteomyelitis: Bone, bugs, and surgery. Infect. Immun. 2020;88:e00932-19. doi: 10.1128/IAI.00932-19. PubMed DOI PMC
Smith M., Roberts M., Al-Kassas R. Implantable drug delivery systems for the treatment of osteomyelitis. Drug Dev. Ind. Pharm. 2022;48:511–527. doi: 10.1080/03639045.2022.2135729. PubMed DOI
Dombrowski J.C., Winston L.G. Clinical failures of appropriately treated methicillin-resistant Staphylococcus aureus infections. J. Infect. 2008;57:110–115. doi: 10.1016/j.jinf.2008.04.003. PubMed DOI PMC
Wieland B.W., Marcantoni J.R., Bommarito K.M., Warren D.K., Marschall J. A retrospective comparison of ceftriaxone versus oxacillin for osteoarticular infections due to methicillin-susceptible Staphylococcus aureus. Clin. Infect. Dis. 2012;54:585–590. doi: 10.1093/cid/cir857. PubMed DOI PMC
Woods C.R., Bradley J.S., Chatterjee A., Copley L.A., Robinson J., Kronman M.P., Arrieta A., Fowler S.L., Harrison C., Carrillo-Marquez M.A., et al. Clinical practice guideline by the pediatric infectious diseases society and the infectious diseases society of America: 2021 guideline on diagnosis and management of acute hematogenous osteomyelitis in pediatrics. J. Pediatric. Infect. Dis. Soc. 2021;10:801–844. doi: 10.1093/jpids/piab027. PubMed DOI
Stevens D.L. The role of vancomycin in the treatment paradigm. Clin. Infect. Dis. 2006;42((Suppl. S1)):S51–S57. doi: 10.1086/491714. PubMed DOI
Liu C., Chambers H.F. Staphylococcus aureus with heterogeneous resistance to vancomycin: Epidemiology, clinical significance, and critical assessment of diagnostic methods. Antimicrob. Agents Chemother. 2003;47:3040–3045. doi: 10.1128/AAC.47.10.3040-3045.2003. PubMed DOI PMC
Marinho D.S., Huff G., Ferreira B.L., Castro H., Rodrigues C.R., de Sousa V.P., Cabral L.M. The study of vancomycin use, and its adverse reactions associated to patients of a Brazilian university hospital. BMC Res. Notes. 2011;4:236. doi: 10.1186/1756-0500-4-236. PubMed DOI PMC
Thomas C., Stevenson M., Riley T.V. Antibiotics, and hospital-acquired Clostridium difficile-associated diarrhoea: A systematic review. J. Antimicrob. Chemother. 2003;51:1339–1350. doi: 10.1093/jac/dkg254. PubMed DOI
Stevens D.L., Bisno A.L., Chambers H.F., Dellinger E.P., Goldstein E.J., Gorbach S.L., Hirschmann J.V., Kaplan S.L., Montoya J.G., Wade J.C. Clinical practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 Update by IDSA. Clin. Infect. Dis. 2014;59:e10–e52. doi: 10.1093/cid/ciu296. PubMed DOI
Bell J.M., Turnidge J.D., Sentry A. High prevalence of oxacillin-resistant Staphylococcus aureus isolates from hospitalised patients in Asia-Pacific and South Africa: Results from sentry antimicrobial surveillance programme, 1998–1999. Antimicrob. Agents Chemother. 2002;46:879–881. doi: 10.1128/AAC.46.3.880-882.2002. PubMed DOI PMC
Helito C.P., Zanon B.B., Miyahara H.D.E.S., Pecora J.R., Lima A.L., Oliveira P.R., Vicente J.R., Demange M.K., Camanho G.L. Clinical and epidemiological differences between septic arthritis of the knee and hip caused by oxacillin-sensitive and-resistant Staphylococcus aureus. Clinics. 2015;70:30–33. doi: 10.6061/clinics/2015(01)06. PubMed DOI PMC
Sun W., Sanderson P.E., Zheng W. Drug combination therapy increases successful drug repositioning. Drug Discov. Today. 2016;21:1189–1195. doi: 10.1016/j.drudis.2016.05.015. PubMed DOI PMC
Fischbach M.A. Combination therapies for combating antimicrobial resistance. Curr. Opin. Microbiol. 2011;14:519–523. doi: 10.1016/j.mib.2011.08.003. PubMed DOI PMC
Ruddaraju L.K., Pammi S.V.N., Guntuku G.S., Padavala V.S., Kolapalli V.R.M. A review on antibacterial to combat resistance: From the ancient era of plants and metals to present and future perspectives of green nanotechnological combinations. Asian J. Pharm. Sci. 2020;15:42–59. doi: 10.1016/j.ajps.2019.03.002. PubMed DOI PMC
