Discovery of essential kinetoplastid-insect adhesion proteins and their function in Leishmania-sand fly interactions

. 2024 Aug 13 ; 15 (1) : 6960. [epub] 20240813

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39138209

Grantová podpora
Wellcome Trust - United Kingdom
JSPS Overseas Research Fellowship MEXT | Japan Society for the Promotion of Science (JSPS)
221944/Z/20/Z Wellcome Trust (Wellcome)
20-515 MEXT | NINS | National Institute for Basic Biology (NIBB)

Odkazy

PubMed 39138209
PubMed Central PMC11322530
DOI 10.1038/s41467-024-51291-z
PII: 10.1038/s41467-024-51291-z
Knihovny.cz E-zdroje

Leishmania species, members of the kinetoplastid parasites, cause leishmaniasis, a neglected tropical disease, in millions of people worldwide. Leishmania has a complex life cycle with multiple developmental forms, as it cycles between a sand fly vector and a mammalian host; understanding their life cycle is critical to understanding disease spread. One of the key life cycle stages is the haptomonad form, which attaches to insect tissues through its flagellum. This adhesion, conserved across kinetoplastid parasites, is implicated in having an important function within their life cycles and hence in disease transmission. Here, we discover the kinetoplastid-insect adhesion proteins (KIAPs), which localise in the attached Leishmania flagellum. Deletion of these KIAPs impairs cell adhesion in vitro and prevents Leishmania from colonising the stomodeal valve in the sand fly, without affecting cell growth. Additionally, loss of parasite adhesion in the sand fly results in reduced physiological changes to the fly, with no observable damage of the stomodeal valve and reduced midgut swelling. These results provide important insights into a comprehensive understanding of the Leishmania life cycle, which will be critical for developing transmission-blocking strategies.

Zobrazit více v PubMed

De Niz, M. et al. Progress in imaging methods: insights gained into Plasmodium biology. Nat. Rev. Microbiol.15, 37–54 (2017). 10.1038/nrmicro.2016.158 PubMed DOI

Jarrett, C. O. et al. Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J. Infect. Dis.190, 783–792 (2004). 10.1086/422695 PubMed DOI

Volf, P., Hajmova, M., Sadlova, J. & Votypka, J. Blocked stomodeal valve of the insect vector: Similar mechanism of transmission in two trypanosomatid models. Int. J. Parasitol.34, 1221–1227 (2004). 10.1016/j.ijpara.2004.07.010 PubMed DOI

Serafim, T. D. et al. Sequential blood meals promote Leishmania replication and reverse metacyclogenesis augmenting vector infectivity. Nat. Microbiol.3, 548–555 (2018). 10.1038/s41564-018-0125-7 PubMed DOI PMC

Killick-Kendrick, R., Molyneux, D. H. & Ashford, R. W. Leishmania in phlebotomid sandflies I. Modifications of the flagellum associated with attachment to the mid-gut and oesophageal valve of the sandfly. Proc. R. Soc. B: Biol. Sci.187, 409–419 (1974). PubMed

W. H. O. Leishmaniasis. https://www.who.int/en/news-room/fact-sheets/detail/leishmaniasis (2023).

Morrison, L. S. et al. Ecotin-like serine peptidase inhibitor ISP1 of Leishmania major plays a role in flagellar pocket dynamics and promastigote differentiation. Cell Microbiol.14, 1271–1286 (2012). 10.1111/j.1462-5822.2012.01798.x PubMed DOI PMC

Alcolea, P. J. et al. Functional genomics in sand fly–derived Leishmania promastigotes. PLoS Negl. Trop. Dis.13, e0007288 (2019). 10.1371/journal.pntd.0007288 PubMed DOI PMC

Catta-preta, C., Ghosh, K., Sacks, D. & Ferreira, T. Single-cell atlas of Leishmania major development in the sandfly vector reveals the heterogeneity of transmitted parasites and their role in infection. Res Sq10.21203/rs.3.rs-4022188/v1 (2024).

Dostálová, A. & Volf, P. Leishmania development in sand flies: parasite-vector interactions overview. Parasit. Vectors5, 1–12 (2012). 10.1186/1756-3305-5-276 PubMed DOI PMC

Sunter, J. & Gull, K. Shape, form, function and Leishmania pathogenicity: from textbook descriptions to biological understanding. Open Biol.7, 170165 (2017). 10.1098/rsob.170165 PubMed DOI PMC

Rogers, M. E. et al. Leishmania chitinase facilitates colonization of sand fly vectors and enhances transmission to mice. Cell Microbiol.10, 1363–1372 (2008). 10.1111/j.1462-5822.2008.01132.x PubMed DOI PMC

Yanase, R. et al. Formation and three-dimensional architecture of Leishmania adhesion in the sand fly vector. Elife12, 1–23 (2023).10.7554/eLife.84552 PubMed DOI PMC

