Undescribed Amaryllidaceae Alkaloids from Zephyranthes citrina and Their Cytotoxicity
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
39229678
PubMed Central
PMC11443518
DOI
10.1021/acs.jnatprod.4c00825
Knihovny.cz E-resources
- MeSH
- Amaryllidaceae Alkaloids * pharmacology chemistry isolation & purification MeSH
- Amaryllidaceae * chemistry MeSH
- Phenanthridines pharmacology chemistry MeSH
- Antineoplastic Agents, Phytogenic pharmacology chemistry isolation & purification MeSH
- Humans MeSH
- Molecular Structure MeSH
- Drug Screening Assays, Antitumor MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Amaryllidaceae Alkaloids * MeSH
- Phenanthridines MeSH
- Antineoplastic Agents, Phytogenic MeSH
- hemanthamine MeSH Browser
- lycorine MeSH Browser
This phytochemical study presents the isolation of eight alkaloids from Zephyranthes citrina Baker. The structures of the new alkaloids, zephycitrine (1) and 6-oxonarcissidine (2), were established by analysis of spectroscopic and spectrometric data. Processing the EtOH extract under acid-base conditions yielded the unreported isolation artifacts 3 and 4. This work also provides analytical data for alkaloids not properly described in the literature (5 and 6). The hippeastidine/zephyranine scaffolds in derivatives 3, 4, and 8-10 are also thoroughly discussed. Furthermore, a cytotoxicity screening of 25 Amaryllidaceae alkaloids isolated from Z. citrina was performed. Only the known alkaloids haemanthamine (12), haemanthidine (13), and lycorine (27) showed significant cell growth inhibition.
See more in PubMed
Syeed R.; Mujib A.; Malik M. Q.; Mamgain J.; Ejaz B.; Gulzar B.; Zafar N. Mass Propagation through Direct and Indirect Organogenesis in Three Species of Genus Zephyranthes and Ploidy Assessment of Regenerants through Flow Cytometry. Mol. Biol. Rep. 2021, 48, 513–526. 10.1007/s11033-020-06083-1. PubMed DOI
Herrera M. R.; Machocho A. K.; Brun R.; Viladomat F.; Codina C.; Bastida J. Crinane and Lycorane Type Alkaloids from Zephyranthes citrina. Planta Med. 2001, 67, 191–193. 10.1055/s-2001-11495. PubMed DOI
Šafratová M.; Vrabec R.; Blunden G.; Cahlíková L.; Křoustková J. Specialized Metabolites of the Genus Zephyranthes Herb.: a Critical Review on Taxonomy and Phytochemistry. Phytochem. Rev. 2024, 10.1007/s11101-024-09931-1. DOI
Boit H. G.; Dopke W.; Stender W. Alkaloide aus Crinum-, Zephyranthes-, Leucojum- und Clivia-Arten. Chem. Ber./Recl. 1957, 90, 2203–2206. 10.1002/cber.19570901013. DOI
Pellegrino S.; Meyer M.; Zorbas C.; Bouchta S. A.; Saraf K.; Pelly S. C.; Yusupova G.; Evidente A.; Mathieu V.; Kornienko A.; et al. The Amaryllidaceae Alkaloid Haemanthamine Binds the Eukaryotic Ribosome to Repress Cancer Cell Growth. Structure 2018, 26, 416–425.e4. 10.1016/j.str.2018.01.009. PubMed DOI
Doskočil I.; Hošt’álková A.; Šafratová M.; Benešová N.; Havlík J.; Havelek R.; Kuneš J.; Královec K.; Chlebek J.; Cahlíková L. Cytotoxic activities of Amaryllidaceae alkaloids against gastrointestinal cancer cells. Phytochem. Lett. 2015, 13, 394–398. 10.1016/j.phytol.2015.08.004. DOI
