Dynamics and necessity of SIRT1 for maternal-zygotic transition

. 2024 Sep 16 ; 14 (1) : 21598. [epub] 20240916

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39285243

Grantová podpora
MED/DIAG Ministerstvo Školství, Mládeže a Tělovýchovy
SVV 260 651 Ministerstvo Školství, Mládeže a Tělovýchovy,Czechia
QL24010123 Technologická Agentura České Republiky
23-07532S Grantová Agentura České Republiky
DS-FR-22-0003 Agentúra na Podporu Výskumu a Vývoja
MZE-RO0723 Ministerstvo Zemědělství
00064165 Ministerstvo Zdravotnictví Ceské Republiky

Odkazy

PubMed 39285243
PubMed Central PMC11405870
DOI 10.1038/s41598-024-72595-6
PII: 10.1038/s41598-024-72595-6
Knihovny.cz E-zdroje

Dynamic changes in maternal‒zygotic transition (MZT) require complex regulation of zygote formation, maternal transcript decay, embryonic genome activation (EGA), and cell cycle progression. Although these changes are well described, some key regulatory factors are still elusive. Sirtuin-1 (SIRT1), an NAD+-dependent histone deacetylase, is a versatile driver of MZT via its epigenetic and nonepigenetic substrates. This study focused on the dynamics of SIRT1 in early embryos and its contribution to MZT. A conditional SIRT1-deficient knockout mouse model was used, accompanied by porcine and human embryos. Embryos across mammalian species showed the prominent localization of SIRT1 in the nucleus throughout early embryonic development. Accordingly, SIRT1 interacts with histone H4 on lysine K16 (H4K16) in both mouse and human blastocysts. While maternal SIRT1 is dispensable for MZT, at least one allele of embryonic Sirt1 is required for early embryonic development around the time of EGA. This role of SIRT1 is surprisingly mediated via a transcription-independent mode of action.

Zobrazit více v PubMed

Nevoral, J. & Sutovsky, P. Epigenome modification and ubiquitin-dependent proteolysis during pronuclear development of the mammalian zygote: Animal models to study pronuclear development. Animal Models Hum. Reprod.10.1002/9781118881286.ch17 (2017).10.1002/9781118881286.ch17 DOI

Sha, Q. Q. et al. Dynamics and clinical relevance of maternal mRNA clearance during the oocyte-to-embryo transition in humans. Nat. Commun.10.1038/s41467-020-18680-6 (2020). 10.1038/s41467-020-18680-6 PubMed DOI PMC

Abe, K. I. et al. Minor zygotic gene activation is essential for mouse preimplantation development. Proc. Natl. Acad. Sci. U. S. A.115, E6780–E6788 (2018). 10.1073/pnas.1804309115 PubMed DOI PMC

Schulz, K. N. & Harrison, M. M. Mechanisms regulating zygotic genome activation. Nat. Rev. Genet.20, 221–234 (2019). 10.1038/s41576-018-0087-x PubMed DOI PMC

Vastenhouw, N. L., Cao, W. X. & Lipshitz, H. D. The maternal-to-zygotic transition revisited. Development10.1242/dev.161471 (2019). 10.1242/dev.161471 PubMed DOI

Landry, J. et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl. Acad. Sci. U. S. A.97, 5807 (2000). 10.1073/pnas.110148297 PubMed DOI PMC

Rodgers, A. B., Morgan, C. P., Leu, N. A. & Bale, T. L. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc. Natl. Acad. Sci.112, 13699–13704 (2015). 10.1073/pnas.1508347112 PubMed DOI PMC

Li, J. et al. Metabolic control of histone acetylation for precise and timely regulation of minor ZGA in early mammalian embryos. Cell. Discov.10.1038/s41421-022-00440-z (2022). 10.1038/s41421-022-00440-z PubMed DOI PMC

Jęśko, H. & Strosznajder, R. P. Sirtuins and their interactions with transcription factors and poly(ADP-ribose) polymerases. Folia Neuropathol.3, 212–233 (2016).10.5114/fn.2016.62531 PubMed DOI

Ma, R. et al. Sirt1/Nrf2 pathway is involved in oocyte aging by regulating Cyclin B1. Aging10, 2991–3004 (2018). 10.18632/aging.101609 PubMed DOI PMC

Vaquero, A. et al. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes. Dev.20, 1256–1261 (2006). 10.1101/gad.1412706 PubMed DOI PMC

Adamkova, K. et al. SIRT1-dependent modulation of methylation and acetylation of histone H3 on lysine 9 (H3K9) in the zygotic pronuclei improves porcine embryo development. J. Anim. Sci. Biotechnol.10.1186/s40104-017-0214-0 (2017). 10.1186/s40104-017-0214-0 PubMed DOI PMC

Vaquero, A. et al. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol. Cell.16, 93–105 (2004). 10.1016/j.molcel.2004.08.031 PubMed DOI

