• This record comes from PubMed

Ion Chemistry in Dielectric Barrier Discharge Ionization: Recent Advances in Direct Gas Phase Analyses

. 2024 Nov 06 ; () : . [epub] 20241106

Status Publisher Language English Country United States Media print-electronic

Document type Journal Article, Review

Grant support
Financial support was provided by the Grantová Agentura Ceské Republiky (project number 24-12564S).

Dielectric barrier discharge ionization (DBDI) sources, employing low-temperature plasma, have emerged as sensitive and efficient ionization tools with various atmospheric pressure ionization processes. In this review, we summarize a historical overview of the development of DBDI, highlighting key principles of gas-phase ion chemistry and the mechanisms underlying the ionization processes within the DBDI source. These processes start with the formation of reagent ions or metastable atoms from the discharge gas, which depends on the nature of the gas (helium, nitrogen, air) and on the presence of water vapor or other compounds or dopants. The processes of ionizing the analyte molecules are summarized, including Penning ionization, electron transfer, proton transfer and ligand switching from secondary hydrated hydronium ions. Presently, the DBDI-MS methods face a challenge in the accurate quantification of gaseous analytes, limiting its broader application in biological, environmental, and medical realms where relative quantification using standards is inherently complex for gaseous matrices. Finally, we propose future avenues of research to enhance the analytical capabilities of DBDI-MS.

See more in PubMed

Abuhelal, S., K. Robinson, Z. Takats, and S. Siddiqui. 2023. “Real‐Time Breath Volatilomics Analysis by Soft Ionisation Mass Spectrometry.” European Respiratory Journal 62: PA2956. https://doi.org/10.1183/13993003.congress-2023.PA2956.

Ahmed, E., D. Xiao, M. C. Dumlao, et al. 2020. “Nanosecond Pulsed Dielectric Barrier Discharge Ionization Mass Spectrometry.” Analytical Chemistry 92: 4468–4474. https://doi.org/10.1021/acs.analchem.9b05491.

Almasian, M. R., C. Yang, Z. Xing, S. Zhang, and X. Zhang. 2010. “Development of a Graphite Low‐Temperature Plasma Source With Dual‐Mode In‐Source Fragmentation for Ambient Mass Spectrometry.” Rapid Communications in Mass Spectrometry 24: 742–748. https://doi.org/10.1002/rcm.4444.

Alves, L. L., G. Gousset, and C. M. Ferreira. 1992. “A Collisional‐Radiative Model for Microwave Discharges in Helium at Low and Intermediate Pressures.” Journal of Physics D: Applied Physics 25: 1713–1732. https://doi.org/10.1088/0022-3727/25/12/007.

Atkinson, R., D. L. Baulch, R. A. Cox, et al. 1997. “Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Supplement VI. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry.” Journal of Physical and Chemical Reference Data 26: 1329–1499. https://doi.org/10.1063/1.556010.

Ayala‐Cabrera, J. F., L. Montero, S. W. Meckelmann, F. Uteschil, and O. J. Schmitz. 2023. “Review on Atmospheric Pressure Ionization Sources for Gas Chromatography‐Mass Spectrometry. Part I: Current Ion Source Developments and Improvements in Ionization Strategies.” Analytica Chimica Acta 1238: 340353. https://doi.org/10.1016/j.aca.2022.340353.

Ayala‐Cabrera, J. F., J. Turkowski, F. Uteschil, and O. J. Schmitz. 2022. “Development of a Tube Plasma Ion Source for Gas Chromatography‐Mass Spectrometry Analysis and Comparison With Other Atmospheric Pressure Ionization Techniques.” Analytical Chemistry 94: 9595–9602. https://doi.org/10.1021/acs.analchem.2c00582.

Basham, V., T. Hancock, J. McKendrick, N. Tessarolo, and C. Wicking. 2022. “Detailed Chemical Analysis of a Fully Formulated Oil Using Dielectric Barrier Discharge Ionisation‐Mass Spectrometry.” Rapid Communications in Mass Spectrometry 36: e9320. https://doi.org/10.1002/rcm.9320.

Begley, A., and R. Zenobi. 2023. “Discriminating Alkylbenzene Isomers With Tandem Mass Spectrometry Using a Dielectric Barrier Discharge Ionization Source.” Journal of Mass Spectrometry 58: e4910. https://doi.org/10.1002/jms.4910.

Bloch, F., and N. E. Bradbury. 1935. “On the Mechanism of Unimolecular Electron Capture.” Physical Review 48: 689–695. https://doi.org/10.1103/PhysRev.48.689.

Blyth, R. G. C., I. Powis, and C. J. Danby. 1981. “Competing Pre‐Dissociations of O+2(B̃ 2∑−G).” Chemical Physics Letters 84: 272–275. https://doi.org/10.1016/0009-2614(81)80343-0.

Bohringer, H., W. Glebe, and F. Arnold. 1983. “Temperature Dependence of the Mobility and Association Rate Coefficient of He+ Ions in He From 30‐350K.” Journal of Physics B: Atomic and Molecular Physics 16: 2619–2626. https://doi.org/10.1088/0022-3700/16/14/022.

Bouza, M., E. Ahmed, P. Rocío‐Bautista, et al. 2023a. “Ion Heating in Advanced Dielectric Barrier Discharge Ion Sources for Ambient Mass Spectrometry.” Journal of the American Society of Mass Spectrometry. 34: 1145–1152. https://doi.org/10.1021/jasms.3c00087.

Bouza, M., J. Garcia‐Martinez, B. Gilbert‐Lopez, et al. 2023b. “Dielectric Barrier Discharge Ionization Mechanisms: Polycyclic Aromatic Hydrocarbons as a Case of Study.” Analytical Chemistry 95: 854–861. https://doi.org/10.1021/acs.analchem.2c03279.

Bouza, M., J. García‐Martínez, B. Gilbert‐López, et al. 2022. “Liquid Chromatography‐Dielectric Barrier Discharge Ionization Mass Spectrometry for the Analysis of Neutral Lipids of Archaeological Interest.” Journal of Separation Science 45: 3105–3114. https://doi.org/10.1002/jssc.202200402.