Frolov, A. O., Kostygov, A. Y. & Yurchenko, V. Development of monoxenous trypanosomatids and phytomonads in insects. Trends Parasitol.37, 538–551 (2021). 10.1016/j.pt.2021.02.004 PubMed DOI

Hendry, K. A. K. & Vickerman, K. The requirement for epimastigote attachment during division and metacyclogenesis in Trypanosoma congolense. Parasitol. Res.74, 403–408 (1988). 10.1007/BF00535138 PubMed DOI

Kleffmann, T., Schmidt, J. & Schaub, G. A. Attachment of Trypanosoma cruzi epimastigotes to hydrophobic substrates and use of this property to separate stages and promote metacyclogenesis. J. Eukaryot. Microbiol.45, 548–555 (1998). 10.1111/j.1550-7408.1998.tb05115.x PubMed DOI

Wakid, M. H. & Bates, P. A. Flagellar attachment of Leishmania promastigotes to plastic film in vitro. Exp. Parasitol.106, 173–178 (2004). 10.1016/j.exppara.2004.03.001 PubMed DOI

Denecke, S. et al. Adhesion of Crithidia fasciculata promotes a rapid change in developmental fate driven by cAMP signaling. bioRxiv10.1101/2022.10.06.511084 (2022).

Hamedi, A. et al. In vitro metacyclogenesis of Trypanosoma cruzi induced by starvation correlates with a transient adenylyl cyclase stimulation as well as with a constitutive upregulation of adenylyl cyclase expression. Mol. Biochem. Parasitol.200, 9–18 (2015). 10.1016/j.molbiopara.2015.04.002 PubMed DOI

Billington, K. et al. Genome-wide subcellular protein map for the flagellate parasite Trypanosoma brucei. Nat. Microbiol.8, 533–547 (2023). 10.1038/s41564-022-01295-6 PubMed DOI PMC

Nielsen, B. B. et al. Crystal structure of tetranectin, a trimeric plasminogen-binding protein with an α-helical coiled coil. FEBS Lett.412, 388–396 (1997). 10.1016/S0014-5793(97)00664-9 PubMed DOI

Bates, P. A. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int. J. Parasitol.37, 1097–1106 (2007). 10.1016/j.ijpara.2007.04.003 PubMed DOI PMC

Rogers, M. E., Chance, M. L. & Bates, P. A. The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis. Parasitology124, 495–507 (2002). 10.1017/S0031182002001439 PubMed DOI

Sádlová, J. et al. The stage-regulated HASPB and SHERP proteins are essential for differentiation of the protozoan parasite Leishmania major in its sand fly vector, Phlebotomus papatasi. Cell Microbiol.12, 1765–1779 (2010). 10.1111/j.1462-5822.2010.01507.x PubMed DOI PMC

Ersfeld, K., Barraclough, H. & Gull, K. Evolutionary relationships and protein domain architecture in an expanded calpain superfamily in kinetoplastid parasites. J. Mol. Evol.61, 742–757 (2005). 10.1007/s00239-004-0272-8 PubMed DOI

Hayes, P. et al. Modulation of a cytoskeletal calpain-like protein induces major transitions in trypanosome morphology. J. Cell Biol.206, 377–384 (2014). 10.1083/jcb.201312067 PubMed DOI PMC

Hertz-Fowler, C., Ersfeld, K. & Gull, K. CAP5.5, a life-cycle-regulated, cytoskeleton-associated protein is a member of a novel family of calpain-related proteins in Trypanosoma brucei. Mol. Biochem. Parasitol.116, 25–34 (2001). 10.1016/S0166-6851(01)00296-1 PubMed DOI

Stierhof, Y. D. et al. Filamentous proteophosphoglycan secreted by Leishmania promastigotes forms gel like three-dimensional networks that obstruct the digestive tract of infected sandfly vectors. Eur. J. Cell Biol.78, 675–689 (1999). 10.1016/S0171-9335(99)80036-3 PubMed DOI

Lynn, E. & Nicholson, R. Adhesion and adhesives of fungi and oomycetes. In Biological Adhesives, Second Edition 25–55. 10.1007/978-3-319-46082-6 (Springer, Cham, 2016)

Schmidt, J., Kleffmann, T. & Schaub, G. A. Hydrophobic attachment of Trypanosoma cruzi to a superficial layer of the rectal cuticle in the bug Triatoma infestans. Parasitol. Res.84, 527–536 (1998). 10.1007/s004360050443 PubMed DOI

Michell, G. C., Baker, J. H. & Sleigh, M. A. Feeding of a freshwater flagellate, Bodo saltans, on diverse bacteria. J. Protozool.35, 219–222 (1988).10.1111/j.1550-7408.1988.tb04327.x DOI

Povelones, M. L., Holmes, N. A. & Povelones, M. A sticky situation: When trypanosomatids attach to insect tissues. PLoS Pathog.19, 1–22 (2023).10.1371/journal.ppat.1011854 PubMed DOI PMC

