Discovery of essential kinetoplastid-insect adhesion proteins and their function in Leishmania-sand fly interactions
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
JSPS Overseas Research Fellowship
MEXT | Japan Society for the Promotion of Science (JSPS)
221944/Z/20/Z
Wellcome Trust (Wellcome)
20-515
MEXT | NINS | National Institute for Basic Biology (NIBB)
PubMed
39138209
PubMed Central
PMC11322530
DOI
10.1038/s41467-024-51291-z
PII: 10.1038/s41467-024-51291-z
Knihovny.cz E-zdroje
- MeSH
- buněčná adheze MeSH
- flagella * metabolismus MeSH
- hmyz - vektory parazitologie MeSH
- hmyzí proteiny metabolismus genetika MeSH
- interakce hostitele a parazita MeSH
- Leishmania * fyziologie genetika metabolismus MeSH
- leishmanióza parazitologie přenos MeSH
- protozoální proteiny metabolismus genetika MeSH
- Psychodidae * parazitologie MeSH
- stadia vývoje MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hmyzí proteiny MeSH
- protozoální proteiny MeSH
Leishmania species, members of the kinetoplastid parasites, cause leishmaniasis, a neglected tropical disease, in millions of people worldwide. Leishmania has a complex life cycle with multiple developmental forms, as it cycles between a sand fly vector and a mammalian host; understanding their life cycle is critical to understanding disease spread. One of the key life cycle stages is the haptomonad form, which attaches to insect tissues through its flagellum. This adhesion, conserved across kinetoplastid parasites, is implicated in having an important function within their life cycles and hence in disease transmission. Here, we discover the kinetoplastid-insect adhesion proteins (KIAPs), which localise in the attached Leishmania flagellum. Deletion of these KIAPs impairs cell adhesion in vitro and prevents Leishmania from colonising the stomodeal valve in the sand fly, without affecting cell growth. Additionally, loss of parasite adhesion in the sand fly results in reduced physiological changes to the fly, with no observable damage of the stomodeal valve and reduced midgut swelling. These results provide important insights into a comprehensive understanding of the Leishmania life cycle, which will be critical for developing transmission-blocking strategies.
Department of Basic Biology School of Life Science SOKENDAI Okazaki Japan
Department of Biological and Medical Sciences Oxford Brookes University Oxford UK
Department of Genetics and Genome Biology University of Leicester Leicester UK
Department of Parasitology Faculty of Science Charles University Prague Czechia
Laboratory for Spatiotemporal Regulations National Institute for Basic Biology Okazaki Japan
School of Life Sciences University of Nottingham Nottingham UK
Zobrazit více v PubMed
De Niz, M. et al. Progress in imaging methods: insights gained into Plasmodium biology. Nat. Rev. Microbiol.15, 37–54 (2017). 10.1038/nrmicro.2016.158 PubMed DOI
Jarrett, C. O. et al. Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J. Infect. Dis.190, 783–792 (2004). 10.1086/422695 PubMed DOI
Volf, P., Hajmova, M., Sadlova, J. & Votypka, J. Blocked stomodeal valve of the insect vector: Similar mechanism of transmission in two trypanosomatid models. Int. J. Parasitol.34, 1221–1227 (2004). 10.1016/j.ijpara.2004.07.010 PubMed DOI
Serafim, T. D. et al. Sequential blood meals promote Leishmania replication and reverse metacyclogenesis augmenting vector infectivity. Nat. Microbiol.3, 548–555 (2018). 10.1038/s41564-018-0125-7 PubMed DOI PMC
Killick-Kendrick, R., Molyneux, D. H. & Ashford, R. W. Leishmania in phlebotomid sandflies I. Modifications of the flagellum associated with attachment to the mid-gut and oesophageal valve of the sandfly. Proc. R. Soc. B: Biol. Sci.187, 409–419 (1974). PubMed