Brandt, S., F. D. Klute, A. Schütz, and J. Franzke. 2017. “Dielectric Barrier Discharges Applied for Soft Ionization and Their Mechanism.” Analytica Chimica Acta 951: 16–31. https://doi.org/10.1016/j.aca.2016.10.037.

Brandt, S., F. D. Klute, A. Schütz, et al. 2018. “Flexible Microtube Plasma (FμTP) as an Embedded Ionization Source for a Microchip Mass Spectrometer Interface.” Analytical Chemistry 90: 10111–10116. https://doi.org/10.1021/acs.analchem.8b01493.

Burkholder, J. B., S. P. Sander, J. P. D. Abbatt, et al. 2019. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies. Pasadena: NASA, Jet Propulsion Laboratory.

Chanin, L. M., A. V. Phelps, and M. A. Biondi. 1962. “Measurements of the Attachment of Low‐Energy Electrons to Oxygen Molecules.” Physical Review 128: 219–230. https://doi.org/10.1103/PhysRev.128.219.

Chen, L. C., Z. Yu, H. Furuya, et al. 2010a. “Development of Ambient Sampling Chemi/Chemical Ion Source With Dielectric Barrier Discharge.” Journal of Mass Spectrometry 45: 861–869. https://doi.org/10.1002/jms.1772.

Chen, L. C., Z. Yu, and K. Hiraoka. 2010b. “Vapor Phase Detection of Hydrogen Peroxide With Ambient Sampling Chemi/Chemical Ionization Mass Spectrometry.” Analytical Methods 2: 897–900. https://doi.org/10.1039/c0ay00170h.

cii‐tech.com. 2024. China Innovation Instrument Co. Ltd. http://www.cii-tech.com/.

Cody, R. B., J. A. Laramée, and H. D. Durst. 2005. “Versatile New Ion Source for the Analysis of Materials in Open Air Under Ambient Conditions.” Analytical Chemistry 77: 2297–2302. https://doi.org/10.1021/ac050162j.

Conway, C., M. Weber, A. Ferranti, J.‐C. Wolf, and C. Haisch. 2023. “Rapid Desorption and Analysis for Illicit Drugs and Chemical Profiling of Fingerprints by SICRIT Ion Source.” Drug Testing and Analysis 15: 1094–1101. https://doi.org/10.1002/dta.3623.

Deloche, R., P. Monchicourt, M. Cheret, and F. Lambert. 1976. “High‐Pressure Helium Afterglow at Room Temperature.” Physical Review A 13: 1140–1176. https://doi.org/10.1103/PhysRevA.13.1140.

Dousty, F., and R. O'Brien. 2015. “The Use of Isoprene as a Novel Dopant in Negative Ion Atmospheric Pressure Photoionization Mass Spectrometry Coupled to High‐Performance Liquid Chromatography.” Rapid Communications in Mass Spectrometry 29: 1031–1038. https://doi.org/10.1002/rcm.7187.

Dryahina, K., M. Polasek, D. Smith, and P. Spanel. 2021a. “Sensitivity of Secondary Electrospray Ionization Mass Spectrometry to a Range of Volatile Organic Compounds: Ligand Switching Ion Chemistry and the Influence of Zspray (TM) Guiding Electric Fields.” Rapid Communications in Mass Spectrometry 35: e9187. https://doi.org/10.1002/rcm.9187.

Dryahina, K., S. Som, D. Smith, and P. Španěl. 2021b. “Reagent and Analyte Ion Hydrates in Secondary Electrospray Ionization Mass Spectrometry (SESI‐MS), Their Equilibrium Distributions and Dehydration in an Ion Transfer Capillary: Modelling and Experiments.” Rapid Communications in Mass Spectrometry 35: e9047. https://doi.org/10.1002/rcm.9047.

Dumlao, M., G. N. Khairallah, and W. A. Donald. 2017a. “Internal Energy Deposition in Dielectric Barrier Discharge Ionization Is Significantly Lower Than in Direct Analysis in Real‐Time Mass Spectrometry.” Australian Journal of Chemistry 70: 1219–1226. https://doi.org/10.1071/ch17440.

Dumlao, M. C., L. E. Jeffress, J. J. Gooding, and W. A. Donald. 2016. “Solid‐Phase Microextraction Low Temperature Plasma Mass Spectrometry for the Direct and Rapid Analysis of Chemical Warfare Simulants in Complex Mixtures.” Analyst 141: 3714–3721. https://doi.org/10.1039/C6AN00178E.

Dumlao, M. C., D. Xiao, D. M. Zhang, J. Fletcher, and W. A. Donald. 2017b. “Effects of Different Waveforms on the Performance of Active Capillary Dielectric Barrier Discharge Ionization Mass Spectrometry.” Journal of the American Society for Mass Spectrometry 28: 575–578. https://doi.org/10.1007/s13361-016-1535-5.

Dunkin, D. B., F. C. Fehsenfeld, A. L. Schmeltekopf, and E. E. Ferguson. 1971. “Three‐Body Association Reactions of NO+ With O2, N2, and CO2.” Journal of Chemical Physics 54: 3817–3822. https://doi.org/10.1063/1.1675432.

Dzidic, I., D. I. Carroll, R. N. Stillwell, and E. C. Horning. 1976. “Comparison of Positive Ions Formed in Nickel‐63 and Corona Discharge Ion Sources Using Nitrogen, Argon, Isobutane, Ammonia and Nitric Oxide as Reagents in Atmospheric Pressure Ionization Mass Spectrometry.” Analytical Chemistry 48: 1763–1768. https://doi.org/10.1021/ac50006a035.

Fehsenfeld, F. C., and E. E. Ferguson. 1969. “Origin of Water Cluster Ions in the D Region.” Journal of Geophysical Research 74: 2217–2222. https://doi.org/10.1029/JA074i009p02217.

Fehsenfeld, F. C., and E. E. Ferguson. 1974. “Laboratory Studies of Negative Ion Reactions With Atmospheric Trace Constituents.” Journal of Chemical Physics 61: 3181–3193. https://doi.org/10.1063/1.1682474.

