Clinical and genetic delineation of autosomal recessive and dominant ACTL6B-related developmental brain disorders
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 GM073791
NIGMS NIH HHS - United States
T32 GM007526
NIGMS NIH HHS - United States
R35 NS105078
NINDS NIH HHS - United States
K08 HG008986
NHGRI NIH HHS - United States
Wellcome Trust - United Kingdom
U01 HG011758
NHGRI NIH HHS - United States
PubMed
39275948
PubMed Central
PMC12042808
DOI
10.1016/j.gim.2024.101251
PII: S1098-3600(24)00185-0
Knihovny.cz E-zdroje
- Klíčová slova
- ACTL6B, Autism, BAFopathies, Epileptic-dyskinetic encephalopathy, Ribosomopathies,
- MeSH
- dítě MeSH
- dominantní geny MeSH
- fenotyp MeSH
- geny recesivní MeSH
- jaderné proteiny * genetika MeSH
- kojenec MeSH
- lidé MeSH
- mentální retardace genetika patologie MeSH
- mladiství MeSH
- mozek patologie MeSH
- mutace MeSH
- nemoci mozku * genetika patologie MeSH
- neurovývojové poruchy * genetika MeSH
- předškolní dítě MeSH
- vývojové poruchy u dětí * genetika patologie MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- jaderné proteiny * MeSH
PURPOSE: This study aims to comprehensively delineate the phenotypic spectrum of ACTL6B-related disorders, previously associated with both autosomal recessive and autosomal dominant neurodevelopmental disorders. Molecularly, the role of the nucleolar protein ACTL6B in contributing to the disease has remained unclear. METHODS: We identified 105 affected individuals, including 39 previously reported cases, and systematically analyzed detailed clinical and genetic data for all individuals. Additionally, we conducted knockdown experiments in neuronal cells to investigate the role of ACTL6B in ribosome biogenesis. RESULTS: Biallelic variants in ACTL6B are associated with severe-to-profound global developmental delay/intellectual disability, infantile intractable seizures, absent speech, autistic features, dystonia, and increased lethality. De novo monoallelic variants result in moderate-to-severe global developmental delay/intellectual disability, absent speech, and autistic features, whereas seizures and dystonia were less frequently observed. Dysmorphic facial features and brain abnormalities, including hypoplastic corpus callosum, and parenchymal volume loss/atrophy, are common findings in both groups. We reveal that in the nucleolus, ACTL6B plays a crucial role in ribosome biogenesis, particularly in pre-rRNA processing. CONCLUSION: This study provides a comprehensive characterization of the clinical spectrum of both autosomal recessive and dominant forms of ACTL6B-associated disorders. It offers a comparative analysis of their respective phenotypes provides a plausible molecular explanation and suggests their inclusion within the expanding category of "ribosomopathies."
Aix Marseille Univ APHM department of Pediatrics Neurology Timone children Hospital Marseille France
Al Quds University Jerusalem Palestine
Centre Mohamed 6 for Research and Innovation Benguerir Morocco
Clinical Genetics Center for Children Hassenfeld Children's Hospital New York University New York NY
Clinical Genetics service Northampton General Hospital Northampton United Kingdom
Clinical Research Centre Sunway Medical Centre Malaysia
Department of Clinical Genetics Erasmus MC Rotterdam The Netherlands
Department of Genetics Southern California Permanente Medical Group Fontana CA
Department of Human Genetics The University of Chicago Illinois
Department of Medical Genetics Samsun University Faculty of Medicine Samsun Turkey
Department of Molecular and Human Genetics Baylor College of Medicine Houston TX
Department of Neuropediatric University Hospital of Lyon Lyon France
Department of Paediatric and Child Health Aga Khan University Hospital Karachi Pakistan
Department of Paediatric Neurology Children's Hospital and Institute of Child Health Multan Pakistan
Department of Paediatrics and Genetics Universidade Federal de Paraiba Joao Pessoa Paraiba Brazil
Department of Pediatric Neurology Indira Gandhi Institute of Child Health Bengaluru India
Department of Pediatric Neurology Neo Clinic Children's Hospital Jaipur India
Department of Pediatrics Boston Children's Hospital Harvard Medical School Boston MA
Department of Pediatrics Faculty of Medicine Sohag University Sohag Egypt