Toews M.L., Bylund D.B. Pharmacologic principles for combination therapy. Proc. Am. Thorac. Soc. 2005;2:282–289. doi: 10.1513/pats.200504-037SR. PubMed DOI
Domingos O.D.S., Alcantara B.G.V., Santos M.F.C., Maiolini T.C.S., Dias D.F., Baldim J.L., Lago J.H.G., Soares M.G., Chagas-Paula D.A. Anti-inflammatory derivatives with dual mechanism of action from the metabolomic screening of Poincianella pluviosa. Molecules. 2019;24:4375. doi: 10.3390/molecules24234375. PubMed DOI PMC
Buchman A.L. Side effects of corticosteroid therapy. J. Clin. Gastroenterol. 2001;33:289–294. doi: 10.1097/00004836-200110000-00006. PubMed DOI
Williams D.M. Clinical pharmacology of corticosteroids. Respir. Care. 2018;63:655–670. doi: 10.4187/respcare.06314. PubMed DOI
Dogan A., Otlu S., Celebi O., Aksu P., Saglam A.G., Dogan A.N.C., Mutlu N. An investigation of antibacterial effects of steroids. Turkish J. Vet. Anim. Sci. 2017;41:22. doi: 10.3906/vet-1510-24. DOI
Chiu H.C., Lee S.L., Kapuriya N., Wang D., Chen Y.R., Yu S.L., Kulp S.K., Teng L.J., Chen C.S. Development of novel antibacterial agents against methicillin-resistant Staphylococcus aureus. Bioorg. Med. Chem. 2012;20:4653–4660. doi: 10.1016/j.bmc.2012.06.018. PubMed DOI PMC
Thangamani S., Younis W., Seleem M.N. Repurposing celecoxib as a topical antimicrobial agent. Front. Microbiol. 2015;6:750. doi: 10.3389/fmicb.2015.00750. PubMed DOI PMC
Zhang S., Qu X., Tang H., Wang Y., Yang H., Yuan W., Yue B. Diclofenac resensitises methicillin-resistant Staphylococcus aureus to β-lactams and prevents implant infections. Adv. Sci. 2021;8:2100681. doi: 10.1002/advs.202100681. PubMed DOI PMC
Kivitz A.J., Espinoza L.R., Sherrer Y.R., Liu-Dumaw M., West C.R.A. Comparison of the efficacy and safety of celecoxib 200 mg and celecoxib 400 mg once daily in treating the signs and symptoms of psoriatic arthritis. Semin. Arthritis Rheum. 2007;37:164–173. doi: 10.1016/j.semarthrit.2007.03.004. PubMed DOI
Tai F.W.D., McAlindon M.E. Non-steroidal anti-inflammatory drugs and the gastrointestinal tract. Clin. Med. 2021;21:131–134. doi: 10.7861/clinmed.2021-0039. PubMed DOI PMC
Fitz Gerald G.A. COX-2 and beyond: Approaches to prostaglandin inhibition in human disease. Nat. Rev. Drug Discov. 2003;2:879–890. doi: 10.1038/nrd1225. PubMed DOI
Howes L.G. Selective COX-2 inhibitors, NSAIDs, and cardiovascular events—Is celecoxib the safest choice? Ther. Clin. Risk Manag. 2007;3:831–845. PubMed PMC
Silverstein F.E., Faich G., Goldstein J.L., Simon L.S., Pincus T., Whelton A., Makuch R., Eisen G., Agrawal N.M., Stenson W.F., et al. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: The class study: A randomised controlled trial. Celecoxib long-term arthritis safety study. JAMA. 2000;284:1247–1255. doi: 10.1001/jama.284.10.1247. PubMed DOI
Krasselt M., Baerwald C., Petros S., Seifert O. Mortality of sepsis in patients with rheumatoid arthritis: A single-center retrospective analysis and comparison with a control group. J. Intensive Care Med. 2021;36:766–774. doi: 10.1177/0885066620917588. PubMed DOI PMC
Dinescu S.C., Barbulescu A.L., Firulescu S.C., Chisalau A.B., Parvanescu C.D., Ciurea P.L., Sandu R.E., Turcu-Stiolica A., Boldeanu M.V., Vintila E.M., et al. Staphylococcus aureus-induced septic arthritis of the ankle related to malum perforans in a diabetes patient. Rom. J. Morphol. Embryol. 2021;62:615–619. doi: 10.47162/RJME.62.2.31. PubMed DOI PMC