Fehsenfeld, F. C., M. Mosesman, and E. E. Ferguson. 1971a. “Ion—Molecule Reactions in an O2+–H2O System.” Journal of Chemical Physics 55: 2115–2120. https://doi.org/10.1063/1.1676382.

Fehsenfeld, F. C., M. Mosesman, and E. E. Ferguson. 1971b. “Ion—Molecule Reactions in NO+–H2O System.” Journal of Chemical Physics 55: 2120–2125. https://doi.org/10.1063/1.1676383.

Franzke, J., and M. Miclea. 2006. “Sample Analysis With Miniaturized Plasmas.” Applied Spectroscopy 60: 80A–90A. https://doi.org/10.1366/000370206776342689.

Freysinger, W., F. A. Khan, P. B. Armentrout, P. Tosi, O. Dmitriev, and D. Bassi. 1994. “Charge‐Transfer Reaction of 14,15N+(3PJ)+N2(1Σ+g) From Thermal to 100 eV. Crossed‐Beam and Scattering‐Cell Guided‐Ion Beam Experiments.” Journal of Chemical Physics 101: 3688–3695. https://doi.org/10.1063/1.467553.

Frost, D. C., and C. A. McDowell. 1958. “The Ionization and Dissociation of Oxygen by Electron Impact1.” Journal of the American Chemical Society 80: 6183–6187. https://doi.org/10.1021/ja01556a009.

Funke, S. K. I., V. A. Brückel, M. Weber, et al. 2021. “Plug‐and‐Play Laser Ablation‐Mass Spectrometry for Molecular Imaging by Means of Dielectric Barrier Discharge Ionization.” Analytica Chimica Acta 1177: 338770. https://doi.org/10.1016/j.aca.2021.338770.

Gelner, A. D., G. A. Pang, M. Weber, et al. 2022. “Gaseous Emissions of a Heavy‐Duty Engine Fueled With Polyoxymethylene Dimethyl Ethers (OME) in Transient Cold‐Start Operation and Methods for After‐Treatment System Heating.” Environmental Science: Advances 1: 470–482. https://doi.org/10.1039/D2VA00080F.

Gilbert‐López, B., J. F. García‐Reyes, C. Meyer, et al. 2012. “Simultaneous Testing of Multiclass Organic Contaminants in Food and Environment by Liquid Chromatography/Dielectric Barrier Discharge Ionization‐Mass Spectrometry.” Analyst 137: 5403–5410. https://doi.org/10.1039/C2AN35705D.

Gilbert‐López, B., M. Schilling, N. Ahlmann, et al. 2013. “Ambient Diode Laser Desorption Dielectric Barrier Discharge Ionization Mass Spectrometry of Nonvolatile Chemicals.” Analytical Chemistry 85: 3174–3182. https://doi.org/10.1021/ac303452w.

Golubovskii, Y. B., V. A. Maiorov, J. Behnke, and J. F. Behnke. 2003. “Modelling of the Homogeneous Barrier Discharge in Helium at Atmospheric Pressure.” Journal of Physics D: Applied Physics 36: 39–49. https://doi.org/10.1088/0022-3727/36/1/306.

Good, A., D. A. Durden, and P. Kebarle. 1970a. “Ion–Molecule Reactions in Pure Nitrogen and Nitrogen Containing Traces of Water at Total Pressures 0.5–4 Torr. Kinetics of Clustering Reactions Forming H+(H2O)n.” Journal of Chemical Physics 52: 212–221. https://doi.org/10.1063/1.1672667.

Good, A., D. A. Durden, and P. Kebarle. 1970b. “Mechanism and Rate Constants of Ion–Molecule Reactions Leading to Formation of H+(H2O)n in Moist Oxygen and Air.” J. Chem. Phys. 52: 222–229. https://doi.org/10.1063/1.1672668.

Gravendeel, B., and F. J. Hoog. 1987. “Clustered Negative Ions in Atmospheric Negative Corona Discharges in the Trichel Regime.” Journal of Physics B: Atomic and Molecular Physics 20: 6337–6361. https://doi.org/10.1088/0022-3700/20/23/025.

Gross, J. H. 2014. “Direct Analysis in Real Time—A Critical Review on DART‐MS.” Analytical and Bioanalytical Chemistry 406: 63–80. https://doi.org/10.1007/s00216-013-7316-0.

Guo, C., F. Tang, J. Chen, X. Wang, S. Zhang, and X. Zhang. 2015a. “Development of Dielectric‐Barrier‐Discharge Ionization.” Analytical and Bioanalytical Chemistry 407: 2345–2364. https://doi.org/10.1007/s00216-014-8281-y.

Guo, C. A., F. Tang, J. Chen, X. H. Wang, S. C. Zhang, and X. R. Zhang. 2015b. “Development of Dielectric‐Barrier‐Discharge Ionization.” Analytical and Bioanalytical Chemistry 407: 2345–2364. https://doi.org/10.1007/s00216-014-8281-y.

Gyr, L., J.‐C. Wolf, J. Franzke, and R. Zenobi. 2018. “Mechanistic Understanding Leads to Increased Ionization Efficiency and Selectivity in Dielectric Barrier Discharge Ionization Mass Spectrometry: A Case Study with Perfluorinated Compounds.” Analytical Chemistry 90: 2725–2731. https://doi.org/10.1021/acs.analchem.7b04711.

Harper, J. D., N. A. Charipar, C. C. Mulligan, X. Zhang, R. G. Cooks, and Z. Ouyang. 2008. “Low‐Temperature Plasma Probe for Ambient Desorption Ionization.” Analytical Chemistry 80: 9097–9104. https://doi.org/10.1021/ac801641a.

Harrison, A. G. 1992. Chemical Ionization Mass Spectrometry. New York: Routledge. https://doi.org/10.1201/9781315139128.

Hayen, H., A. Michels, and J. Franzke. 2009. “Dielectric Barrier Discharge Ionization for Liquid Chromatography/Mass Spectrometry.” Analytical Chemistry 81: 10239–10245. https://doi.org/10.1021/ac902176k.

