HMGB-1 as a predictor of major bleeding requiring activation of a massive transfusion protocol in severe trauma

. 2025 Feb 07 ; 15 (1) : 4651. [epub] 20250207

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39920329

Grantová podpora
(FNOs/2019) Ministerstvo Zdravotnictví Ceské Republiky
(FNOs/2019) Ministerstvo Zdravotnictví Ceské Republiky
(FNOs/2019) Ministerstvo Zdravotnictví Ceské Republiky
(FNOs/2019) Ministerstvo Zdravotnictví Ceské Republiky
(FNOs/2019) Ministerstvo Zdravotnictví Ceské Republiky
(FNOs/2019) Ministerstvo Zdravotnictví Ceské Republiky
(FNOs/2019) Ministerstvo Zdravotnictví Ceské Republiky
(FNOs/2019) Ministerstvo Zdravotnictví Ceské Republiky
(FNOs/2019) Ministerstvo Zdravotnictví Ceské Republiky
(FNOs/2019) Ministerstvo Zdravotnictví Ceské Republiky

Odkazy

PubMed 39920329
PubMed Central PMC11806012
DOI 10.1038/s41598-025-89139-1
PII: 10.1038/s41598-025-89139-1
Knihovny.cz E-zdroje

Massive bleeding causes approximately 50% of deaths in patients with major trauma. Most patients die within 6 h of injury, which is preventable in at least 10% of cases. For these patients, early activation of the massive transfusion protocol (MTP) is a critical survival factor. With severe trauma, high-mobility group box 1 (HMGB-1, i.e., amphoterin) is released into the blood, and its levels correlate with the development of a systemic inflammatory response, traumatic coagulopathy, and fibrinolysis. Previous work has shown that higher levels of HMGB-1 are associated with a higher use of red blood cell transfusions. We conducted a retrospective analysis of previous prospective single-center study to assess the value of admission HMGB-1 levels in predicting activation of MTP in the emergency department. From July 11, 2019, to April 23, 2022, a total of 104 consecutive adult patients with severe trauma (injury severity score > 16) were enrolled. A blood sample was taken at admission, and HMGB-1 was measured. MTP activation in the emergency department was recorded in the study documentation. The total amount of blood products and fibrinogen administered to patients within 6 h of admission was monitored. Among those patients with massive bleeding requiring MTP activation, we found significantly higher levels of HMGB-1 compared to patients without MTP activation (median [interquartile range]: 84.3 µg/L [34.2-145.9] vs. 21.1 µg/L [15.7-30.4]; p < 0.001). HMGB-1 level showed good performance in predicting MTP activation, with an area under the receiver operating characteristic curve of 0.84 (95% CI 0.75-0.93) and a cut-off value of 30.55 µg/L. HMGB-1 levels correlated significantly with the number of red blood cell units (rs [95% CI] 0.46 [0.28-0.61]; p < 0.001), units of fresh frozen plasma (rs 0.46 [0.27-0.61]; p < 0.001), platelets (rs 0.48 [0.30-0.62]; p < 0.001), and fibrinogen (rs 0.48 [0.32-0.62]; p < 0.001) administered in the first 6 h after hospital admission. Admission HMGB-1 levels reliably predict severe bleeding requiring MTP activation in the emergency department and correlate with the amount of blood products and fibrinogen administered during the first 6 h of hemorrhagic shock resuscitation.Trial registration: NCT03986736. Registration date: June 4, 2019.

Zobrazit více v PubMed

Callcut, R. A. et al. The why and how our trauma patients die: a prospective multicenter western trauma association study. J. Trauma. Acute Care Surg.86 (5), 864–870. 10.1097/ta.0000000000002205 (2019). PubMed PMC

Kushimoto, S., Kudo, D. & Kawazoe, Y. Acute traumatic coagulopathy and trauma-induced coagulopathy: an overview. J. Intensive Care. 5 (1). 10.1186/s40560-016-0196-6 (2017). PubMed PMC

Fröhlich, M. et al. Trauma-induced coagulopathy upon emergency room arrival: still a significant problem despite increased awareness and management? Eur. J. Trauma Emerg. Surg.45 (1), 115–124. 10.1007/s00068-017-0884-5 (2017). PubMed

Lamb, C. M., MacGoey, P., Navarro, A. P. & Brooks, A. J. Damage control surgery in the era of damage control resuscitation. Br. J. Anaesth.113 (2), 242–249. 10.1093/bja/aeu233 (2014). PubMed

Rossaint, R. et al. The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit. Care. 20 (1). 10.1186/s13054-016-1265-x (2016). PubMed PMC

Patil, V. & Shetmahajan, M. Massive transfusion and massive transfusion protocol. Indian J. Anaesth.58 (5), 590. 10.4103/0019-5049.144662 (2014). PubMed PMC

Yucel, N. et al. Trauma associated severe hemorrhage (tash)-score: probability of mass transfusion as surrogate for life threatening hemorrhage after multiple trauma. J. Trauma Injury Infect. Crit. Care. 60 (6), 1228–1237. 10.1097/01.ta.0000220386.84012.bf (2006). PubMed

Nunez, T. C. et al. Early prediction of massive transfusion in trauma: simple as ABC (assessment of blood consumption)? J. Trauma: Injury Infect. Crit. Care. 66 (2), 346–352. 10.1097/ta.0b013e3181961c35 (2009). PubMed

Ruchholtz, S. et al. The emergency room transfusion score (ETS): prediction of blood transfusion requirement in initial resuscitation after severe trauma. Transfus. Med.16 (1), 49–56. 10.1111/j.1365-3148.2006.00647.x (2006). PubMed

