Time-in-range derived from self-measured blood glucose in people with type 2 diabetes advancing to iGlarLixi: A participant-level pooled analysis of three phase 3 LixiLan randomized controlled trials

. 2024 Nov ; 26 (11) : 5046-5055. [epub] 20240908

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39245809

Grantová podpora
Sanofi

AIM: To evaluate the efficacy of a fixed-ratio combination of insulin glargine 100 U/mL plus lixisenatide (iGlarLixi) in people with type 2 diabetes (T2D) using derived time-in-range (dTIR). METHODS: Participant-level data from LixiLan-L, LixiLan-O and LixiLan-G were pooled and dTIR (70-180 mg/dL), derived time-above-range (> 180 mg/dL) and derived time-below-range (dTBR; < 70 mg/dL) were calculated from participant seven-point self-monitored blood glucose profiles. RESULTS: This pooled analysis included data from 2420 participants receiving iGlarLixi (n = 1093), iGlar (n = 836), Lixi (n = 234) or a glucagon-like peptide-1 receptor agonist (GLP-1 RA) (n = 257). Numerically greater improvements in least square (LS) means dTIR were seen from baseline to end of treatment (EOT) with iGlarLixi (25.7%) versus iGlar (15.8%), Lixi (11.7%) or GLP-1 RA (16.2%). At EOT, the mean (standard deviation) dTBR was 0.71% ± 3.4%, 0.61% ± 3.2%, 0.08% ± 1.0% and 0.0% ± 0.0% for iGlarLixi, iGlar, Lixi and GLP-1 RA, respectively. In a subgroup analysis, participants aged younger than 65 years (n = 1690) and 65 years or older (n = 713) showed numerically greater improvements in LS means dTIR from baseline to EOT with iGlarLixi versus iGlar, Lixi or GLP-1 RA. CONCLUSIONS: iGlarLixi achieved improvements in dTIR, with low dTBR values, providing further evidence to inform clinical outcomes with the use of iGlarLixi.

Zobrazit více v PubMed

Taybani Z, Bótyik B, Katkó M, Gyimesi A, Várkonyi T. Simplifying complex insulin regimens while preserving good glycemic control in type 2 diabetes. Diabetes Ther. 2019;10(5):1869‐1878.

Diabetes Canada Clinical Practice Guidelines Expert Committee. Diabetes Canada 2018 clinical practice guidelines for the prevention and management of diabetes in Canada. Can J Diabetes. 2018;42(Suppl 1):S1‐S325.

ElSayed NA, Aleppo G, Aroda VR, et al. 9. Pharmacologic approaches to glycemic treatment: standards of care in diabetes—2023. Diabetes Care. 2022;46(Supplement_1):S140‐S157.

Davies MJ, Aroda VR, Collins BS, et al. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2022;65:1925‐1966.

Chinese Diabetes Society. Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition). Chin J Diabetes Mellitus. 2021;13:315‐409.

Watada H, Takami A, Spranger R, Amano A, Hashimoto Y, Niemoeller E. Efficacy and safety of 1:1 fixed‐ratio combination of insulin glargine and lixisenatide versus lixisenatide in Japanese patients with type 2 diabetes inadequately controlled on oral antidiabetic drugs: the LixiLan JP‐O1 randomized clinical trial. Diabetes Care. 2020;43:1249‐1257.

Terauchi Y, Nakama T, Spranger R, Amano A, Inoue T, Niemoeller E. Efficacy and safety of insulin glargine/lixisenatide fixed‐ratio combination (iGlarLixi 1:1) in Japanese patients with type 2 diabetes mellitus inadequately controlled on oral antidiabetic drugs: a randomized, 26‐week, open‐label, multicentre study: the LixiLan JP‐O2 randomized clinical trial. Diabetes Obes Metab. 2020;22(Suppl 4):14‐23.

Kaneto H, Takami A, Spranger R, Amano A, Watanabe D, Niemoeller E. Efficacy and safety of insulin glargine/lixisenatide fixed‐ratio combination (iGlarLixi) in Japanese patients with type 2 diabetes mellitus inadequately controlled on basal insulin and oral antidiabetic drugs: the LixiLan JP‐L randomized clinical trial. Diabetes Obes Metab. 2020;22(Suppl 4):3‐13.