Department of Pediatrics Fayoum University Hospitals Fayoum Egypt
Department of Pediatrics Vanderbilt Kennedy Center Vanderbilt University Medical Center Nashville TN
Department of Physiology Perelman School of Medicine University of Pennsylvania Philadelphia PA
Division of Genetics Arnold Palmer Hospital for Children Orlando Health Orlando FL
Division of Medical Genetics 3billion Inc Seoul South Korea
Faculty of Medical Sciences Mohammed 6 Polytechnic University of Benguerir Ben Guerir Morocco
Genetic Center Akron Children's Hospital Akron OH
Genomic Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
Great Ormond Street Hospital for Children NHS Foundation Trust London United Kingdom
Institute of Human Genetics University of Leipzig Medical Center Leipzig Germany
Laboratório Mendelics Department of Genetic São Paulo Brazil
Mendelics Genomic Analysis São Paulo Brazil
Molecular Genetics Laboratory Istishari Arab Hospital Ramallah Palestine
Neurology Unit Department of Pediatrics Faculty of Medicine Alexandria University Egypt
NIHR Biomedical Research Centre Centre for Human Genetics University of Oxford Oxford United Kingdom
Oxford Genetics Laboratories Oxford University Hospitals NHS Foundation Trust Oxford United Kingdom
Paediatrics Wah Medical College NUMS Wah Cantonment Punjab Pakistan
Pardis Pathobiology and Genetics Laboratory Mashhad Iran
PRCS hospital Hebron Palestine
Research Centre for Medical Genetics Moscow Russia
RNA Molecular Biology Fonds de la Recherche Scientifique Biopark campus Gosselies Belgium
Service de Génétique Clinique CHU Lille Lille France
Sulaiman Al Habib Hospital Olaya Medical Complex Riyadh Saudi Arabia
The Community Health Clinic Shipshewana IN
University of Chicago Medicine University of Chicago Chicago IL
West Midlands Clinical Genetics Service Birmingham Women's Hospital Birmingham United Kingdom
Zobrazit více v PubMed
Olave I, Wang W, Xue Y, Kuo A, Crabtree GR. Identification of a polymorphic, neuron-specific chromatin remodeling complex. Genes Dev. 2002;16(19):2509–2517. doi:10.1101/gad.992102 PubMed DOI PMC
Wu JI, Lessard J, Olave IA, et al. Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron. 2007;56(1):94–108. doi:10.1016/j.neuron.2007.08.021 PubMed DOI
Lessard J, Wu JI, Ranish JA, et al. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron. 2007;55(2):201–215. doi:10.1016/j.neuron.2007.06.019 PubMed DOI PMC
Sokpor G, Xie Y, Rosenbusch J, Tuoc T. Chromatin Remodeling BAF (SWI/SNF) Complexes in Neural Development and Disorders. Front Mol Neurosci. 2017;10:243. Published 2017 Aug 3. doi:10.3389/fnmol.2017.00243 PubMed DOI PMC
Bell S, Rousseau J, Peng H, et al. Mutations in ACTL6B Cause Neurodevelopmental Deficits and Epilepsy and Lead to Loss of Dendrites in Human Neurons. Am J Hum Genet. 2019;104(5):815–834. doi:10.1016/j.ajhg.2019.03.022 PubMed DOI PMC
Sekiguchi F, Tsurusaki Y, Okamoto N, et al. Genetic abnormalities in a large cohort of Coffin-Siris syndrome patients. J Hum Genet. 2019;64(12):1173–1186. Doi:10.1038/s10038-019-0667-4 PubMed DOI
Santen GW, Aten E, Vulto-van Silfhout AT, et al. Coffin-Siris syndrome and the BAF complex: genotype-phenotype study in 63 patients. Hum Mutat. 2013;34(11):1519–1528. doi:10.1002/humu.22394 PubMed DOI
Chen CA, Lattier J, Zhu W, et al. Retrospective analysis of a clinical exome sequencing cohort reveals the mutational spectrum and identifies candidate disease-associated loci for BAFopathies. Genet Med. 2022;24(2):364–373. doi:10.1016/j.gim.2021.09.017 PubMed DOI PMC
Cappuccio G, Sayou C, Tanno PL, et al. De novo SMARCA2 variants clustered outside the helicase domain cause a new recognizable syndrome with intellectual disability and blepharophimosis distinct from Nicolaides-Baraitser syndrome. Genet Med. 2020;22(11):1838–1850. Doi:10.1038/s41436-020-0898-y PubMed DOI
Abdul-Rahman O Nicolaides-Baraitser Syndrome. In: Adam MP, Mirzaa GM, Pagon RA, et al., eds. GeneReviews®. Seattle (WA): University of Washington, Seattle; October 15, 2015. PubMed
Peron A, Bradbury K, Viskochil DH, Dias C. BCL11A-Related Intellectual Disability. In: Adam MP, Mirzaa GM, Pagon RA, et al., eds. GeneReviews®. Seattle (WA): University of Washington, Seattle; September 26, 2019. PubMed