Myšková, J. et al. Characterization of a midgut mucin-like glycoconjugate of Lutzomyia longipalpis with a potential role in Leishmania attachment. Parasit. Vectors9, 1–10 (2016). 10.1186/s13071-016-1695-y PubMed DOI PMC

Kamhawi, S. et al. A role for insect galectins in parasite survival. Cell119, 329–341 (2004). 10.1016/j.cell.2004.10.009 PubMed DOI

Peacock, L., Kay, C., Bailey, M. & Gibson, W. Shape-shifting trypanosomes: Flagellar shortening followed by asymmetric division in Trypanosoma congolense from the tsetse proventriculus. PLoS Pathog.14, 1–22 (2018).10.1371/journal.ppat.1007043 PubMed DOI PMC

Beneke, T. et al. Genetic dissection of a Leishmania flagellar proteome demonstrates requirement for directional motility in sand fly infections. PLoS Pathog.15, 1–31 (2019).10.1371/journal.ppat.1007828 PubMed DOI PMC

Aslett, M. et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res.38, 457–462 (2009).10.1093/nar/gkp851 PubMed DOI PMC

Käll, L., Storey, J. D. & Noble, W. S. Non-parametric estimation of posterior error probabilities associated with peptides identified by tandem mass spectrometry. Bioinformatics24, 42–48 (2008). 10.1093/bioinformatics/btn294 PubMed DOI PMC

Nesvizhskii, A. I., Keller, A., Kolker, E. & Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem.75, 4646–4658 (2003). 10.1021/ac0341261 PubMed DOI

Halliday, C. et al. Cellular landmarks of Trypanosoma brucei and Leishmania mexicana. Mol. Biochem. Parasitol.230, 24–36 (2019). 10.1016/j.molbiopara.2018.12.003 PubMed DOI PMC

Dean, S. et al. A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol.5, 140197 (2015). PubMed PMC

Beneke, T. et al. A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. R. Soc. Open Sci.4, 1–16 (2017). 10.1098/rsos.170095 PubMed DOI PMC

Halliday, C. The Role of the Flagellum Attachment Zone in Leishmania Mexicana Flagellar Pocket Architecture (Ph.D. thesis), 10.24384/14dq-ae80 (Oxford Brookes University, 2021).

Sunter, J. D. et al. Leishmania flagellum attachment zone is critical for flagellar pocket shape, development in the sand fly, and pathogenicity in the host. Proc. Natl Acad. Sci. USA116, 6351–6360 (2019). 10.1073/pnas.1812462116 PubMed DOI PMC

Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol.33, 1635–1638 (2016). 10.1093/molbev/msw046 PubMed DOI PMC

Katoh, K., Kuma, K. I., Toh, H. & Miyata, T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res.33, 511–518 (2005). 10.1093/nar/gki198 PubMed DOI PMC

Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics25, 1972–1973 (2009). 10.1093/bioinformatics/btp348 PubMed DOI PMC

Stamatakis, A., Ludwig, T. & Meier, H. RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics21, 456–463 (2005). 10.1093/bioinformatics/bti191 PubMed DOI

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol.215, 403–410 (1990). 10.1016/S0022-2836(05)80360-2 PubMed DOI

Wheeler, R. J. A resource for improved predictions of Trypanosoma and Leishmania protein three-dimensional structure. PLoS One16, 1–12 (2021).10.1371/journal.pone.0259871 PubMed DOI PMC

Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods19, 679–682 (2022). 10.1038/s41592-022-01488-1 PubMed DOI PMC

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature596, 583–589 (2021). 10.1038/s41586-021-03819-2 PubMed DOI PMC

Schindelin, J. et al. Fiji: an open source platform for biological-image analysis. Nat. Methods9, 676–682 (2012). 10.1038/nmeth.2019 PubMed DOI PMC

Iudin, A. et al. EMPIAR: the electron microscopy public image archive. Nucleic Acids Res.51, D1503–D1511 (2023). 10.1093/nar/gkac1062 PubMed DOI PMC

Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol.116, 71–76 (1996). 10.1006/jsbi.1996.0013 PubMed DOI

Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods9, 676–682 (2012). 10.1038/nmeth.2019 PubMed DOI PMC

Walters, L. L. Leishmania differentiation in natural and unnatural sand fly hosts. J. Euk. Microbiol40, 196–206 (1993). 10.1111/j.1550-7408.1993.tb04904.x PubMed DOI

Volf, J. Development of different Leishmania major strains in the vector sandflies Phlebotomus papatasi and P. duboscqi. Ann. Trop. Med. Parasitol.91, 267–279 (1997). 10.1080/00034989761120 PubMed DOI

Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods17, 261–272 (2020). 10.1038/s41592-019-0686-2 PubMed DOI PMC

Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng.9, 90–95 (2007).10.1109/MCSE.2007.55 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...