An Initial Genome Editing Toolset for Caldimonas thermodepolymerans, the First Model of Thermophilic Polyhydroxyalkanoates Producer

. 2025 Feb ; 18 (2) : e70103.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39980168

Grantová podpora
22-10845S Grantová Agentura České Republiky
MUNI/J/0003/2021 Masarykova Univerzita
MUNI/R/1266/2022 Masarykova Univerzita

The limited number of well-characterised model bacteria cannot address all the challenges in a circular bioeconomy. Therefore, there is a growing demand for new production strains with enhanced resistance to extreme conditions, versatile metabolic capabilities and the ability to utilise cost-effective renewable resources while efficiently generating attractive biobased products. Particular thermophilic microorganisms fulfil these requirements. Non-virulent Gram-negative Caldimonas thermodepolymerans DSM15344 is one such attractive thermophile that efficiently converts a spectrum of plant biomass sugars into high quantities of polyhydroxyalkanoates (PHA)-a fully biodegradable substitutes for synthetic plastics. However, to enhance its biotechnological potential, the bacterium needs to be 'domesticated'. In this study, we established effective homologous recombination and transposon-based genome editing systems for C. thermodepolymerans. By optimising the electroporation protocol and refining counterselection methods, we achieved significant improvements in genetic manipulation and constructed the AI01 chassis strain with improved transformation efficiency and a ΔphaC mutant that will be used to study the importance of PHA synthesis in Caldimonas. The advances described herein highlight the need for tailored approaches when working with thermophilic bacteria and provide a springboard for further genetic and metabolic engineering of C. thermodepolymerans, which can be considered the first model of thermophilic PHA producer.

Zobrazit více v PubMed

Antoine, R. , and Locht C.. 1992. “Isolation and Molecular Characterization of a Novel Broad‐Host‐Range Plasmid From Bordetella bronchiseptica With Sequence Similarities to Plasmids From Gram‐Positive Organisms.” Molecular Microbiology 6: 1785–1799. PubMed

Arai, T. , Aikawa S., Sudesh K., Kondo T., and Kosugi A.. 2022. “Electrotransformation of Thermophilic Bacterium Caldimonas manganoxidans .” Journal of Microbiological Methods 192: 106375. PubMed

Averhoff, B. , and Friedrich A.. 2003. “Type IV Pili‐Related Natural Transformation Systems: DNA Transport in Mesophilic and Thermophilic Bacteria.” Archives of Microbiology 180: 385–393. PubMed

Bertran‐Llorens, S. , Zhou W., Palazzolo M. A., et al. 2024. “ALACEN: A Holistic Herbaceous Biomass Fractionation Process Attaining a Xylose‐Rich Stream for Direct Microbial Conversion to Bioplastics.” ACS Sustainable Chemistry & Engineering 12: 7724–7738. PubMed PMC

Bosma, E. F. , van der Oost J., de Vos W. M., and van Kranenburg R.. 2013. “Sustainable Production of Bio‐Based Chemicals by Extremophiles.” Current Biotechnology 2: 360–379.

Boyer, H. W. , and Roulland‐dussoix D.. 1969. “A Complementation Analysis of the Restriction and Modification of DNA in Escherichia coli .” Journal of Molecular Biology 41: 459–472. PubMed

Brewster, J. D. 2003. “A Simple Micro‐Growth Assay for Enumerating Bacteria.” Journal of Microbiological Methods 53: 77–86. PubMed

Bujdoš, D. , Popelářová B., Volke D. C., Nikel P. I., Sonnenschein N., and Dvořák P.. 2023. “Engineering of Pseudomonas putida for Accelerated Co‐Utilization of Glucose and Cellobiose Yields Aerobic Overproduction of Pyruvate Explained by an Upgraded Metabolic Model.” Metabolic Engineering 75: 29–46. PubMed

Carr, J. F. , Danziger M. E., Huang A. L., Dahlberg A. E., and Gregory S. T.. 2015. “Engineering the Genome of Thermus thermophilus Using a Counterselectable Marker.” Journal of Bacteriology 197: 1135–1144. PubMed PMC

Chen, G.‐Q. , and Jiang X.‐R.. 2018. “Next Generation Industrial Biotechnology Based on Extremophilic Bacteria.” Current Opinion in Biotechnology 50: 94–100. PubMed