Lessel D, Gehbauer C, Bramswig NC, et al. BCL11B mutations in patients affected by a neurodevelopmental disorder with reduced type 2 innate lymphoid cells. Brain. 2018;141(8):2299–2311. doi:10.1093/brain/awy173 PubMed DOI PMC
Fichera M, Failla P, Saccuzzo L, et al. Mutations in ACTL6B, coding for a subunit of the neuron-specific chromatin remodeling complex nBAF, cause early onset severe developmental and epileptic encephalopathy with brain hypomyelination and cerebellar atrophy. Hum Genet. 2019;138(2):187–198. doi:10.1007/s00439-019-01972-3 PubMed DOI
Maddirevula S, Alzahrani F, Al-Owain M, et al. Autozygome and high throughput confirmation of disease genes candidacy. Genet Med. 2019;21(3):736–742. doi:10.1038/s41436-018-0138-x PubMed DOI PMC
Yüksel Z, Yazol M, Gümüş E. Pathogenic homozygous variations in ACTL6B cause DECAM syndrome: Developmental delay, Epileptic encephalopathy, Cerebral Atrophy, and abnormal Myelination. Am J Med Genet A. 2019;179(8):1603–1608. doi:10.1002/ajmg.a.61210 PubMed DOI
Wenderski W, Wang L, Krokhotin A, et al. Loss of the neural-specific BAF subunit ACTL6B relieves repression of early response genes and causes recessive autism. Proc Natl Acad Sci U S A. 2020;117(18):10055–10066. doi:10.1073/pnas.1908238117 PubMed DOI PMC
Han X, Deng J, Chen C, et al. Developmental and Epileptic Encephalopathy 76: Case Report and Review of Literature. Children (Basel). 2022;9(12):1967. Published 2022 Dec 15. doi:10.3390/children9121967 PubMed DOI PMC
Stenström L, Mahdessian D, Gnann C, et al. Mapping the nucleolar proteome reveals a spatiotemporal organization related to intrinsic protein disorder. Mol Syst Biol. 2020;16(8):e9469. doi:10.15252/msb.20209469 PubMed DOI PMC
Hetman M, Slomnicki LP. Ribosomal biogenesis as an emerging target of neurodevelopmental pathologies. J Neurochem. 2019;148(3):325–347. doi:10.1111/jnc.14576 PubMed DOI PMC
Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat. 2015;36(10):928–930. doi:10.1002/humu.22844 PubMed DOI PMC
Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589. doi:10.1038/s41586-021-03819-2 PubMed DOI PMC
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 4):486–501. doi:10.1107/S0907444910007493 PubMed DOI PMC
Hodgkinson A, Eyre-Walker A. Variation in the mutation rate across mammalian genomes. Nat Rev Genet. 2011;12(11):756–766. Published 2011 Oct 4. doi:10.1038/nrg3098 PubMed DOI
Farley-Barnes KI, Ogawa LM, Baserga SJ. Ribosomopathies: Old Concepts, New Controversies. Trends Genet. 2019;35(10):754–767. doi:10.1016/j.tig.2019.07.004 PubMed DOI PMC
Delhermite J, Tafforeau L, Sharma S, et al. Systematic mapping of rRNA 2’-O methylation during frog development and involvement of the methyltransferase Fibrillarin in eye and craniofacial development in Xenopus laevis. PLoS Genet. 2022;18(1):e1010012. Published 2022 Jan 18. doi:10.1371/journal.pgen.1010012 PubMed DOI PMC
Dixon J, Jones NC, Sandell LL, et al. Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proc Natl Acad Sci U S A. 2006;103(36):13403–13408. doi:10.1073/pnas.0603730103 PubMed DOI PMC
van Tran N, Ernst FGM, Hawley BR, et al. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res. 2019;47(15):7719–7733. doi:10.1093/nar/gkz619 PubMed DOI PMC
Richard EM, Polla DL, Assir MZ, et al. Bi-allelic Variants in METTL5 Cause Autosomal-Recessive Intellectual Disability and Microcephaly. Am J Hum Genet. 2019;105(4):869–878. doi:10.1016/j.ajhg.2019.09.007 PubMed DOI PMC
Leismann J, Spagnuolo M, Pradhan M, et al. The 18S ribosomal RNA m6 A methyltransferase Mettl5 is required for normal walking behavior in Drosophila. EMBO Rep. 2020;21(7):e49443. doi:10.15252/embr.201949443 PubMed DOI PMC
Wang L, Liang Y, Lin R, et al. Mettl5 mediated 18S rRNA N6-methyladenosine (m6A) modification controls stem cell fate determination and neural function. Genes Dis. 2020;9(1):268–274. Published 2020 Jul 17. doi:10.1016/j.gendis.2020.07.004 PubMed DOI PMC
Valencia AM, Sankar A, van der Sluijs PJ, et al. Landscape of mSWI/SNF chromatin remodeling complex perturbations in neurodevelopmental disorders. Nat Genet. 2023;55(8):1400–1412. doi:10.1038/s41588-023-01451-6 PubMed DOI PMC
Mullineux ST, Lafontaine DL. Mapping the cleavage sites on mammalian pre-rRNAs: where do we stand? Biochimie. 2012;94(7):1521–1532. doi:10.1016/j.biochi.2012.02.001 PubMed DOI