Perreault L, Rodbard H, Valentine V, Johnson E. Optimizing fixed‐ratio combination therapy in type 2 diabetes. Adv Ther. 2019;36(2):265‐277.

Balena R, Hensley IE, Miller S, Barnett H. Combination therapy with GLP‐1 receptor agonists and basal insulin: a systematic review of the literature. Diabetes Obes Metab. 2013;15(6):485‐502.

Soliqua Prescribing Information 2019. https://products.sanofi.us/soliqua100-33/soliqua100-33.pdf

Aroda VR, Rosenstock J, Wysham C, et al. Efficacy and safety of LixiLan, a Titratable fixed‐ratio combination of insulin glargine plus Lixisenatide in type 2 diabetes inadequately controlled on basal insulin and metformin: the LixiLan‐L randomized trial. Diabetes Care. 2016;39(11):1972‐1980.

Rosenstock J, Aronson R, Grunberger G, et al. Benefits of LixiLan, a titratable fixed‐ratio combination of insulin glargine plus lixisenatide, versus insulin glargine and lixisenatide monocomponents in type 2 diabetes inadequately controlled on oral agents: the LixiLan‐O randomized trial. Diabetes Care. 2016;39(11):2026‐2035.

Blonde L, Rosenstock J, Del Prato S, et al. Switching to iGlarLixi versus continuing daily or weekly GLP‐1 RA in type 2 diabetes inadequately controlled by GLP‐1 RA and oral antihyperglycemic therapy: the LixiLan‐G randomized clinical trial. Diabetes Care. 2019;42(11):2108‐2116.

Rosenstock J, Emral R, Sauque‐Reyna L, et al. Advancing therapy in suboptimally controlled basal insulin–treated type 2 diabetes: clinical outcomes with iGlarLixi versus premix BIAsp 30 in the SoliMix randomized controlled trial. Diabetes Care. 2021;44(10):2361‐2370.

Beck RW, Bergenstal RM, Riddlesworth TD, et al. Validation of time in range as an outcome measure for diabetes clinical trials. Diabetes Care. 2019;42(3):400‐405.

Advani A. Positioning time in range in diabetes management. Diabetologia. 2020;63(2):242‐252.

Wright EE Jr, Morgan K, Fu DK, Wilkins N, Guffey WJ. Time in range: how to measure it, how to report it, and its practical application in clinical decision‐making. Clin Diabetes. 2020;38(5):439‐448.

Cappon G, Vettoretti M, Sparacino G, Facchinetti A. Continuous glucose monitoring sensors for diabetes management: a review of technologies and applications. Diabetes Metab J. 2019;43(4):383‐397.

Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group et al. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N Engl J Med. 2008;359(14):1464‐1476.

Lind M, Polonsky W, Hirsch IB, et al. Continuous glucose monitoring vs conventional therapy for glycemic control in adults with type 1 diabetes treated with multiple daily insulin injections: the GOLD randomized clinical trial. JAMA. 2017;317(4):379‐387.

Bolinder J, Antuna R, Geelhoed‐Duijvestijn P, Kröger J, Weitgasser R. Novel glucose‐sensing technology and hypoglycaemia in type 1 diabetes: a multicentre, non‐masked, randomised controlled trial. Lancet. 2016;388(10057):2254‐2263.

Danne T, Nimri R, Battelino T, et al. International consensus on use of continuous glucose monitoring. Diabetes Care. 2017;40(12):1631‐1640.

Cutruzzolà A, Irace C, Parise M, et al. Time spent in target range assessed by self‐monitoring blood glucose associates with glycated hemoglobin in insulin treated patients with diabetes. Nutr Metab Cardiovasc Dis. 2020;30(10):1800‐1805.