W. H. O. Leishmaniasis. https://www.who.int/en/news-room/fact-sheets/detail/leishmaniasis (2023).
Morrison, L. S. et al. Ecotin-like serine peptidase inhibitor ISP1 of Leishmania major plays a role in flagellar pocket dynamics and promastigote differentiation. Cell Microbiol.14, 1271–1286 (2012). 10.1111/j.1462-5822.2012.01798.x PubMed DOI PMC
Alcolea, P. J. et al. Functional genomics in sand fly–derived Leishmania promastigotes. PLoS Negl. Trop. Dis.13, e0007288 (2019). 10.1371/journal.pntd.0007288 PubMed DOI PMC
Catta-preta, C., Ghosh, K., Sacks, D. & Ferreira, T. Single-cell atlas of Leishmania major development in the sandfly vector reveals the heterogeneity of transmitted parasites and their role in infection. Res Sq10.21203/rs.3.rs-4022188/v1 (2024).
Dostálová, A. & Volf, P. Leishmania development in sand flies: parasite-vector interactions overview. Parasit. Vectors5, 1–12 (2012). 10.1186/1756-3305-5-276 PubMed DOI PMC
Sunter, J. & Gull, K. Shape, form, function and Leishmania pathogenicity: from textbook descriptions to biological understanding. Open Biol.7, 170165 (2017). 10.1098/rsob.170165 PubMed DOI PMC
Rogers, M. E. et al. Leishmania chitinase facilitates colonization of sand fly vectors and enhances transmission to mice. Cell Microbiol.10, 1363–1372 (2008). 10.1111/j.1462-5822.2008.01132.x PubMed DOI PMC
Yanase, R. et al. Formation and three-dimensional architecture of Leishmania adhesion in the sand fly vector. Elife12, 1–23 (2023).10.7554/eLife.84552 PubMed DOI PMC
Frolov, A. O., Kostygov, A. Y. & Yurchenko, V. Development of monoxenous trypanosomatids and phytomonads in insects. Trends Parasitol.37, 538–551 (2021). 10.1016/j.pt.2021.02.004 PubMed DOI
Hendry, K. A. K. & Vickerman, K. The requirement for epimastigote attachment during division and metacyclogenesis in Trypanosoma congolense. Parasitol. Res.74, 403–408 (1988). 10.1007/BF00535138 PubMed DOI
Kleffmann, T., Schmidt, J. & Schaub, G. A. Attachment of Trypanosoma cruzi epimastigotes to hydrophobic substrates and use of this property to separate stages and promote metacyclogenesis. J. Eukaryot. Microbiol.45, 548–555 (1998). 10.1111/j.1550-7408.1998.tb05115.x PubMed DOI
Wakid, M. H. & Bates, P. A. Flagellar attachment of Leishmania promastigotes to plastic film in vitro. Exp. Parasitol.106, 173–178 (2004). 10.1016/j.exppara.2004.03.001 PubMed DOI
Denecke, S. et al. Adhesion of Crithidia fasciculata promotes a rapid change in developmental fate driven by cAMP signaling. bioRxiv10.1101/2022.10.06.511084 (2022).