He, J., W. Wang, H. Zhang, et al. 2021. “Nebulization Dielectric Barrier Discharge Ionization Mass Spectrometry: Rapid and Sensitive Analysis of Acenaphthene.” Talanta 222: 121681. https://doi.org/10.1016/j.talanta.2020.121681.

Heffernan, D., M. Pilz, M. Klein, et al. 2023. “Screening of Volatile Organic Compounds (VOCS) From Liquid Fungal Cultures Using Ambient Mass Spectrometry.” Analytical and Bioanalytical Chemistry 415: 4615–4627. https://doi.org/10.1007/s00216-023-04769-6.

Herron, J. T. 1999. “Evaluated Chemical Kinetics Data for Reactions of N(2D), N(2P), and N2(A 3Σu+) in the Gas Phase.” Journal of Physical and Chemical Reference Data 28: 1453–1483. https://doi.org/10.1063/1.556043.

Herron, J. T., and D. S. Green. 2001. “Chemical Kinetics Database and Predictive Schemes for Nonthermal Humid Air Plasma Chemistry. Part II. Neutral Species Reactions.” Plasma Chemistry and Plasma Processing 21: 459–481. https://doi.org/10.1023/A:1011082611822.

Hiraoka, K., S. Ninomiya, L. C. Chen, et al. 2011. “Development of Double Cylindrical Dielectric Barrier Discharge Ion Source.” Analyst 136: 1210–1215. https://doi.org/10.1039/c0an00621a.

Hiraoka, K., S. Rankin‐Turner, S. Ninomiya, H. Shimada, K. Kinoshita, and S. Yamabe. 2021. “Corona Discharge and Field Electron Emission in Ambient Air Using a Sharp Metal Needle: Formation and Reactivity of CO3•− and O2•−.” Mass Spectrometry (Tokyo, Japan) 10: A0100. https://doi.org/10.5702/massspectrometry.A0100.

Hodges, R. V., R. N. Varney, and J. F. Riley. 1985. “Probability of Electrical Breakdown: Evidence for a Transition Between the Townsend and Streamer Breakdown Mechanisms.” Physical Review A 31: 2610–2620. https://doi.org/10.1103/physreva.31.2610.

de Hoffmann, E., and V. Stroobant. 2007. Mass Spectrometry: Principles and Applications (3rd ed.). Chichester: John Wiley & Sons Ltd.

Hogg, A. M., and P. Kebarle. 1965. “Mass‐Spectrometric Study of Ions at Near‐Atmospheric Pressure. II. Ammonium Ions Produced by the Alpha Radiolysis of Ammonia and Their Solvation in the Gas Phase by Ammonia and Water Molecules.” Journal of Chemical Physics 43: 449–456. https://doi.org/10.1063/1.1696762.

Hornbeck, J. A., and J. P. Molnar. 1951. “Mass Spectrometric Studies of Molecular Ions in the Noble Gases.” Physical Review 84: 621–625. https://doi.org/10.1103/PhysRev.84.621.

Huba, A. K., M. F. Mirabelli, and R. Zenobi. 2018. “High‐Throughput Screening of PAHs and Polar Trace Contaminants in Water Matrices By Direct Solid‐Phase Microextraction Coupled to a Dielectric Barrier Discharge Ionization Source.” Analytica Chimica Acta 1030: 125–132. https://doi.org/10.1016/j.aca.2018.05.050.

Huba, A. K., M. F. Mirabelli, and R. Zenobi. 2019. “Understanding and Optimizing the Ionization of Polycyclic Aromatic Hydrocarbons in Dielectric Barrier Discharge Sources.” Analytical Chemistry 91: 10694–10701. https://doi.org/10.1021/acs.analchem.9b02044.

Itikawa, Y., M. Hayashi, A. Ichimura, et al. 1986. “Cross Sections for Collisions of Electrons and Photons With Nitrogen Molecules.” Journal of Physical and Chemical Reference Data 15: 985–1010. https://doi.org/10.1063/1.555762.

Itikawa, Y., A. Ichimura, K. Onda, et al. 1989. “Cross Sections for Collisions of Electrons and Photons With Oxygen Molecules.” Journal of Physical and Chemical Reference Data 18: 23–42. https://doi.org/10.1063/1.555841.

Jaffke, T., M. Meinke, R. Hashemi, L. G. Christophorou, and E. Illenberger. 1992. “Dissociative Electron Attachment to Singlet Oxygen.” Chemical Physics Letters 193: 62–68. https://doi.org/10.1016/0009-2614(92)85683-2.

Kambara, H., Y. Mitsui, and I. Kanomata. 1979. “Identification of Clusters Produced in an Atmospheric Pressure Ionization Process by a Collisional Dissociation Method.” Analytical Chemistry 51: 1447–1452. https://doi.org/10.1021/ac50045a022.

Kebarle, P., and A. M. Hogg. 1965a. “Heats of Hydration and Solvation by Mass Spectrometry.” The Journal of Chemical Physics 42: 798–799. https://doi.org/10.1063/1.1696016.

Kebarle, P., and A. M. Hogg. 1965b. “Mass‐Spectrometric Study of Ions at Near Atmospheric Pressures. I. The Ionic Polymerization of Ethylene.” Journal of Chemical Physics 42: 668–674. https://doi.org/10.1063/1.1695987.

Kim, J., H. Lee, S.‐C. Huh, et al. 2023. “Competitive Formation of NO, NO2, and O3 in an Air‐Flowing Plasma Reactor: A Central Role of the Flow Rate.” Chemical Engineering Journal 468: 143636. https://doi.org/10.1016/j.cej.2023.143636.

Klute, F. D., S. Brandt, and J. Franzke. 2021. “Spatiotemporal Characterization of Different Dielectric Barrier Discharges Designed for Soft Ionization.” Spectrochimica Acta Part B: Atomic Spectroscopy 176: 106037. https://doi.org/10.1016/j.sab.2020.106037.

Klute, F. D., S. Brandt, P. Vogel, et al. 2017. “Systematic Comparison Between Half and Full Dielectric Barrier Discharges Based on the Low‐Temperature Plasma Probe (LTP) and Dielectric Barrier Discharge for Soft Ionization (DBDI) Configurations.” Analytical Chemistry 89: 9368–9374. https://doi.org/10.1021/acs.analchem.7b02174.