Liu, Y., Zhao, L. W., Shen, J. L., Fan, H. Y. & Jin, Y. Maternal DCAF13 Regulates Chromatin Tightness to Contribute to Embryonic Development. Sci. Rep.10.1038/s41598-019-42179-w (2019). 10.1038/s41598-019-42179-w PubMed DOI PMC

Taylor, G. C. A., Eskeland, R., Hekimoglu-Balkan, B., Pradeepa, M. M. & Bickmore, W. A. H4K16 acetylation marks active genes and enhancers of embryonic stem cells, but does not alter chromatin compaction. Genome Res.23, 2053 (2013). 10.1101/gr.155028.113 PubMed DOI PMC

McBurney, M. W. et al. The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol. Cell. Biol.23, 38–54 (2003). 10.1128/MCB.23.1.38-54.2003 PubMed DOI PMC

Coussens, M., Maresh, J. G., Yanagimachi, R., Maeda, G. & Allsopp, R. Sirt1 deficiency attenuates spermatogenesis and germ cell function. PLoS One3, e1571 (2008). 10.1371/journal.pone.0001571 PubMed DOI PMC

Iljas, J. D., Wei, Z. & Homer, H. A. Sirt1 sustains female fertility by slowing age-related decline in oocyte quality required for post-fertilization embryo development. Aging Cell10.1111/acel.13204 (2020). 10.1111/acel.13204 PubMed DOI PMC

Mouchiroud, L. et al. The NAD(+)/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling. Cell154, 430 (2013). 10.1016/j.cell.2013.06.016 PubMed DOI PMC

Mahlknetch, U. & Voelter-Mahlknecht, S. Chromosomal characterization and localization of the NAD+-dependent histone deacetylase gene sirtuin 1 in the mouse. Int. J. Mol. Med.23, 245–252 (2009). PubMed

Lewandoski, M., Wassarman, K. M. & Martin, G. R. Zp3-cre, a transgenic mouse line for the activation or inactivation of loxP-flanked target genes specifically in the female germ line. Curr. Biol.7, 148–151 (1997). 10.1016/S0960-9822(06)00059-5 PubMed DOI

Nevoral, J. et al. Epigenetic and non-epigenetic mode of SIRT1 action during oocyte meiosis progression. J. Anim. Sci. Biotechnol.10, 67 (2019). 10.1186/s40104-019-0372-3 PubMed DOI PMC

Adamkova, K. et al. SIRT1-dependent modulation of methylation and acetylation of histone H3 on lysine 9 (H3K9) in the zygotic pronuclei improves porcine embryo development. J. Anim. Sci. Biotechnol.8, 83 (2017). 10.1186/s40104-017-0214-0 PubMed DOI PMC

Iniesta-Cuerda, M., Havránková, J., Řimnáčová, H., García-Álvarez, O. & Nevoral, J. Male SIRT1 insufficiency leads to sperm with decreased ability to hyperactivate and fertilize. Reprod. Domest. Anim.10.1111/rda.14172 (2022). 10.1111/rda.14172 PubMed DOI

Shao, G. B., Ding, H. M. & Gong, A. H. Role of histone methylation in zygotic genome activation in the preimplantation mouse embryo. In Vitro Cell. Dev. Biol. Anim.44, 115–120 (2008). 10.1007/s11626-008-9082-4 PubMed DOI

Matsuoka, S., Huang, M. & Elledge, S. J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science282, 1893–1897 (1998). 10.1126/science.282.5395.1893 PubMed DOI

Hori, Y. S., Kuno, A., Hosoda, R. & Horio, Y. Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress. PLoS One8, e73875 (2013). 10.1371/journal.pone.0073875 PubMed DOI PMC

Di Emidio, G. et al. SIRT1 signalling protects mouse oocytes against oxidative stress and is deregulated during aging. Hum. Reprod.29, 2006–2017 (2014). 10.1093/humrep/deu160 PubMed DOI

Zhang, W. et al. SIRT1 modulates cell cycle progression by regulating CHK2 acetylation-phosphorylation. Cell Death Differ.27, 482–496 (2020). 10.1038/s41418-019-0369-7 PubMed DOI PMC

Rasti, G. et al. SIRT1 regulates DNA damage signaling through the PP4 phosphatase complex. Nucleic Acids Res.10.1093/NAR/GKAD504 (2023). 10.1093/NAR/GKAD504 PubMed DOI PMC

Benc, M. et al. Enucleolation and nucleolus transfer in mammalian oocytes and zygotes. Int. J. Dev. Biol.63, 253–258 (2019). 10.1387/ijdb.190002mb PubMed DOI

Benc, M. et al. Improving the Quality of Oocytes with the Help of Nucleolotransfer Therapy. Pharmaceuticals (Basel)10.3390/ph14040328 (2021). 10.3390/ph14040328 PubMed DOI PMC

Wang, Q. & Latham, K. E. Requirement for protein synthesis during embryonic genome activation in mice. Mol. Reprod. Dev.47, 265–270 (1997). 10.1002/(SICI)1098-2795(199707)47:3<265::AID-MRD5>3.0.CO;2-J PubMed DOI