Havelek R.; Seifrtova M.; Kralovec K.; Bruckova L.; Cahlikova L.; Dalecka M.; Vavrova J.; Rezacova M.; Opletal L.; Bilkova Z. The Effect of Alkaloids Haemanthamine and Haemanthidine on Cell Cycle Progression and Apoptosis in p53-negative Human Leukemic Jurkat Cells. Phytomedicine 2014, 21, 479–490. 10.1016/j.phymed.2013.09.005. PubMed DOI
Plazas E.; Avila M M. M.; Munoz D. R.; Cuca S L. E. Natural Isoquinoline Alkaloids: Pharmacological Features and Multi-target Potential for Complex Diseases. Pharmacol. Res. 2022, 177, 10612610.1016/j.phrs.2022.106126. PubMed DOI
Uher M.; Hroch M.; Peřinová R.; Havelek R.; Křoustková J.; Řezáčová M.; Muthná D.; Koutová D.; Kuneš J.; Cahlíková L. Semisynthetic Derivatives of Haemanthamine and their In Vitro Antiproliferative Activity Evaluation against a Panel of Human Cell Lines. Arab. J. Chem. 2022, 15, 10374610.1016/j.arabjc.2022.103746. DOI
Tojo E. (+)-Narcidine, a New Alkaloid from Narcissus pseudonarcissus. J. Nat. Prod. 1991, 54, 1387–1388. 10.1021/np50077a023. DOI
Pigni N. B.; Ríos-Ruiz S.; Martínez-Francés V.; Nair J. J.; Viladomat F.; Codina C.; Bastida J. Alkaloids from Narcissus serotinus. J. Nat. Prod. 2012, 75, 1643–1647. 10.1021/np3003595. PubMed DOI
Cedrón J. C.; Oberti J. C.; Estévez-Braun A.; Ravelo A. G.; Del Arco-Aguilar M.; López M. Pancratium canariense as an Important Source of Amaryllidaceae Alkaloids. J. Nat. Prod. 2009, 72, 112–116. 10.1021/np800459d. PubMed DOI
Zhan G.; Gao B.; Zhou J.; Liu T.; Zheng G.; Jin Z.; Yao G. Structurally Diverse Alkaloids with Nine Frameworks from Zephyranthes candida and their Acetylcholinesterase Inhibitory and Anti-inflammatory Activities. Phytochemistry 2023, 207, 11356410.1016/j.phytochem.2022.113564. PubMed DOI
Shitara N.; Hirasawa Y.; Hasumi S.; Sasaki T.; Matsumoto M.; Wong C. P.; Kaneda T.; Asakawa Y.; Morita H. Four New Amaryllidaceae Alkaloids from Zephyranthes candida. J. Nat. Med. 2014, 68, 610–614. 10.1007/s11418-014-0819-y. PubMed DOI
World Flora Online Home Page. https://www.worldfloraonline.org/ (accessed 9 July 2024).
Via J.; Arriortua M. I.; Ochando L. E.; Reventós M. M.; Amigó J. M.; Bastida J. Structure of Eugenine, an Alkaloid from Narcissus eugeniae. Acta Crystallogr. C 1989, 45, 2020–2022. 10.1107/S0108270189007973. DOI
Meijer T. M.; Schmid H. Uber die Konstitution des Eugenins. Helv. Chim. Acta 1948, 31, 1603–1607. 10.1002/hlca.19480310620. PubMed DOI
Le N. T. H.; De Jonghe S.; Erven K.; Neyts J.; Pannecouque C.; Vermeyen T.; Herrebout W. A.; Pieters L.; Tuenter E. Comprehensive study of alkaloids from Scadoxus ultiflorus by HPLC-PDA-SPE-NMR and evaluation of their anti-SARS-CoV-2 activity. Phytochem. Lett. 2023, 57, 156–162. 10.1016/j.phytol.2023.08.015. DOI
Boit H. G.; Ehmke H. Amaryllidaceen Alkaloide. 10. Die Alkaloide Einiger Gartensorten von Narcissus pseudonarcissus und N-incomparabilis. Chem. Ber./Recl. 1956, 89, 163–167. 10.1002/cber.19560890128. DOI