Knodel, A., D. Foest, S. Brandt, et al. 2020a. “Detection and Evaluation of Lipid Classes and Other Hydrophobic Compounds Using a Laser Desorption/Plasma Ionization Interface.” Analytical Chemistry 92: 15212–15220. https://doi.org/10.1021/acs.analchem.0c03839.

Knodel, A., U. Marggraf, N. Ahlmann, et al. 2020b. “Standardization of Sandwich‐Structured Cu–Glass Substrates Embedded in a Flexible Diode Laser–Plasma Interface for the Detection of Cholesterol.” Analytical Chemistry 92: 4663–4671. https://doi.org/10.1021/acs.analchem.0c00311.

Kunze, K., M. Miclea, J. Franzke, and K. Niemax. 2003. “The Dielectric Barrier Discharge as a Detector for Gas Chromatography.” Spectrochimica Acta Part B: Atomic Spectroscopy 58: 1435–1443. https://doi.org/10.1016/s0584-8547(03)00104-6.

Li, B., J. Kong, L. Yang, L. Zhang, Z. Zhang, and C. Li. 2020. “Direct Detection of Chemical Warfare Agent Simulants in Soil by Thermal Desorption‐Low Temperature Plasma‐Mass Spectrometry.” International Journal of Mass Spectrometry 451: 116320. https://doi.org/10.1016/j.ijms.2020.116320.

Li, D., Z. Li, B. Xu, et al. 2022. “Thermal Desorption Bridged the Gap Between Dielectric Barrier Discharge Ionization and Dried Plasma Spot Samples for Sensitive and Rapid Detection of Fentanyl Analogs in Mass Spectrometry.” Analyst 147: 4187–4196. https://doi.org/10.1039/D2AN00946C.

Li, X., W. Ma, H. Li, W. Ai, Y. Bai, and H. Liu. 2018. “Sampling and Analyte Enrichment Strategies for Ambient Mass Spectrometry.” Analytical and Bioanalytical Chemistry 410: 715–724. https://doi.org/10.1007/s00216-017-0658-2.

Liu, Q., J. Lan, R. Wu, A. Begley, W. Ge, and R. Zenobi. 2022. “Hybrid Ionization Source Combining Nanoelectrospray and Dielectric Barrier Discharge Ionization for the Simultaneous Detection of Polar and Nonpolar Compounds in Single Cells.” Analytical Chemistry 94: 2873–2881. https://doi.org/10.1021/acs.analchem.1c04759.

Lu, Q., X. Guan, X. You, Z. Xu, and R. Zenobi. 2021a. “High‐Spatial Resolution Atmospheric Pressure Mass Spectrometry Imaging Using Fiber Probe Laser Ablation‐Dielectric Barrier Discharge Ionization.” Analytical Chemistry 93: 14694–14700. https://doi.org/10.1021/acs.analchem.1c03055.

Lu, Q., Z. Xu, X. You, S. Ma, and R. Zenobi. 2021b. “Atmospheric Pressure Mass Spectrometry Imaging Using Laser Ablation, Followed by Dielectric Barrier Discharge Ionization.” Analytical Chemistry 93: 6232–6238. https://doi.org/10.1021/acs.analchem.1c00549.

Martens, T., A. Bogaerts, W. J. M. Brok, and J. J. A. M. van der Mullen. 2007. “Modeling Study on the Influence of the Pressure on a Dielectric Barrier Discharge Microplasma.” Journal of Analytical Atomic Spectrometry 22: 1033–1042. https://doi.org/10.1039/B704903J.

Martens, T., D. Mihailova, J. van Dijk, and A. Bogaerts. 2009. “Theoretical Characterization of an Atmospheric Pressure Glow Discharge Used for Analytical Spectrometry.” Analytical Chemistry 81: 9096–9108. https://doi.org/10.1021/ac9017742.

Martínez‐Jarquín, S., and R. Winkler. 2013. “Design of a Low‐Temperature Plasma (LTP) Probe With Adjustable Output Temperature and Variable Beam Diameter for the Direct Detection of Organic Molecules.” Rapid Communications in Mass Spectrometry 27: 629–634. https://doi.org/10.1002/rcm.6494.

Massaro, A., C. Zacometti, M. Bragolusi, J. Buček, R. Piro, and A. Tata. 2024. “Authentication of the Botanical Origin of Monofloral Honey by Dielectric Barrier Discharge Ionization High Resolution Mass Spectrometry (DBDI‐HRMS). Breaching the 6 S Barrier of Analysis Time.” Food Control 160: 110330. https://doi.org/10.1016/j.foodcont.2024.110330.

McDaniel, E., V. Cermak, A. Dalgarno, E. Ferguson, and L. Friedman. 1970. Ion‐Molecule Reactions. New York: John Wiley & Sons Inc.

McFarland, M., D. L. Albritton, F. C. Fehsenfeld, E. E. Ferguson, and A. L. Schmeltekopf. 1973. “Flow‐Drift Technique for Ion Mobility and Ion‐Molecule Reaction Rate Constant Measurements. III. Negative Ion Reactions of O− with CO, NO, H2, and D2.” Journal of Chemical Physics 59: 6629–6635. https://doi.org/10.1063/1.1680043.

Michels, A., S. Tombrink, W. Vautz, M. Miclea, and J. Franzke. 2007. “Spectroscopic Characterization of a Microplasma Used as Ionization Source for Ion Mobility Spectrometry.” Spectrochimica Acta Part B: Atomic Spectroscopy 62: 1208–1215. https://doi.org/10.1016/j.sab.2007.08.004.

Miclea, M., K. Kunze, G. Musa, J. Franzke, and K. Niemax. 2001. “The Dielectric Barrier Discharge – a Powerful Microchip Plasma for Diode Laser Spectrometry.” Spectrochimica Acta Part B: Atomic Spectroscopy 56: 37–43. https://doi.org/10.1016/s0584-8547(00)00286-x.