Hamedi, A. et al. In vitro metacyclogenesis of Trypanosoma cruzi induced by starvation correlates with a transient adenylyl cyclase stimulation as well as with a constitutive upregulation of adenylyl cyclase expression. Mol. Biochem. Parasitol.200, 9–18 (2015). 10.1016/j.molbiopara.2015.04.002 PubMed DOI
Billington, K. et al. Genome-wide subcellular protein map for the flagellate parasite Trypanosoma brucei. Nat. Microbiol.8, 533–547 (2023). 10.1038/s41564-022-01295-6 PubMed DOI PMC
Nielsen, B. B. et al. Crystal structure of tetranectin, a trimeric plasminogen-binding protein with an α-helical coiled coil. FEBS Lett.412, 388–396 (1997). 10.1016/S0014-5793(97)00664-9 PubMed DOI
Bates, P. A. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int. J. Parasitol.37, 1097–1106 (2007). 10.1016/j.ijpara.2007.04.003 PubMed DOI PMC
Rogers, M. E., Chance, M. L. & Bates, P. A. The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis. Parasitology124, 495–507 (2002). 10.1017/S0031182002001439 PubMed DOI
Sádlová, J. et al. The stage-regulated HASPB and SHERP proteins are essential for differentiation of the protozoan parasite Leishmania major in its sand fly vector, Phlebotomus papatasi. Cell Microbiol.12, 1765–1779 (2010). 10.1111/j.1462-5822.2010.01507.x PubMed DOI PMC
Ersfeld, K., Barraclough, H. & Gull, K. Evolutionary relationships and protein domain architecture in an expanded calpain superfamily in kinetoplastid parasites. J. Mol. Evol.61, 742–757 (2005). 10.1007/s00239-004-0272-8 PubMed DOI
Hayes, P. et al. Modulation of a cytoskeletal calpain-like protein induces major transitions in trypanosome morphology. J. Cell Biol.206, 377–384 (2014). 10.1083/jcb.201312067 PubMed DOI PMC
Hertz-Fowler, C., Ersfeld, K. & Gull, K. CAP5.5, a life-cycle-regulated, cytoskeleton-associated protein is a member of a novel family of calpain-related proteins in Trypanosoma brucei. Mol. Biochem. Parasitol.116, 25–34 (2001). 10.1016/S0166-6851(01)00296-1 PubMed DOI
Stierhof, Y. D. et al. Filamentous proteophosphoglycan secreted by Leishmania promastigotes forms gel like three-dimensional networks that obstruct the digestive tract of infected sandfly vectors. Eur. J. Cell Biol.78, 675–689 (1999). 10.1016/S0171-9335(99)80036-3 PubMed DOI
Lynn, E. & Nicholson, R. Adhesion and adhesives of fungi and oomycetes. In Biological Adhesives, Second Edition 25–55. 10.1007/978-3-319-46082-6 (Springer, Cham, 2016)
Schmidt, J., Kleffmann, T. & Schaub, G. A. Hydrophobic attachment of Trypanosoma cruzi to a superficial layer of the rectal cuticle in the bug Triatoma infestans. Parasitol. Res.84, 527–536 (1998). 10.1007/s004360050443 PubMed DOI
Michell, G. C., Baker, J. H. & Sleigh, M. A. Feeding of a freshwater flagellate, Bodo saltans, on diverse bacteria. J. Protozool.35, 219–222 (1988).10.1111/j.1550-7408.1988.tb04327.x DOI
Povelones, M. L., Holmes, N. A. & Povelones, M. A sticky situation: When trypanosomatids attach to insect tissues. PLoS Pathog.19, 1–22 (2023).10.1371/journal.ppat.1011854 PubMed DOI PMC
Myšková, J. et al. Characterization of a midgut mucin-like glycoconjugate of Lutzomyia longipalpis with a potential role in Leishmania attachment. Parasit. Vectors9, 1–10 (2016). 10.1186/s13071-016-1695-y PubMed DOI PMC
Kamhawi, S. et al. A role for insect galectins in parasite survival. Cell119, 329–341 (2004). 10.1016/j.cell.2004.10.009 PubMed DOI
Peacock, L., Kay, C., Bailey, M. & Gibson, W. Shape-shifting trypanosomes: Flagellar shortening followed by asymmetric division in Trypanosoma congolense from the tsetse proventriculus. PLoS Pathog.14, 1–22 (2018).10.1371/journal.ppat.1007043 PubMed DOI PMC