Nugrahani I., Herawati D., Wibowo M.S. The benefits and challenges of antibiotics-non-steroidal anti-inflammatory drugs non-covalent reaction. Molecules. 2023;28:3672. doi: 10.3390/molecules28093672. PubMed DOI PMC
Kudva A., Kamath A.T., Dhara V., Ravindranath V. Chronic recurrent osteomyelitis: A surgeon’s enigma. J. Oral. Pathol. Med. 2019;48:180–184. doi: 10.1111/jop.12814. PubMed DOI
Chan E.W.L., Yee Z.Y., Raja I., Yap J.K.Y. Synergistic effect of non-steroidal anti-inflammatory drugs (NSAIDs) on antibacterial activity of cefuroxime and chloramphenicol against methicillin-resistant Staphylococcus aureus. J. Glob. Antimicrob. Resist. 2017;10:70–74. doi: 10.1016/j.jgar.2017.03.012. PubMed DOI
Wald-Dickler N., Holtom P., Spellberg B. Busting the myth of “static vs cidal”: A systemic literature review. Clin. Infect. Dis. 2018;66:1470–1474. doi: 10.1093/cid/cix1127. PubMed DOI PMC
Pankey G.A., Sabath L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in treating gram-positive bacterial infections. Clin. Infect. Dis. 2004;38:864–870. doi: 10.1086/381972. PubMed DOI
Bonnaire A., Vernet-Garnier V., Lebrun D., Bajolet O., Bonnet M., Hentzien M., Ohl X., Diallo S., Bani-Sadr F. Clindamycin combination treatment for the treatment of bone and joint infections caused by clindamycin-susceptible, erythromycin-resistant Staphylococcus spp. Diagn. Microbiol. Infect. Dis. 2021;99:115225. doi: 10.1016/j.diagmicrobio.2020.115225. PubMed DOI
Fidelix T.S., Macedo C.R., Maxwell L.J., Fernandes Moca Trevisani V. Diacerein for osteoarthritis. Cochrane Database Syst. Rev. 2014;10:CD005117. doi: 10.1002/14651858.CD005117.pub3. PubMed DOI PMC
Pavelka K., Bruyere O., Cooper C. Diacerein: Benefits, risks, and place in the management of osteoarthritis. An opinion-based report from the ESCEO. Drugs Aging. 2016;33:75–85. doi: 10.1007/s40266-016-0347-4. PubMed DOI PMC
Nguon S., Novy P., Kokoska L. Potentiation of the in vitro antistaphylococcal effect of oxacillin and tetracycline by the anti-inflammatory drug diacetyl rhein. Chemotherapy. 2013;59:447–452. doi: 10.1159/000363730. PubMed DOI
Zhang H., Liu S., Yue J., Sun S., Lv Q., Jian S., Xie Y., Han L., Zhang F., Dai Y., et al. In vitro antimicrobial activity of diacerein on 76 isolates of gram-positive cocci from bacterial keratitis patients and in vivo study of diacerein eye drops on Staphylococcus aureus keratitis in mice. Antimicrob. Agents Chemother. 2019;63:e01874-18. doi: 10.1128/AAC.01874-18. PubMed DOI PMC
Seong Y.J., Alhashimi M., Mayhoub A., Mohammad H., Seleem M.N. Repurposing fenamic acid drugs to combat multidrug resistant Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 2020;64:e02206-19. doi: 10.1128/AAC.02206-19. PubMed DOI PMC
Yin Z., Wang Y., Whittell L.R., Jergic S., Liu M., Harry E., Dixon N.E., Kelso M.J., Beck J.L., Oakley A.J. DNA replication is the target for the antibacterial effects of nonsteroidal anti-inflammatory drugs. Chem. Biol. 2014;21:481–487. doi: 10.1016/j.chembiol.2014.02.009. PubMed DOI
Etienne F., Resnick L., Sagher D., Brot N., Weissbach H. Reduction of sulindac to its active metabolite, sulindac sulfide: Assay and role of the methionine sulfoxide reductase system. Biochem. Biophys. Res. Commun. 2003;312:1005–1010. doi: 10.1016/j.bbrc.2003.10.203. PubMed DOI
Shirin H., Moss S.F., Kancherla S., Kancherla K., Holt P.R., Weinstein I.B., Sordillo E.M. Nonsteroidal anti-inflammatory drugs have bacteriostatic and bactericidal activity against Helicobacter pylori. J. Gastroenterol. Hepatol. 2006;21:1388–1393. doi: 10.1111/j.1440-1746.2006.04194.x. PubMed DOI
Clinical and Laboratory Standards Institute . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically Approved Standard. 3rd ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2015.