Maegele, M. et al. Predictive models and algorithms for the need of transfusion including massive transfusion in severely injured patients. Transfus. Med. Hemother.. 39 (2), 85–97. 10.1159/000337243 (2012). PubMed PMC

Lin, V. S. et al. Definitions of massive transfusion in adults with critical bleeding: a systematic review. Crit. Care. 27 (1). 10.1186/s13054-023-04537-z (2023). PubMed PMC

Mitra, B. et al. The definition of massive transfusion in trauma. Eur. J. Emerg. Med.18 (3), 137–142. 10.1097/mej.0b013e328342310e (2011). PubMed

Pantalone, D. et al. The role of damps in burns and hemorrhagic shock immune response: pathophysiology and clinical issues. Review. Int. J. Mol. Sci.22 (13), 7020. 10.3390/ijms22137020 (2021). PubMed PMC

Cohen, M. J. et al. Early release of high mobility Group Box nuclear protein 1 after severe trauma in humans: role of injury severity and tissue hypoperfusion. Crit. Care. 13 (6). 10.1186/cc8152 (2009). PubMed PMC

Relja, B., Mörs, K. & Marzi, I. Danger signals in trauma. Eur. J. Trauma Emerg. Surg.44 (3), 301–316. 10.1007/s00068-018-0962-3 (2018). PubMed PMC

Hu, P. et al. A new definition for massive transfusion in the modern era of whole blood resuscitation. Transfusion61 (S1). 10.1111/trf.16453 (2021). PubMed

Frelich, M., Vojtěch, V., Jor, O. & Burša, F. Predicting acute kidney injury in trauma patients: biomarkers as early indicators. Med. Sci. Monit.. 30. 10.12659/msm.942271 (2023). PubMed PMC

von Elm, E. et al. The strengthening the reporting of observational studies in epidemiology (strobe) statement: guidelines for reporting observational studies. Lancet370 (9596), 1453–1457. 10.1016/s0140-6736(07)61602-x (2007). PubMed

Lehner, J. et al. Methodological and preanalytical evaluation of an HMGB1 immunoassay. Anticancer Res.32 (5), 2059–2062 (2012). PubMed

Baker, S. P., OʼNeill, B., Haddon, W. & Long, W. B. The injury severity score. J. Trauma Injury Infect. Crit. Care. 14 (3), 187–196. 10.1097/00005373-197403000-00001 (1974). PubMed

Peltan, I. D., Vande Vusse, L. K., Maier, R. V. & Watkins, T. R. An international normalized ratio-based definition of acute traumatic coagulopathy is associated with mortality, venous thromboembolism, and multiple organ failure after injury. Crit. Care Med.43 (7), 1429–1438. 10.1097/ccm.0000000000000981 (2015). PubMed PMC

Moore, E. E. et al. Trauma-induced coagulopathy. Nat. Rev. Dis. Primers. 7 (1). 10.1038/s41572-021-00264-3 (2021). PubMed PMC

Ottestad, W. et al. Biphasic release of the Alarmin High Mobility Group Box 1 protein early after trauma predicts poor clinical outcome. Crit. Care Med.47 (8). 10.1097/ccm.0000000000003800 (2019). PubMed

Sloos, P. H. et al. Anti-high-mobility group box-1 treatment strategies improve trauma-induced coagulopathy in a mouse model of trauma and shock. Br. J. Anaesth.130 (6), 687–697. 10.1016/j.bja.2023.01.026 (2023). PubMed

Sloos, P. H. et al. Platelet dysfunction after trauma: from mechanisms to targeted treatment. Transfusion62 (S1). 10.1111/trf.16971 (2022). PubMed PMC

Vulliamy, P. et al. Alterations in platelet behavior after major trauma: adaptive or maladaptive? Platelets32 (3), 295–304. 10.1080/09537104.2020.1718633 (2020). PubMed PMC

Vogel, S. et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J. Clin. Investig.125 (12), 4638–4654. 10.1172/jci81660 (2015). PubMed PMC

Fink, M. P. Bench-to-bedside review: high-mobility group box 1 and critical illness. Crit. Care. 11 (5), 229. 10.1186/cc6088 (2007). PubMed PMC

Wen, K., Lin, Z., Tan, H. & Han, M. Correlations between coagulation abnormalities and inflammatory markers in trauma-induced coagulopathy. Front. Physiol.1510.3389/fphys.2024.1474707 (2024). PubMed PMC

Spinella, P. C. & Cap, A. P. Prehospital hemostatic resuscitation to achieve zero preventable deaths after traumatic injury. Curr. Opin. Hematol.24 (6), 529–535. 10.1097/moh.0000000000000386 (2017). PubMed

Petrosoniak, A., Li, W. & Hicks, C. Just the facts: massive hemorrhage protocol. Can. J. Emerg. Med.25 (2), 115–117. 10.1007/s43678-022-00423-9 (2022). PubMed

Wong, H. S., Curry, N. S., Davenport, R. A., Yu, L. & Stanworth, S. J. A Delphi Study to establish consensus on a definition of major bleeding in adult trauma. Transfus.60(12), 3028–3038. 10.1111/trf.16055 (2020). PubMed

Štros, M., Polanská, E. V., Hlaváčová, T. & Skládal, P. Progress in assays of HMGB1 levels in human plasma—the potential prognostic value in covid-19. Biomolecules12 (4), 544. 10.3390/biom12040544 (2022). PubMed PMC

Zobrazit více v PubMed

ClinicalTrials.gov
NCT03986736

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...