Zhang, H. et al. Stable maternal proteins underlie distinct transcriptome, translatome, and proteome reprogramming during mouse oocyte-to-embryo transition. Genome Biol.24, 166 (2023). 10.1186/s13059-023-02997-8 PubMed DOI PMC

Liu, X. et al. NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2. EMBO Rep.17, 349–366 (2016). 10.15252/embr.201540505 PubMed DOI PMC

Hu, Z. et al. N-acetyltransferase NAT10 controls cell fates via connecting mRNA cytidine acetylation to chromatin signaling. Sci. Adv.10.1126/sciadv.adh9871 (2024). 10.1126/sciadv.adh9871 PubMed DOI PMC

Drazic, A., Myklebust, L. M., Ree, R. & Arnesen, T. The world of protein acetylation. Biochim. Biophys. Acta Proteins Proteom.1864, 1372–1401 (2016).10.1016/j.bbapap.2016.06.007 PubMed DOI

Ooga, M. et al. Parental competition for the regulators of chromatin dynamics in mouse zygotes. Commun. Biol.10.1038/s42003-022-03623-2 (2022). 10.1038/s42003-022-03623-2 PubMed DOI PMC

Ou, X. et al. SIRT1 deficiency compromises mouse embryonic stem cell hematopoietic differentiation, and embryonic and adult hematopoiesis in the mouse. Blood117, 440–450 (2011). 10.1182/blood-2010-03-273011 PubMed DOI PMC

Samata, M. et al. Intergenerationally maintained histone H4 lysine 16 acetylation is instructive for future gene activation. Cell182, 127-144.e23 (2020). 10.1016/j.cell.2020.05.026 PubMed DOI

Yuan, Y. et al. Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation. Proc. Natl. Acad. Sci. U. S. A.114, E5796–E5804 (2017). 10.1073/pnas.1703998114 PubMed DOI PMC

Jílek, F., Hüttelová, R., Petr, J., Holubová, M. & Rozinek, J. Activation of pig oocytes using calcium ionophore: Effect of protein synthesis inhibitor cycloheximide. Anim. Reprod. Sci.63, 101–111 (2000). 10.1016/S0378-4320(00)00150-0 PubMed DOI

Yoshioka, K., Suzuki, C., Tanaka, A., Anas, I. M. K. & Iwamura, S. Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod.66, 112–119 (2002). 10.1095/biolreprod66.1.112 PubMed DOI

Jílek, F., Hüttelová, R., Petr, J., Holubová, M. & Rozinek, J. Activation of Pig Oocytes using Calcium Ionophore: Effect of the Protein Kinase Inhibitor 6-dimethyl aminopurine. Reprod. Domest. Anim.36, 139–145 (2001). PubMed

Blengini, C. S. et al. Aurora kinase A is essential for meiosis in mouse oocytes. PLoS Genet.244, 110 (2021). PubMed PMC

Knoblochova, L. et al. CHK1-CDC25A-CDK1 regulate cell cycle progression and protect genome integrity in early mouse embryos. EMBO Rep.10.15252/embr.202256530 (2023). 10.15252/embr.202256530 PubMed DOI PMC

Sarkans, U. et al. The BioStudies database-one stop shop for all data supporting a life sciences study. Nucleic Acids Res.10.1093/nar/gkx965 (2018). 10.1093/nar/gkx965 PubMed DOI PMC

Thouas, G. A., Korfiatis, N. A., French, A. J., Jones, G. M. & Trounson, A. O. Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts. Reprod. Biomed. Online3, 25–29 (2001). 10.1016/S1472-6483(10)61960-8 PubMed DOI

Malik, A. N., Czajka, A. & Cunningham, P. Accurate quantification of mouse mitochondrial DNA without co-amplification of nuclear mitochondrial insertion sequences. Mitochondrion29, 59–64 (2016). 10.1016/j.mito.2016.05.003 PubMed DOI

Tommaso, D. I. et al. Nextflow enables reproducible computational workflows. Nat. Biotechnol.35, 316–319 (2017). 10.1038/nbt.3820 PubMed DOI

Ewels, P. A. et al. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol.38, 276–278 (2020). 10.1038/s41587-020-0439-x PubMed DOI

Cunningham, F. et al. Ensembl 2022. Nucleic Acids Res.50, D988–D995 (2022). 10.1093/nar/gkab1049 PubMed DOI PMC

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics29, 15–21 (2013). 10.1093/bioinformatics/bts635 PubMed DOI PMC

Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods14, 417–419 (2017). 10.1038/nmeth.4197 PubMed DOI PMC

Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.10.1186/s13059-014-0550-8 (2014). 10.1186/s13059-014-0550-8 PubMed DOI PMC

Kolesnikov, N. et al. ArrayExpress update–simplifying data submissions. Nucleic Acids Res.43, D1113–D1116 (2015). 10.1093/nar/gku1057 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...