Annamanedi M., Kalle A.M. Celecoxib sensitises Staphylococcus aureus to antibiotics in macrophages by modulating SIRT1. PLoS ONE. 2014;9:e99285. doi: 10.1371/journal.pone.0099285. PubMed DOI PMC
Annamanedi M., Varma G.Y.N., Anuradha K., Kalle A.M. Celecoxib enhances the efficacy of low-dose antibiotic treatment against polymicrobial sepsis in mice and clinical Isolates of ESKAPE pathogens. Front. Microbiol. 2017;8:805. doi: 10.3389/fmicb.2017.00805. PubMed DOI PMC
Shalaby M.W., Dokla E.M.E., Serya R.A.T., Abouzid K.A.M. Penicillin binding protein 2a: An overview and a medicinal chemistry perspective. Eur. J. Med. Chem. 2020;199:112312. doi: 10.1016/j.ejmech.2020.112312. PubMed DOI
Santiago C., Pang E.L., Lim K.H., Loh H.S., Ting K.N. Inhibition of penicillin-binding protein 2a (PBP2a) in methicillin-resistant Staphylococcus aureus (MRSA) by combination of ampicillin and a bioactive fraction from Duabanga grandiflora. MC Complement. Altern. Med. 2015;15:178. doi: 10.1186/s12906-015-0699-z. PubMed DOI PMC
Peacock S.J., Paterson G.K. Mechanisms of methicillin resistance in Staphylococcus aureus. Annu. Rev. Biochem. 2015;84:577–601. doi: 10.1146/annurev-biochem-060614-034516. PubMed DOI
Santiago C., Pang E.L., Lim K.H., Loh H.S., Ting K.N. Reversal of ampicillin resistance in MRSA via inhibition of penicillin-binding protein 2a by Acalypha wilkesiana. BioMed. Res. Int. 2014;2014:9653482014. doi: 10.1155/2014/965348. PubMed DOI PMC
Zhou T., Li Z., Kang O.H., Mun S.H., Seo Y.S., Kong R., Shin D.W., Liu X.Q., Kwon D.Y. Antimicrobial activity, and synergism of ursolic acid 3-O-α-L-Arabinopyranoside with oxacillin against methicillin-resistant Staphylococcus aureus. Int. J. Mol. Med. 2017;40:1285–1293. doi: 10.3892/ijmm.2017.3099. PubMed DOI
Pinho M.G., Filipe S.R., de Lencastre H., Tomasz A. Complementation of the essential peptidoglycan transpeptidase function of penicillin-binding protein 2 (PBP2) by the drug resistance protein PBP2A in Staphylococcus aureus. J. Bacteriol. 2001;183:6525–6531. doi: 10.1128/JB.183.22.6525-6531.2001. PubMed DOI PMC
Fuda C., Suvorov M., Vakulenko S.B., Mobashery S. The basis for resistance to beta-lactam antibiotics by penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. J. Biol. Chem. 2004;279:40802–40806. doi: 10.1074/jbc.M403589200. PubMed DOI
Sadeghian H., Sadeghian A., Pordel M., Rahimizadeh M., Jahandari P., Orafaie A., Bakavoli M. Design, synthesis, and structure–activity relationship study of 5-amido-1-(2,4-dinitrophenyl)-1H-4-pyrazolecarbonitrils as DD-carboxypeptidase/penicillin-binding protein inhibitors with Gram-positive antibacterial activity. Med. Chem. Res. 2010;19:103–119. doi: 10.1007/s00044-009-9175-y. DOI