Mirabelli, M. F., E. Gionfriddo, J. Pawliszyn, and R. Zenobi. 2018. “A Quantitative Approach for Pesticide Analysis in Grape Juice by Direct Interfacing of a Matrix Compatible SPME Phase to Dielectric Barrier Discharge Ionization‐Mass Spectrometry.” Analyst 143: 891–899. https://doi.org/10.1039/C7AN01663H.

Mirabelli, M. F., E. Gionfriddo, J. Pawliszyn, and R. Zenobi. 2019. “Fast Screening of Illicit Drugs in Beverages and Biological Fluids by Direct Coupling of Thin Film Microextraction to Dielectric Barrier Discharge Ionization‐Mass Spectrometry.” Analyst 144: 2788–2796. https://doi.org/10.1039/C8AN02448K.

Mirabelli, M. F., J.‐C. Wolf, and R. Zenobi. 2016. “Direct Coupling of Solid‐Phase Microextraction With Mass Spectrometry: Sub‐pg/g Sensitivity Achieved Using a Dielectric Barrier Discharge Ionization Source.” Analytical Chemistry 88: 7252–7258. https://doi.org/10.1021/acs.analchem.6b01507.

Mirabelli, M. F., J. C. Wolf, and R. Zenobi. 2017. “Atmospheric Pressure Soft Ionization for Gas Chromatography With Dielectric Barrier Discharge Ionization‐Mass Spectrometry (GC‐DBDI‐MS).” Analyst 142: 1909–1915. https://doi.org/10.1039/c7an00245a.

Müller, S., T. Krähling, D. Veza, V. Horvatic, C. Vadla, and J. Franzke. 2013. “Operation Modes of the Helium Dielectric Barrier Discharge for Soft Ionization.” Spectrochimica Acta Part B: Atomic Spectroscopy 85: 104–111. https://doi.org/10.1016/j.sab.2013.04.005.

Na, N., Y. Xia, Z. Zhu, X. Zhang, and R. G. Cooks. 2009. “Birch Reduction of Benzene in a Low‐Temperature Plasma.” Angewandte Chemie International Edition 48: 2017–2019. https://doi.org/10.1002/anie.200805256.

Na, N., M. Zhao, S. Zhang, C. Yang, and X. Zhang. 2007. “Development of a Dielectric Barrier Discharge Ion Source for Ambient Mass Spectrometry.” Journal of the American Society for Mass Spectrometry 18: 1859–1862. https://doi.org/10.1016/j.jasms.2007.07.027.

Nag, P., and D. Nandi. 2018. “Study of Electron Beam Induced Ion‐Pair Dissociation Dynamics of O2 Using Velocity Slice Imaging Spectrometer.” European Physical Journal D 72: 25. https://doi.org/10.1140/epjd/e2017-80567-9.

Nandi, D., V. S. Prabhudesai, and E. Krishnakumar. 2006. “Velocity Map Imaging for Low‐Energy Electron–Molecule Collisions.” Radiation Physics and Chemistry 75: 2151–2158. https://doi.org/10.1016/j.radphyschem.2006.02.016.

Niu, G., A. Knodel, S. Burhenn, S. Brandt, and J. Franzke. 2021. “Review: Miniature Dielectric Barrier Discharge (DBD) in Analytical Atomic Spectrometry.” Analytica Chimica Acta 1147: 211–239. https://doi.org/10.1016/j.aca.2020.11.034.

Nudnova, M. M., L. Zhu, and R. Zenobi. 2012. “Active Capillary Plasma Source for Ambient Mass Spectrometry.” Rapid Communications in Mass Spectrometry 26: 1447–1452. https://doi.org/10.1002/rcm.6242.

Nørgaard, A. W., V. Kofoed‐Sørensen, B. Svensmark, P. Wolkoff, and P. A. Clausen. 2013. “Gas Chromatography Interfaced With Atmospheric Pressure Ionization‐Quadrupole Time‐of‐Flight‐Mass Spectrometry by Low‐Temperature Plasma Ionization.” Analytical Chemistry 85: 28–32. https://doi.org/10.1021/ac301859r.

Pack, J. L., and A. V. Phelps. 1966. “Electron Attachment and Detachment. I. Pure O2 at Low Energy.” Journal of Chemical Physics 44: 1870–1883. https://doi.org/10.1063/1.1726956.

Pape, A., and O. J. Schmitz. 2024. “Dielectric Barrier Discharge in Mass Spectrometry—An Overview Over Plasma Investigations and Ion Sources Applications.” TrAC Trends in Analytical Chemistry 170: 117420. https://doi.org/10.1016/j.trac.2023.117420.

Payzant, J. D., and P. Kebarle. 1972. “Kinetics of Reactions Leading to O2‐(H2O)n in Moist Oxygen.” Journal of Chemical Physics 56: 3482–3487. https://doi.org/10.1063/1.1677723.

Phelps, A. V., and S. C. Brown. 1952. “Positive Ions in the Afterglow of a Low‐Pressure Helium Discharge.” Physical Review 86: 102–105. https://doi.org/10.1103/PhysRev.86.102.

Plasmion. 2020. Fast and Direct Detection of Explosives Using SICRIT®‐MS. Application Note. Plasmion GmbH.

Plasmion.com. 2024. https://plasmion.com/.

Raeber, J., and C. Steuer. 2023. “Exploring New Dimensions: Single and Multi‐Block Analysis of Essential Oils Using DBDI‐MS and FT‐IR for Enhanced Authenticity Control.” Analytica Chimica Acta 1277: 341657. https://doi.org/10.1016/j.aca.2023.341657.

Rapp, D., and D. D. Briglia. 1965. “Total Cross Sections for Ionization and Attachment in Gases by Electron Impact. II. Negative‐Ion Formation.” Journal of Chemical Physics 43: 1480–1489. https://doi.org/10.1063/1.1696958.

Rapp, D., P. Englander‐Golden, and D. D. Briglia. 1965. “Cross Sections for Dissociative Ionization of Molecules by Electron Impact.” Journal of Chemical Physics 42: 4081–4085. https://doi.org/10.1063/1.1695897.