Choi, S. Y. , Cho I. J., Lee Y., Kim Y.‐J., Kim K.‐J., and Lee S. Y.. 2020. “Microbial Polyhydroxyalkanoates and Nonnatural Polyesters.” Advanced Materials 32: 1907138. PubMed

Chung, D. , Cha M., Farkas J., and Westpheling J.. 2013. “Construction of a Stable Replicating Shuttle Vector for Caldicellulosiruptor Species: Use for Extending Genetic Methodologies to Other Members of This Genus.” PLoS One 8: e62881. PubMed PMC

Dietrich, K. , Dumont M.‐J., Del Rio L. F., and Orsat V.. 2019. “Sustainable PHA Production in Integrated Lignocellulose Biorefineries.” New Biotechnology 49: 161–168. PubMed

Dvořák, P. , Kováč J., and De Lorenzo V.. 2020. “Biotransformation of d‐Xylose to d‐Xylonate Coupled to Medium‐Chain‐Length Polyhydroxyalkanoate Production in Cellobiose‐Grown Pseudomonas putida EM42.” Microbial Biotechnology 13: 1273–1283. PubMed PMC

Elbanna, K. , Lütke‐Eversloh T., Van Trappen S., Mergaert J., Swings J., and Steinbüchel A.. 2003. “ Schlegelella thermodepolymerans gen. nov., sp. nov., a Novel Thermophilic Bacterium That Degrades poly(3‐Hydroxybutyrate‐Co‐3‐Mercaptopropionate).” International Journal of Systematic and Evolutionary Microbiology 53: 1165–1168. PubMed

Glenn, A. W. , Roberto F. F., and Ward T. E.. 1992. “Transformation of Acidiphilium by Electroporation and Conjugation.” Canadian Journal of Microbiology 38: 387–393. PubMed

Groom, J. , Chung D., Olson D. G., Lynd L. R., Guss A. M., and Westpheling J.. 2016. “Promiscuous Plasmid Replication in Thermophiles: Use of a Novel Hyperthermophilic Replicon for Genetic Manipulation of Clostridium thermocellum at Its Optimum Growth Temperature.” Metabolic Engineering Communications 3: 30–38. PubMed PMC

Higuchi, R. , Krummel B., and Saiki R.. 1988. “A General Method of In Vitro Preparation and Specific Mutagenesis of DNA Fragments: Study of Protein and DNA Interactions.” Nucleic Acids Research 16: 7351–7367. PubMed PMC

Hmelo, L. R. , Borlee B. R., Almblad H., et al. 2015. “Precision‐Engineering the Pseudomonas aeruginosa Genome with Two‐Step Allelic Exchange.” Nature Protocols 10: 1820–1841. PubMed PMC

Hon, J. , Borko S., Stourac J., et al. 2020. “EnzymeMiner: Automated Mining of Soluble Enzymes With Diverse Structures, Catalytic Properties and Stabilities.” Nucleic Acids Research 48: W104–W109. PubMed PMC

Hrabalová, V. , Opial T., Musilová J., Sedlář K., and Obruča S.. 2024. “Biotransformation of Ferulic Acid into Vanillyl Alcohol and Vanillic Acid Employing Thermophilic Bacterium Caldimonas thermodepolymerans .” Enzyme and Microbial Technology 179: 110475. PubMed

Hu, S. , Giacopazzi S., Modlin R., Karplus K., Bernick D. L., and Ottemann K. M.. 2023. “Altering Under‐Represented DNA Sequences Elevates Bacterial Transformation Efficiency.” MBio 14: e02105‐23. PubMed PMC

Ishikawa, M. , and Hori K.. 2024. “The Elimination of Two Restriction Enzyme Genes Allows for Electroporation‐Based Transformation and CRISPR‐Cas9‐Based Base Editing in the Non‐Competent Gram‐Negative Bacterium Acinetobacter sp. Tol 5.” Applied and Environmental Microbiology 90: e00400‐24. PubMed PMC

Johnson, C. W. , and Beckham G. T.. 2015. “Aromatic Catabolic Pathway Selection for Optimal Production of Pyruvate and Lactate From Lignin.” Metabolic Engineering 28: 240–247. PubMed