Li Z., Francisco G.D., Hu W., Labthavikul P., Petersen P.J., Severin A., Singh G., Yang Y., Rasmussen B.A., Lin Y., et al. 2-Phenyl-5,6-dihydro-2H-thieno[3,2-c]pyrazol-3-ol derivatives as new inhibitors of bacterial cell wall biosynthesis. Bioorg. Med. Chem. Lett. 2003;13:2591–2594. doi: 10.1016/S0960-894X(03)00471-2. PubMed DOI
Preuer K., Lewis R.P.I., Hochreiter S., Bender A., Bulusu K.C., Klambauer G. DeepSynergy: Predicting anti-cancer drug synergy with deep Learning. Bioinformatics. 2018;34:1538–1546. doi: 10.1093/bioinformatics/btx806. PubMed DOI PMC
Kok E.Y., Vallejo J.G., Sommer L.M., Rosas L., Kaplan S.L., Hulten K.G., McNeil J.C. Association of vancomycin MIC and molecular characteristics with clinical outcomes in methicillin-susceptible Staphylococcus aureus acute hematogenous osteoarticular infections in children. Antimicrob. Agents Chemother. 2018;62:e00084-18. doi: 10.1128/AAC.00084-18. PubMed DOI PMC
Holmes N.E., Turnidge J.D., Munckhof W.J., Robinson J.O., Korman T.M., O’Sullivan M.V., Anderson T.L., Roberts S.A., Gao W., Christiansen K.J., et al. Antibiotic choice may not explain poorer outcomes in patients with Staphylococcus aureus bacteremia and high vancomycin minimum inhibitory concentrations. J. Infect. Dis. 2011;204:340–347. doi: 10.1093/infdis/jir270. PubMed DOI
Xu J., Li H., Zheng C., Zheng C., Wang B., Shen P., Xie Z., Qu Y. Efficacy of pre-emptive use of cyclooxygenase-2 inhibitors for total knee arthroplasty: A mini-review. Arthroplasty. 2019;1:13. doi: 10.1186/s42836-019-0015-3. PubMed DOI PMC
FDA . Centre for Drug Evaluation and Research: Application Number NDA 20-998. FDA; Silver Spring, MD, USA: 1998. [(accessed on 3 August 2023)]. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/98/20998AP_clinphrmr_P1.pdf.
Sidney L.E., Heathman T.R., Britchford E.R., Abed A., Rahman C.V., Buttery L.D. Investigation of localized delivery of diclofenac sodium from poly (D, L-lactic acid-co-glycolic acid)/poly (ethylene glycol) scaffolds using an in vitro osteoblast inflammation model. Tissue Eng. Part A. 2015;21:362–373. doi: 10.1089/ten.tea.2014.0100. PubMed DOI PMC
Heraeus Medical Palacos R+G: High-Viscosity, Bone Cement With Gentamicin; Heraeus Medical GmbH, Germany. [(accessed on 15 August 2023)]. Available online: https://www.heraeus-medical.com/en/healthcare-professionals/products/palacos-rg/
Humez M., Domann E., Thormann K.M., Folsch C., Strathausen R., Vogt S., Alt V., Kuhn K.D. Daptomycin-impregnated PMMA cement against vancomycin-resistant germs: Dosage, handling, elution, mechanical stability, and effectiveness. Antibiotics. 2023;12:1567. doi: 10.3390/antibiotics12111567. PubMed DOI PMC
PRO-IMPLANT Foundation . Pocket Guide to Diagnosing and Treating the Periprosthetic Joint Infection (PJI) PRO-IMPLANT Foundation; Berlin, Germany: 2018. [(accessed on 22 May 2024)]. Available online: https://pro-implant.org/tools/pocket-guide/1.