Rutherford, J. A., and B. R. Turner. 1967. “The Production of NO2− by Electron Transfer From O−, and O2−, O3− and OH− to NO2.” Journal of Geophysical Research 72: 3795–3800. https://doi.org/10.1029/JZ072i015p03795.

Sabo, M., J. Páleník, M. Kučera, et al. 2010. “Atmospheric Pressure Corona Discharge Ionisation and Ion Mobility Spectrometry/Mass Spectrometry Study of the Negative Corona Discharge in High Purity Oxygen and Oxygen/Nitrogen Mixtures.” International Journal of Mass Spectrometry 293: 23–27. https://doi.org/10.1016/j.ijms.2010.03.004.

Saha, S., L. C. Chen, M. K. Mandal, and K. Hiraoka. 2013. “Leidenfrost Phenomenon‐Assisted Thermal Desorption (LPTD) and Its Application to Open Ion Sources at Atmospheric Pressure Mass Spectrometry.” Journal of the American Society for Mass Spectrometry 24: 341–347. https://doi.org/10.1007/s13361-012-0564-y.

Schulz, G. J. 1962. “Cross Sections and Electron Affinity for O− Ions From O2, CO, and CO2 by Electron Impact.” Physical Review 128: 178–186. https://doi.org/10.1103/PhysRev.128.178.

Shahin, M. M. 1966. “Mass‐Spectrometric Studies of Corona Discharges in Air at Atmospheric Pressures.” Journal of Chemical Physics 45: 2600–2605. https://doi.org/10.1063/1.1727980.

Shahin, M. M. 1969. “Nature of Charge Carriers in Negative Coronas.” Applied Optics 8: 106–110. https://doi.org/10.1364/AO.8.S1.000106.

Siegel, M. W., and W. L. Fite. 1976. “Terminal Ions in Weak Atmospheric Pressure Plasmas. Applications of Atmospheric Pressure Ionization to Trace Impurity Analysis in Gases.” Journal of Physical Chemistry 80: 2871–2881. https://doi.org/10.1021/j100567a013.

Siemens, W. 1857. “Ueber die Elektrostatische Induction und die Verzögerung des Stroms in Flaschendrähten.” Annalen der Physik 178: 66–122. https://doi.org/10.1002/andp.18571780905.

Skalny, J. D., T. Mikoviny, S. Matejcik, and N. J. Mason. 2004. “An Analysis of Mass Spectrometric Study of Negative Ions Extracted From Negative Corona Discharge in Air.” International Journal of Mass Spectrometry 233: 317–324. https://doi.org/10.1016/j.ijms.2004.01.012.

Skalny, J. D., J. Orszagh, N. J. Mason, J. A. Rees, Y. Aranda‐Gonzalvo, and T. D. Whitmore. 2008. “Mass Spectrometric Study of Negative Ions Extracted From Point to Plane Negative Corona Discharge in Ambient Air at Atmospheric Pressure.” International Journal of Mass Spectrometry 272: 12–21. https://doi.org/10.1016/j.ijms.2007.12.012.

Smith, D., N. G. Adams, and T. M. Miller. 1978. “A Laboratory Study of the Reactions of N+, N2+, N3+, N4+, O+, O2+, and NO+ Ions With Several Molecules at 300 K.” Journal of Chemical Physics 69: 308–318. https://doi.org/10.1063/1.436354.

Smith, D., M. J. McEwan, and P. Španěl. 2020. “Understanding Gas Phase Ion Chemistry Is the Key to Reliable Selected Ion Flow Tube‐Mass Spectrometry Analyses.” Analytical Chemistry 92: 12750–12762. https://doi.org/10.1021/acs.analchem.0c03050.

Smith, D., and P. Spanel. 1995. “Ions in the Terrestrial Atmosphere and in Interstellar Clouds.” Mass Spectrometry Reviews 14: 255–278. https://doi.org/10.1002/mas.1280140403.

Som, S., J. Kubišta, K. Dryahina, and P. Španěl. 2021. “Parallel Secondary Electrospray Ionisation Mass Spectrometry and Selected Ion Flow Tube Mass Spectrometry Quantification of Trace Amounts of Volatile Ketones.” Rapid Communications in Mass Spectrometry 35: e8981. https://doi.org/10.1002/rcm.8981.

Speicher, L., H. Song, N. Ahlmann, et al. 2024. “Soft Ionization Mechanisms in Flexible Μ‐Tube Plasma—From FµTP to Closed Μ‐Tube Plasma.” Analytical and Bioanalytical Chemistry 416: 4919–4927. https://doi.org/10.1007/s00216-024-05420-8.

Spence, D., and G. J. Schulz. 1972. “Three‐Body Attachment in O2 Using Electron Beams.” Physical Review A 5: 724–732. https://doi.org/10.1103/PhysRevA.5.724.

Stephan, K., T. D. Märk, J. H. Futrell, and H. Helm. 1984. “Electron Impact Ionization of (N2)2: Appearance Energies of N3+ and N4+.” Journal of Chemical Physics 80: 3185–3188. https://doi.org/10.1063/1.447144.

Stephens, E. R., M. Dumlao, D. Xiao, D. Zhang, and W. A. Donald. 2015. “Benzylammonium Thermometer Ions: Internal Energies of Ions Formed by Low Temperature Plasma and Atmospheric Pressure Chemical Ionization.” Journal of the American Society for Mass Spectrometry 26: 2081–2084. https://doi.org/10.1007/s13361-015-1272-1.

Stevefelt, J., J. M. Pouvesle, and A. Bouchoule. 1982. “Reaction Kinetics of a High Pressure Helium Fast Discharge Afterglow.” Journal of Chemical Physics 76: 4006–4015. https://doi.org/10.1063/1.443521.

Sugiyama, M., S. Kumano, K. Nishimura, H. Hasegawa, and Y. Hashimoto. 2013. “Sensitive Low‐Pressure Dielectric Barrier Discharge Ion Source.” Rapid Communications in Mass Spectrometry 27: 1005–1010. https://doi.org/10.1002/rcm.6546.