Bergenstal RM, Hachmann‐Nielsen E, Kvist K, Peters AL, Tarp JM, Buse JB. Increased derived time in range is associated with reduced risk of major adverse cardiovascular events, severe hypoglycemia, and microvascular events in type 2 diabetes: a post hoc analysis of DEVOTE. Diabetes Technol Ther. 2023;25(6):378‐383.

Philis‐Tsimikas A, Aroda VR, De Block C, et al. Higher derived time in range with IDegLira versus insulin glargine U100 in people with type 2 diabetes. J Diabetes Sci Technol. 2024;18(3):653‐659.

Guo X, Yang W, Zhang J, et al. iGlarLixi provides a higher derived time‐in‐range versus insulin glargine 100 U/mL or lixisenatide in Asian Pacific people with type 2 diabetes: a post hoc analysis. Diabetes Obes Metab. 2023;25(7):2005‐2011.

Sheng X, Xiong GH, Yu PF, Liu JP. The correlation between time in range and diabetic microvascular complications utilizing Information management platform. Int J Endocrinol. 2020;2020:8879085.

American Diabetes Association Professional Practice Committee. 6. Glycemic goals and hypoglycemia: standards of care in diabetes—2024. Diabetes Care. 2024;47(Supplement_1):S111‐S125.

Mattishent K, Loke YK. Detection of asymptomatic drug‐induced hypoglycemia using continuous glucose monitoring in older people – systematic review. J Diabetes Complications. 2018;32(8):805‐812.

Battelino T, Danne T, Bergenstal RM, et al. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range. Diabetes Care. 2019;42(8):1593‐1603.

Battelino T, Alexander CM, Amiel SA, et al. Continuous glucose monitoring and metrics for clinical trials: an international consensus statement. Lancet Diabetes Endocrinol. 2023;11(1):42‐57.

World Medical Association. World medical association declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191‐2194.

International Conference of Harmonisation. ICH Harmonised Tripartite Guideline Good Clinical Practice. 1996.

Longo M, Bellastella G, Maiorino MI, Meier JJ, Esposito K, Giugliano D. Diabetes and aging: from treatment goals to pharmacologic therapy. Front Endocrinol (Lausanne). 2019;10:45.

Kis JT, Nagy G, Kovacs G. Effectiveness of IGlarLixi, a Fixed‐Ratio Combination of Insulin Glargine 100 U/mL and Lixisenatide, in People with Type 2 Diabetes. Diabetes Ther. 2021;12:2517‐2529.

Avari P, Uduku C, George D, Herrero P, Reddy M, Oliver N. Differences for percentage times in glycemic range between continuous glucose monitoring and capillary blood glucose monitoring in adults with type 1 diabetes: analysis of the REPLACE‐BG dataset. Diabetes Technol Ther. 2020;22(3):222‐227.

Ajjan RA, Heller SR, Everett CC, et al. Multicenter randomized trial of intermittently scanned continuous glucose monitoring versus self‐monitoring of blood glucose in individuals with type 2 diabetes and recent‐onset acute myocardial infarction: results of the LIBERATES trial. Diabetes Care. 2023;46(2):441‐449.

Battelino T, Danne T, Edelman SV, et al. Continuous glucose monitoring‐based time‐in‐range using insulin glargine 300 units/ml versus insulin degludec 100 units/ml in type 1 diabetes: the head‐to‐head randomized controlled InRange trial. Diabetes Obes Metab. 2023;25(2):545‐555.

Sun R, Duan Y, Zhang Y, et al. Time in range estimation in patients with type 2 diabetes is improved by incorporating fasting and postprandial glucose levels. Diabetes Ther. 2023;14(8):1373‐1386.

Liao B, Chen Y, Chigutsa F, de Oliveira CP. Fasting and postprandial plasma glucose contribution to glycated haemoglobin and time in range in people with type 2 diabetes on basal and bolus insulin therapy: results from a pooled analysis of insulin lispro clinical trials. Diabetes Obes Metab. 2021;23(7):1571‐1579.

Klupa T, Czupryniak L, Dzida G, et al. Expanding the role of continuous glucose monitoring in modern diabetes care beyond type 1 disease. Diabetes Ther. 2023;14:1241‐1266.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...