Gogia J.S., Meehan J.P., Di Cesare P.E., Jamali A.A. Local antibiotic therapy in osteomyelitis. Semin. Plast. Surg. 2009;23:100–107. doi: 10.1055/s-0029-1214162. PubMed DOI PMC
Gunay H., Bakan O.M., Mirzazade J., Sozbilen M.C. A new perspective on the diagnosis of septic arthritis: High-resolution thermal imaging. J. Clin. Med. 2023;12:1573. doi: 10.3390/jcm12041573. PubMed DOI PMC
Cunha B.A. Methicillin-resistant Staphylococcus aureus: Clinical manifestations and antimicrobial therapy. Microbiol. Infect. 2005;11((Suppl. S4)):33–42. doi: 10.1111/j.1469-0691.2005.01162.x. PubMed DOI
Missiakas D.M., Schneewind O. Growth and laboratory maintenance of Staphylococcus aureus. Curr. Protoc. Microbiol. 2013;28:9C.1.1–9C.1.9. doi: 10.1002/9780471729259.mc09c01s28. PubMed DOI PMC
Dolenc A., Kristl J., Baumgartner S., Planinsek O. Advantages of celecoxib nanosuspension formulation and transformation into tablets. Int. J. Pharm. 2009;376:204–212. doi: 10.1016/j.ijpharm.2009.04.038. PubMed DOI
Arslan A., Yet B., Nemutlu E., Akdag Y.C., Eroglu H., Oner L. Celecoxib Nanoformulations with Enhanced solubility, dissolution rate, and oral bioavailability: Experimental approaches over in vitro/in vivo evaluation. Pharmaceutics. 2023;15:363. doi: 10.3390/pharmaceutics15020363. PubMed DOI PMC
John Hopkins Arthritis Centre . Rheumatoid Arthritis Treatment. John Hopkins Arthritis Centre; Baltimore, MD, USA: 2024. [(accessed on 24 April 2024)]. Available online: https://www.hopkinsarthritis.org/arthritis-info/rheumatoid-arthritis/ra-treatment/#NSAID.
Crofford L.J. Use of NSAIDs in treating patients with arthritis. Arthritis Res. Ther. 2013;15:S2. doi: 10.1186/ar4174. PubMed DOI PMC
Moore R.A., Derry S., McQuay H.J. Single dose oral acemetacin for acute postoperative pain in adults. Cochrane Database Syst. Rev. 2009;2009:CD007589. doi: 10.1002/14651858.CD007589.pub2. PubMed DOI PMC
Ahmed S., Sheraz M.A., Ahmad I. Tolfenamic Acid. Profiles Drug Subst. Excip. Relat. Methodol. 2018;43:255–319. doi: 10.1016/bs.podrm.2018.01.001. PubMed DOI
Rondevaldova J., Hummelova J., Tauchen J., Kokoska L. In vitro antistaphylococcal synergistic effect of isoflavone metabolite demethyltexasin with amoxicillin and oxacillin. Microb. Drug Resist. 2018;24:24–29. doi: 10.1089/mdr.2017.0033. PubMed DOI
Mohamed M.F., Hamed M.I., Panitch A., Seleem M.N. Targeting methicillin-resistant Staphylococcus aureus with short salt-resistant synthetic peptides. Antimicrob. Agents Chemother. 2014;58:4113–4122. doi: 10.1128/AAC.02578-14. PubMed DOI PMC
Cos P., Vlietinck A.J., Berghe D.V., Maes L. Anti-infective potential of natural products: How to develop a stronger in vitro proof-of-concept. J. Ethnopharmacol. 2006;106:290–302. doi: 10.1016/j.jep.2006.04.003. PubMed DOI
Jorgensen J.H., Turnidge J.D., Washington J.A. Manual of Clinical Microbiology, 7th ed Murray, P.R., Baron, E.J., Pfaller, M.A., Tenover, F.C., Yolken, R.H., Eds. ASM Press; Washington, DC, USA: 1999. Antibacterial susceptibility tests: Dilution and disk diffusion methods; pp. 1526–1543.
Frankova A., Vistejnova L., Merinas-Amo T., Leheckova Z., Doskocil I., Wong Soon J., Kudera T., Laupua F., Alonso-Moraga A., Kokoska L. In vitro antibacterial activity of extracts from Samoan medicinal plants and their effect on proliferation and migration of human fibroblasts. J. Ethnopharmacol. 2021;264:113220. doi: 10.1016/j.jep.2020.113220. PubMed DOI
Summer K., Browne J., Hollanders M., Benkendorff K. Out of control: The need for standardised solvent approaches and data reporting in antibiofilm assays incorporating dimethyl-sulfoxide (DMSO) Biofilm. 2022;4:100081. doi: 10.1016/j.bioflm.2022.100081. PubMed DOI PMC
White R.L., Burgess D.S., Manduru M., Bosso J. Comparison of three different in vitro methods of detecting synergy: Time-kill, checkerboard, and E-test. Antimicrob. Agents Chemother. 1996;40:1914–1918. doi: 10.1128/AAC.40.8.1914. PubMed DOI PMC
Odds F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003;52:1. doi: 10.1093/jac/dkg301. PubMed DOI
Bidaud A.L., Schwarz P., Herbreteau G., Dannaoui E. Techniques for the assessment of in vitro and in vivo antifungal combinations. J. Fungi. 2022;7:113. doi: 10.3390/jof7020113. PubMed DOI PMC