Španěl, P., K. Dryahina, M. Omezzine Gnioua, and D. Smith. 2023. “Different Reactivities of H3O+(H2O)n With Unsaturated and Saturated Aldehydes: Ligand‐Switching Reactions Govern the Quantitative Analytical Sensitivity of Sesi‐Ms.” Rapid Communications in Mass Spectrometry 37: e9496. https://doi.org/10.1002/rcm.9496.

Španěl, P., and D. Smith. 2009. “Influence of Weakly Bound Adduct Ions on Breath Trace Gas Analysis by Selected Ion Flow Tube Mass Spectrometry (SIFT‐MS).” International Journal of Mass Spectrometry 280: 128–135. https://doi.org/10.1016/j.ijms.2008.07.021.

Thaler, K. M., L. Gilardi, M. Weber, et al. 2021. “HELIOS/SICRIT/mass Spectrometry for Analysis of Aerosols in Engine Exhaust.” Aerosol Science and Technology 55: 886–900. https://doi.org/10.1080/02786826.2021.1909699.

Tian, C., H. Song, N. Ahlmann, et al. 2024. “Soft Ionization Mechanisms in Flexible Μ‐Tube Plasma—Elucidation of He‐, Ar‐, Kr‐, and Xe‐FµTP.” Analytical and Bioanalytical Chemistry 416: 4907–4918. https://doi.org/10.1007/s00216-024-05419-1.

Tsonev, I., J. Boothroyd, S. Kolev, and A. Bogaerts. 2023. “Simulation of Glow and Arc Discharges in Nitrogen: Effects of the Cathode Emission Mechanisms.” Plasma Sources Science and Technology 32: 054002. https://doi.org/10.1088/1361-6595/acc96c.

Usmanov, D. T., S. Ninomiya, and K. Hiraoka. 2013. “Flash Desorption/Mass Spectrometry for the Analysis of Less‐ and Nonvolatile Samples Using a Linearly Driven Heated Metal Filament.” Journal of the American Society for Mass Spectrometry 24: 1727–1735. https://doi.org/10.1007/s13361-013-0711-0.

Vogel, P., C. Lazarou, O. Gazeli, S. Brandt, J. Franzke, and D. Moreno‐González. 2020. “Study of Controlled Atmosphere Flexible Microtube Plasma Soft Ionization Mass Spectrometry for Detection of Volatile Organic Compounds as Potential Biomarkers in Saliva for Cancer.” Analytical Chemistry 92: 9722–9729. https://doi.org/10.1021/acs.analchem.0c01063.

Vogel, P., U. Marggraf, S. Brandt, J. F. García‐Reyes, and J. Franzke. 2019. “Analyte‐Tailored Controlled Atmosphere Improves Dielectric Barrier Discharge Ionization Mass Spectrometry Performance.” Analytical Chemistry 91: 3733–3739. https://doi.org/10.1021/acs.analchem.9b00112.

Wang, C., W. Li, Y. Lv, et al. 2020. “Rapid Analysis of Perfluorinated Carboxylic Acids in Textiles by Dielectric Barrier Discharge Ionization‐Mass Spectrometry.” Microchemical Journal 155: 104773. https://doi.org/10.1016/j.microc.2020.104773.

Weber, M., J.‐C. Wolf, and C. Haisch. 2021. “Gas Chromatography–Atmospheric Pressure Inlet–Mass Spectrometer Utilizing Plasma‐Based Soft Ionization for the Analysis of Saturated, Aliphatic Hydrocarbons.” Journal of the American Society for Mass Spectrometry 32: 1707–1715. https://doi.org/10.1021/jasms.0c00476.

Weber, M., J. C. Wolf, and C. Haisch. 2023. “Effect of Dopants and Gas‐Phase Composition on Ionization Behavior and Efficiency in Dielectric Barrier Discharge Ionization.” Journal of the American Society for Mass Spectrometry 34: 538–549. https://doi.org/10.1021/jasms.2c00279.

Winters, H. F. 1966. “Ionic Adsorption and Dissociation Cross Section for Nitrogen.” Journal of Chemical Physics 44: 1472–1476. https://doi.org/10.1063/1.1726879.

Wolf, J.‐C., L. Gyr, M. F. Mirabelli, M. Schaer, P. Siegenthaler, and R. Zenobi. 2016. “A Radical‐Mediated Pathway for the Formation of [M+H]+ in Dielectric Barrier Discharge Ionization.” Journal of the American Society for Mass Spectrometry 27: 1468–1475. https://doi.org/10.1007/s13361-016-1420-2.

Wolf, J. C., M. Schaer, P. Siegenthaler, and R. Zenobi. 2015. “Direct Quantification of Chemical Warfare Agents and Related Compounds at Low ppt Levels: Comparing Active Capillary Dielectric Barrier Discharge Plasma Ionization and Secondary Electrospray Ionization Mass Spectrometry.” Analytical Chemistry 87: 723–729. https://doi.org/10.1021/ac5035874.

Xiao, X., X. Guan, Z. Xu, and Q. Lu. 2024. “In‐Situ Metabolic Profiling of Different Kinds of Rheum palmatum L. by Laser Desorption‐Dielectric Barrier Discharge Ionization Mass Spectrometry Imaging.” Metabolites 14: 131. https://doi.org/10.3390/metabo14030131.

Yue, H., F. He, Z. Zhao, and Y. Duan. 2023. “Plasma‐Based Ambient Mass Spectrometry: Recent Progress and Applications.” Mass Spectrometry Reviews 42: 95–130. https://doi.org/10.1002/mas.21712.

Zhang, Y., W. Ai, Y. Bai, et al. 2016. “An Interface for Online Coupling Capillary Electrophoresis to Dielectric Barrier Discharge Ionization Mass Spectrometry.” Analytical and Bioanalytical Chemistry 408: 8655–8661. https://doi.org/10.1007/s00216-016-9822-3.

Zhang, Z., M. Qie, L. Bai, et al. 2024. “Rapid Authenticity Assessment of PGI Hongyuan Yak Milk Based on SICRIT‐QTOF MS.” Food Chemistry 442: 138444. https://doi.org/10.1016/j.foodchem.2024.138444.

Zhao, P., and L. Wen. 2015. Patent: Ion Source and Ionization Method; CN105355535A.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...