Fales H. M.; Giuffrida L. D.; Wildman W. C. Alkaloids of the Amaryllidaceae. 8. The Structures of Narcissamine, Pseudolycorine and Methylpseudolycorine. J. Am. Chem. Soc. 1956, 78, 4145–4150. 10.1021/ja01597a078. DOI
Kametani T.; Yamaki K.; Terui T. Studies on Syntheses of Heterocyclic Compounds. 507. Synthesis of (±)-N-norgalanthamine. J. Heterocycl. Chem. 1973, 10, 35–37. 10.1002/jhet.5570100108. DOI
Kihara M.; Koike T.; Imakura Y.; Kida K.; Shingu T.; Kobayashi S. Alkaloidal Constituents of Hymenocallis rotata Herb. (Amaryllidaceae). Chem. Pharm. Bull. 1987, 35, 1070–1075. 10.1248/cpb.35.1070. DOI
Wang H.; Wang Y-H.; Zhao F-W.; Huang Q-Q.; Xu J-J.; Ma L-J.; Long C-L. Benzylphenethylamine Alkaloids from the Bulbs and Flowers of Lycoris radiata. Chin. Herb. Med. 2011, 3, 60–63. 10.3969/j.issn.1674-6384.2011.01.012. DOI
Li L.; Yang Q.; Wang Y.; Jia Y. Catalytic Asymmetric Total Synthesis of (−)-Galanthamine and (−)-Lycoramine. Angew. Chem., Int. Ed. 2015, 54, 6255–6259. 10.1002/anie.201411338. PubMed DOI
Philipova I.; Stavrakov G.; Dimitrov V.; Vassilev N. Galantamine Derivatives: Synthesis, NMR Study, DFT Calculations and Application in Asymmetric Catalysis. J. Mol. Struct. 2020, 1219, 12856810.1016/j.molstruc.2020.128568. DOI
Chaichompoo W.; Rojsitthisak P.; Pabuprapap W.; Siriwattanasathien Y.; Yotmanee P.; Suksamrarn A. Amaryllidaceae Alkaloids from the Bulbs of Crinum latifolium L. and Their Cholinesterase Inhibitory Activities. Phytochemistry 2024, 217, 11392910.1016/j.phytochem.2023.113929. PubMed DOI
Kohelová E.; Maříková J.; Korábečný J.; Hulcová D.; Kučera T.; Jun D.; Chlebek J.; Jenčo J.; Šafratová M.; Hrabinová M.; et al. Alkaloids of (Amaryllidaceae) and their Implication to Alzheimer’s Disease: Isolation, Structural Elucidation and Biological Activity. Bioorg. Chem. 2021, 107, 10456710.1016/j.bioorg.2020.104567. PubMed DOI
Prakash J.; Vedanayaki S. In-vitro Cytotoxicity Studies of Methanolic Bulb Extract of Zephyranthes citrina on Cervical Cancer (Hela), Breast Cancer (MCF-7) and Oral Cancer (SCC-9). J. Pharm. Sci. Res. 2019, 11, 2353–2356.
Havelek R.; Muthná D.; Tomšík P.; Královec K.; Seifrtová M.; Cahlíková L.; Hostalkova A.; Šafratová M.; Perwein M.; Čermaková E.; Řezáčová M. Anticancer Potential of Amaryllidaceae Alkaloids Evaluated by Screening with a Panel of Human Cells, Real-time Cellular Analysis and Ehrlich Tumor-bearing Mice. Chem. Biol. Interact. 2017, 275, 121–132. 10.1016/j.cbi.2017.07.018. PubMed DOI
Indrayanto G.; Putra G. S.; Suhud F. Validation of In-Vitro Bioassay Methods: Application in Herbal Drug Research. Profiles of Drug Subst. Excipients Rel. Methodol. 2021, 46, 273–307. 10.1016/bs.podrm.2020.07.005. PubMed DOI
Luo Z.; Wang F.; Zhang J.; Li X.; Zhang M.; Hao X.; Xue Y.; Li Y.; Horgen F. D.; Yao G.; Zhang Y. Cytotoxic Alkaloids from the Whole Plants of Zephyranthes candida. J. Nat. Prod. 2012, 75, 2113–2120. 10.1021/np3005425. PubMed DOI PMC
Breiterová K.; Koutová D.; Maříková J.; Havelek R.; Kuneš J.; Majorošová M.; Opletal L.; Hošt’álková A.; Jenčo J.; Řezáčová M.; Cahlíková L. Amaryllidaceae alkaloids of different structural types from Narcissus L. cv. Professor Einstein and their cytotoxic activity. Plants (Basel) 2020, 9, 137.10.3390/plants9020137. PubMed DOI PMC