Kessler, B. , Herrero M., Timmis K. N., and De Lorenzo V.. 1994. “Genetic Evidence That the XylS Regulator of the Pseudomonas TOL Meta Operon Controls the pm Promoter Through Weak DNA‐Protein Interactions.” Journal of Bacteriology 176: 3171–3176. PubMed PMC

Kolek, J. , Sedlar K., Provaznik I., and Patakova P.. 2016. “Dam and Dcm Methylations Prevent Gene Transfer Into Clostridium pasteurianum NRRL B‐598: Development of Methods for Electrotransformation, Conjugation, and Sonoporation.” Biotechnology for Biofuels 9: 14. PubMed PMC

Kong, L. , Xiong Z., Xia Y., and Ai L.. 2021. “High‐Efficiency Transformation of Streptococcus thermophilus Using Electroporation.” Journal of the Science of Food and Agriculture 101: 6578–6585. PubMed

Kourilova, X. , Novackova I., Koller M., and Obruca S.. 2021. “Evaluation of Mesophilic Burkholderia sacchari, Thermophilic Schlegelella thermodepolymerans and Halophilic Halomonas halophila for Polyhydroxyalkanoates Production on Model Media Mimicking Lignocellulose Hydrolysates.” Bioresource Technology 325: 124704. PubMed

Kourilova, X. , Pernicova I., Sedlar K., et al. 2020. “Production of Polyhydroxyalkanoates (PHA) by a Thermophilic Strain of Schlegelella thermodepolymerans From Xylose Rich Substrates.” Bioresource Technology 315: 123885. PubMed

Kudryavtseva, A. A. , Cséfalvay E., Gnuchikh E. Y., et al. 2023. “Broadness and Specificity: ArdB, ArdA, and Ocr Against Various Restriction‐Modification Systems.” Frontiers in Microbiology 14: 1133144. PubMed PMC

Liang, J. , Roberts A., Kranenburg R., Bolhuis A., and Leak D. J.. 2022. “Relaxed Control of Sugar Utilization in Parageobacillus thermoglucosidasius DSM 2542.” Microbiology Research 256: 126957. PubMed

Lim, X. 2021. “Microplastics Are Everywhere—But Are They Harmful?” Nature 593: 22–25. PubMed

Lin, L. , and Xu J.. 2013. “Dissecting and Engineering Metabolic and Regulatory Networks of Thermophilic Bacteria for Biofuel Production.” Biotechnology Advances 31: 827–837. PubMed

Ma, H. , Zhao Y., Huang W., et al. 2020. “Rational Flux‐Tuning of Halomonas bluephagenesis for Co‐Production of Bioplastic PHB and Ectoine.” Nature Communications 11: 3313. PubMed PMC

Manoil, C. , and Beckwith J.. 1985. “TnphoA: A Transposon Probe for Protein Export Signals.” Proceedings of the National Academy of Sciences of the United States of America 82: 8129–8133. PubMed PMC

Martínez‐García, E. , Aparicio T., De Lorenzo V., and Nikel P. I.. 2014. “New Transposon Tools Tailored for Metabolic Engineering of Gram‐Negative Microbial Cell Factories.” Frontiers in Bioengineering and Biotechnology 2: 46. PubMed PMC

Martínez‐García, E. , Fraile S., Algar E., et al. 2023. “SEVA 4.0: An Update of the Standard European Vector Architecture Database for Advanced Analysis and Programming of Bacterial Phenotypes.” Nucleic Acids Research 51: D1558–D1567. PubMed PMC

Meereboer, K. W. , Misra M., and Mohanty A. K.. 2020. “Review of Recent Advances in the Biodegradability of Polyhydroxyalkanoate (PHA) Bioplastics and Their Composites.” Green Chemistry 22: 5519–5558.