Beneke, T. et al. Genetic dissection of a Leishmania flagellar proteome demonstrates requirement for directional motility in sand fly infections. PLoS Pathog.15, 1–31 (2019).10.1371/journal.ppat.1007828 PubMed DOI PMC
Aslett, M. et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res.38, 457–462 (2009).10.1093/nar/gkp851 PubMed DOI PMC
Käll, L., Storey, J. D. & Noble, W. S. Non-parametric estimation of posterior error probabilities associated with peptides identified by tandem mass spectrometry. Bioinformatics24, 42–48 (2008). 10.1093/bioinformatics/btn294 PubMed DOI PMC
Nesvizhskii, A. I., Keller, A., Kolker, E. & Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem.75, 4646–4658 (2003). 10.1021/ac0341261 PubMed DOI
Halliday, C. et al. Cellular landmarks of Trypanosoma brucei and Leishmania mexicana. Mol. Biochem. Parasitol.230, 24–36 (2019). 10.1016/j.molbiopara.2018.12.003 PubMed DOI PMC
Dean, S. et al. A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol.5, 140197 (2015). PubMed PMC
Beneke, T. et al. A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. R. Soc. Open Sci.4, 1–16 (2017). 10.1098/rsos.170095 PubMed DOI PMC
Halliday, C. The Role of the Flagellum Attachment Zone in Leishmania Mexicana Flagellar Pocket Architecture (Ph.D. thesis), 10.24384/14dq-ae80 (Oxford Brookes University, 2021).
Sunter, J. D. et al. Leishmania flagellum attachment zone is critical for flagellar pocket shape, development in the sand fly, and pathogenicity in the host. Proc. Natl Acad. Sci. USA116, 6351–6360 (2019). 10.1073/pnas.1812462116 PubMed DOI PMC
Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol.33, 1635–1638 (2016). 10.1093/molbev/msw046 PubMed DOI PMC
Katoh, K., Kuma, K. I., Toh, H. & Miyata, T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res.33, 511–518 (2005). 10.1093/nar/gki198 PubMed DOI PMC
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics25, 1972–1973 (2009). 10.1093/bioinformatics/btp348 PubMed DOI PMC
Stamatakis, A., Ludwig, T. & Meier, H. RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics21, 456–463 (2005). 10.1093/bioinformatics/bti191 PubMed DOI
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol.215, 403–410 (1990). 10.1016/S0022-2836(05)80360-2 PubMed DOI
Wheeler, R. J. A resource for improved predictions of Trypanosoma and Leishmania protein three-dimensional structure. PLoS One16, 1–12 (2021).10.1371/journal.pone.0259871 PubMed DOI PMC
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods19, 679–682 (2022). 10.1038/s41592-022-01488-1 PubMed DOI PMC
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature596, 583–589 (2021). 10.1038/s41586-021-03819-2 PubMed DOI PMC
Schindelin, J. et al. Fiji: an open source platform for biological-image analysis. Nat. Methods9, 676–682 (2012). 10.1038/nmeth.2019 PubMed DOI PMC
Iudin, A. et al. EMPIAR: the electron microscopy public image archive. Nucleic Acids Res.51, D1503–D1511 (2023). 10.1093/nar/gkac1062 PubMed DOI PMC
Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol.116, 71–76 (1996). 10.1006/jsbi.1996.0013 PubMed DOI
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods9, 676–682 (2012). 10.1038/nmeth.2019 PubMed DOI PMC
Walters, L. L. Leishmania differentiation in natural and unnatural sand fly hosts. J. Euk. Microbiol40, 196–206 (1993). 10.1111/j.1550-7408.1993.tb04904.x PubMed DOI
Volf, J. Development of different Leishmania major strains in the vector sandflies Phlebotomus papatasi and P. duboscqi. Ann. Trop. Med. Parasitol.91, 267–279 (1997). 10.1080/00034989761120 PubMed DOI
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods17, 261–272 (2020). 10.1038/s41592-019-0686-2 PubMed DOI PMC
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng.9, 90–95 (2007).10.1109/MCSE.2007.55 DOI