Katoch D.; Kumar D.; Padwad Y. S.; Singh B.; Sharma U. Pseudolycorine N-oxide, a New N-oxide from Narcissus tazetta. Nat. Prod. Res. 2020, 34, 2051–2058. 10.1080/14786419.2019.1574785. PubMed DOI
Nair J. J.; van Staden J. Cytotoxic Agents in the Minor Alkaloid Groups of the Amaryllidaceae. Planta Med. 2021, 87, 916–936. 10.1055/a-1380-1888. PubMed DOI
Luchetti G.; Johnston R.; Mathieu V.; Lefranc F.; Hayden K.; Andolfi A.; Lamoral-Theys D.; Reisenauer M. R.; Champion C.; Pelly S. C.; et al. Bulbispermine: a Crinine-type Amaryllidaceae Alkaloid Exhibiting Cytostatic Activity Toward Apoptosis-resistant Glioma Cells. Chemmedchem 2012, 7, 815–822. 10.1002/cmdc.201100608. PubMed DOI PMC
Van Goietsenoven G.; Andolfi A.; Lallemand B.; Cimmino A.; Lamoral-Theys D.; Gras T.; Abou-Donia A.; Dubois J.; Lefranc F.; Mathieu V.; et al. Amaryllidaceae Alkaloids Belonging to Different Structural Subgroups Display Activity against Apoptosis-resistant Cancer Cells. J. Nat. Prod. 2010, 73, 1223–1227. 10.1021/np9008255. PubMed DOI
Evidente A.; Kireev A. S.; Jenkins A. R.; Romero A. E.; Steelant W. F. A.; Van Slambrouck S.; Kornienko A. Biological Evaluation of Structurally Diverse Amaryllidaceae Alkaloids and their Synthetic Derivatives: Discovery of Novel Leads for Anticancer Drug Design. Planta Med. 2009, 75, 501–507. 10.1055/s-0029-1185340. PubMed DOI PMC
Alarcon M.; Cea G.; Weigert G. Clastogenic effect of hippeastidine (HIPP) (1,2,3,4,4a,6 hexahydro-10,hydroxy-3,8,9,trimethoxy-5,10b, ethanophenanthridine). Bull. Environ. Contam. Toxicol. 1986, 37 (4), 508–512. 10.1007/BF01607796. PubMed DOI
McNulty J.; Nair J. J.; Codina C.; Bastida J.; Pandey S.; Gerasimoff J.; Griffin C. Selective Apoptosis-inducing Activity of Crinum-type Amaryllidaceae alkaloids. Phytochemistry 2007, 68, 1068–1074. 10.1016/j.phytochem.2007.01.006. PubMed DOI
Kim Y. H.; Park E. J.; Park M. H.; Badarch U.; Woldemichael G. M.; Beutler J. A. Crinamine from Crinum asiaticum var. japonicum Inhibits Hypoxia Inducible Factor-1 Activity But Not Activity of Hypoxia Inducible Factor-2. Biol. Pharm. Bull. 2006, 29, 2140–2142. 10.1248/bpb.29.2140. PubMed DOI
Sun Q.; Shen Y.-H.; Tian J.-M.; Tang J.; Su J.; Liu R.-H.; Li H.-L.; Xu X.-K.; Zhang W.-D. Chemical Constituents of Crinum asiaticum L. var. sinicum Baker and their Cytotoxic Activities. Chem. Biodivers. 2009, 6, 1751–1757. 10.1002/cbdv.200800273. PubMed DOI
Jitsuno M.; Yokosuka A.; Sakagami H.; Mimaki Y. Chemical Constituents of the Bulbs of Habranthus brachyandrus and their Cytotoxic Activities. Chem. Pharm. Bull. (Tokyo) 2009, 57, 1153–1157. 10.1248/cpb.57.1153. PubMed DOI
Hrabinova M.; Pejchal J.; Hepnarova V.; Muckova L.; Junova L.; Opravil J.; Zdarova Karasova J.; Rozsypal T.; Dlabkova A.; Rehulkova H.; et al. A-series Agent A-234: Initial in vitro and in vivo Characterization. Arch. Toxicol. 2024, 98, 1135–1149. 10.1007/s00204-024-03689-3. PubMed DOI PMC