Millgaard, M. , Bidart G. N., Pogrebnyakov I., Nielsen A. T., and Welner D. H.. 2023. “An Improved Integrative GFP‐Based Vector for Genetic Engineering of Parageobacillus thermoglucosidasius Facilitates the Identification of a Key Sporulation Regulator.” AMB Express 13: 44. PubMed PMC

Musilova, J. , Kourilova X., Bezdicek M., et al. 2021. “First Complete Genome of the Thermophilic Polyhydroxyalkanoates‐Producing Bacterium Schlegelella thermodepolymerans DSM 15344.” Genome Biology and Evolution 13: evab007. PubMed PMC

Musilova, J. , Kourilova X., Hermankova K., et al. 2023. “Genomic and Phenotypic Comparison of Polyhydroxyalkanoates Producing Strains of Genus Caldimonas/Schlegelella .” Computational and Structural Biotechnology Journal 21: 5372–5381. PubMed PMC

Nakapong, S. , Pichyangkura R., Ito K., Iizuka M., and Pongsawasdi P.. 2013. “High Expression Level of Levansucrase from Bacillus licheniformis RN‐01 and Synthesis of Levan Nanoparticles.” International Journal of Biological Macromolecules 54: 30–36. PubMed

Obruča, S. , Dvořák P., Sedláček P., et al. 2022. “Polyhydroxyalkanoates Synthesis by Halophiles and Thermophiles: Towards Sustainable Production of Microbial Bioplastics.” Biotechnology Advances 58: 107906. PubMed

Obruca, S. , Snajdar O., Svoboda Z., and Marova I.. 2013. “Application of Random Mutagenesis to Enhance the Production of Polyhydroxyalkanoates by Cupriavidus necator H16 on Waste Frying Oil.” World Journal of Microbiology and Biotechnology 29: 2417–2428. PubMed

Obruca, S. , Sedlacek P., Mravec F., et al. 2017. “The Presence of PHB Granules in Cytoplasm Protects Non‐Halophilic Bacterial Cells Against the Harmful Impact of Hypertonic Environments.” New Biotechnology 39: 68–80. PubMed

Olson, D. G. , and Lynd L. R.. 2012. “Computational Design and Characterization of a Temperature‐Sensitive Plasmid Replicon for Gram Positive Thermophiles.” Journal of Biological Engineering 6: 5. PubMed PMC

Oren, A. 2011. “Thermodynamic Limits to Microbial Life at High Salt Concentrations.” Environmental Microbiology 13: 1908–1923. PubMed

Pal, U. , Bachmann D., Pelzer C., Christiansen J., Blank L. M., and Tiso T.. 2024. “A Genetic Toolbox to Empower Paracoccus pantotrophus DSM 2944 as a Metabolically Versatile SynBio Chassis.” Microbial Cell Factories 23: 53. PubMed PMC

Palmeiro‐Sánchez, T. , O'Flaherty V., and Lens P. N. L.. 2022. “Polyhydroxyalkanoate Bio‐Production and Its Rise as Biomaterial of the Future.” Journal of Biotechnology 348: 10–25. PubMed

Paredes‐Barrada, M. , Kopsiaftis P., Claassens N. J., and van Kranenburg R.. 2024. “ Parageobacillus thermoglucosidasius as an Emerging Thermophilic Cell Factory.” Metabolic Engineering 83: 39–51. PubMed

Raberg, M. , Voigt B., Hecker M., and Steinbüchel A.. 2014. “A Closer Look on the Polyhydroxybutyrate‐ (PHB‐) Negative Phenotype of Ralstonia eutropha PHB‐4.” PLoS One 9: e95907. PubMed PMC

Rehakova, V. , Pernicova I., Kourilova X., et al. 2023. “Biosynthesis of Versatile PHA Copolymers by Thermophilic Members of the Genus Aneurinibacillus .” International Journal of Biological Macromolecules 225: 1588–1598. PubMed

Ren, J. , Lee H.‐M., Shen J., and Na D.. 2022. “Advanced Biotechnology Using Methyltransferase and Its Applications in Bacteria: A Mini Review.” Biotechnology Letters 44: 33–44. PubMed

Ried, J. L. , and Collmer A.. 1987. “An nptI‐sacB‐sacR Cartridge for Constructing Directed, Unmarked Mutations in Gram‐Negative Bacteria by Marker Exchange‐Eviction Mutagenesis.” Gene 57: 239–246. PubMed

Samperio, S. , Guzmán‐Herrador D. L., May‐Cuz R., Martín M. C., Álvarez M. A., and Llosa M.. 2021. “Conjugative DNA Transfer From E. coli to Transformation‐Resistant Lactobacilli.” Frontiers in Microbiology 12: 606629. PubMed PMC

Sánchez‐Romero, M. A. , Cota I., and Casadesús J.. 2015. “DNA Methylation in Bacteria: From the Methyl Group to the Methylome.” Current Opinion in Microbiology 25: 9–16. PubMed

Sangiliyandi, G. , and Gunasekaran P.. 1998. “A Simple Method for Purification of Thermostable Levansucrase of Zymomonas mobilis from a Recombinant Escherichia coli .” Journal of Microbiological Methods 33: 153–156.

Silva‐Rocha, R. , Martínez‐García E., Calles B., et al. 2013. “The Standard European Vector Architecture (SEVA): A Coherent Platform for the Analysis and Deployment of Complex Prokaryotic Phenotypes.” Nucleic Acids Research 41: D666–D675. PubMed PMC

Stegmann, P. , Daioglou V., Londo M., van Vuuren D. P., and Junginger M.. 2022. “Plastic Futures and Their CO2 Emissions.” Nature 612: 272–276. PubMed

Suzuki, H. 2012. “Host‐Mimicking Strategies in DNA Methylation for Improved Bacterial Transformation.” In Methylation—From DNA, RNA and Histones to Diseases and Treatment, edited by Dricu A.. InTech.

Taylor, R. G. , Walker D. C., and Mclnnes R. R.. 1993. “ E. coli Host Strains Significantly Affect the Quality of Small Scale Plasmid DNA Preparations Used for Sequencing.” Nucleic Acids Research 21: 1677–1678. PubMed PMC

Turner, P. , Mamo G., and Karlsson E. N.. 2007. “Potential and Utilization of Thermophiles and Thermostable Enzymes in Biorefining.” Microbial Cell Factories 6: 9. PubMed PMC

Volke, D. C. , Friis L., Wirth N. T., Turlin J., and Nikel P. I.. 2020. “Synthetic Control of Plasmid Replication Enables Target‐ and Self‐Curing of Vectors and Expedites Genome Engineering of Pseudomonas putida .” Metabolic Engineering Communications 10: e00126. PubMed PMC

Wang, L. , Yao J., Tu T., Yao B., and Zhang J.. 2024. “Heterotrophic and Autotrophic Production of L‐Isoleucine and L‐Valine by Engineered Cupriavidus necator H16.” Bioresource Technology 398: 130538. PubMed

Yanisch‐Perron, C. , Vieira J., and Messing J.. 1985. “Improved M13 Phage Cloning Vectors and Host Strains: Nucleotide Sequences of the M13mpl8 and pUC19 Vectors.” Gene 33: 103–119. PubMed

Ye, J. , Hu D., Che X., et al. 2018. “Engineering of Halomonas bluephagenesis for Low Cost Production of Poly(3‐Hydroxybutyrate‐Co‐4‐Hydroxybutyrate) From Glucose.” Metabolic Engineering 47: 143–152. PubMed

Ye, J.‐W. , Lin Y.‐N., Yi X.‐Q., Yu Z.‐X., Liu X., and Chen G.‐Q.. 2022. “Synthetic Biology of Extremophiles: A New Wave of Biomanufacturing.” Trends in Biotechnology 41, no. 3: 342–357. 10.1016/j.tibtech.2022.11.010. PubMed DOI

Yu, J. , and Chen L. X. L.. 2008. “The Greenhouse Gas Emissions and Fossil Energy Requirement of Bioplastics From Cradle to Gate of a Biomass Refinery.” Environmental Science & Technology 42: 6961–6966. PubMed

Zhang, X. , Liang Y., Yang H., et al. 2021. “A Novel Fusion Levansucrase Improves Thermostability of Polymerization and Production of High Molecular Weight Levan.” LWT 150: 111951.

Zheng, Y. , Chen J.‐C., Ma Y.‐M., and Chen G.‐Q.. 2020. “Engineering Biosynthesis of Polyhydroxyalkanoates (PHA) for Diversity and Cost Reduction.” Metabolic Engineering 58: 82–93. PubMed

Zhou, J. , Li X., Xia J., et al. 2018. “The Role of Temperature and Bivalent Ions in Preparing Competent Escherichia coli .” 3 Biotech 8: 222. PubMed PMC

Zhou, W. , Colpa D. I., Permentier H., et al. 2023. “Insight Into Polyhydroxyalkanoate (PHA) Production From Xylose and Extracellular PHA Degradation by a Thermophilic Schlegelella thermodepolymerans .” RCR Advances 194: 107006.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...