Canopy functional trait variation across Earth's tropical forests
Language English Country Great Britain, England Media print-electronic
Document type Journal Article
PubMed
40044867
PubMed Central
PMC12043511
DOI
10.1038/s41586-025-08663-2
PII: 10.1038/s41586-025-08663-2
Knihovny.cz E-resources
- MeSH
- Biodiversity MeSH
- Forests * MeSH
- Plant Leaves physiology chemistry anatomy & histology MeSH
- Uncertainty MeSH
- Soil chemistry MeSH
- Trees * physiology anatomy & histology chemistry classification MeSH
- Tropical Climate MeSH
- Earth, Planet * MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Africa MeSH
- Asia MeSH
- Names of Substances
- Soil MeSH
Tropical forest canopies are the biosphere's most concentrated atmospheric interface for carbon, water and energy1,2. However, in most Earth System Models, the diverse and heterogeneous tropical forest biome is represented as a largely uniform ecosystem with either a singular or a small number of fixed canopy ecophysiological properties3. This situation arises, in part, from a lack of understanding about how and why the functional properties of tropical forest canopies vary geographically4. Here, by combining field-collected data from more than 1,800 vegetation plots and tree traits with satellite remote-sensing, terrain, climate and soil data, we predict variation across 13 morphological, structural and chemical functional traits of trees, and use this to compute and map the functional diversity of tropical forests. Our findings reveal that the tropical Americas, Africa and Asia tend to occupy different portions of the total functional trait space available across tropical forests. Tropical American forests are predicted to have 40% greater functional richness than tropical African and Asian forests. Meanwhile, African forests have the highest functional divergence-32% and 7% higher than that of tropical American and Asian forests, respectively. An uncertainty analysis highlights priority regions for further data collection, which would refine and improve these maps. Our predictions represent a ground-based and remotely enabled global analysis of how and why the functional traits of tropical forest canopies vary across space.
AMAP Université de Montpellier IRD CNRS CIRAD INRAE Montpellier France
Biological and Environmental Sciences University of Stirling Stirling UK
Birmingham Institute of Forest Research University of Birmingham Birmingham UK
Botany School of Natural Sciences Trinity College Dublin Dublin Ireland
Brazilian Platform on Biodiversity and Ecosystem Services Campinas Brazil
Center for Energy Environment and Sustainability Wake Forest University Winston Salem NC USA
Center for Global Discovery and Conservation Science Arizona State University Tempe AZ USA
Centro de Ciências Biológicas e da Natureza Universidade Federal do Acre Rio Branco Brazil
Cirad UMR EcoFoG Campus Agronomique Kourou French Guiana
Colegiado de Ecologia Universidade Federal do Vale do São Francisco Senhor do Bonfim Brazil
Colegio de Ciencias y Humanidades Universidad Juárez del Estado de Durango Durango Mexico
College of Science and Engineering James Cook University Cairns Queensland Australia
Coordenação de Biodiversidade Instituto Nacional de Pesquisas da Amazônia Manaus Brazil
Coordenação de Dinâmica Ambiental Instituto Nacional de Pesquisas da Amazônia Manaus Brazil
CSIR Forestry Research Institute of Ghana Kumasi Ghana
Departamento de Biologia Geral Universidade Estadual de Montes Claros Montes Claros Brazil
Departamento de Biologia Universidade Federal de Rondônia Porto Velho Brazil
Departamento de Engenharia Florestal Universidade de Brasília Brasília Brazil
Departamento de Engenharia Florestal Universidade do Estado de Mato Grosso Caceres Brazil
Departamento de Engenharia Florestal Universidade Federal de Lavras Lavras Brazil
Department for Accelerated Taxonomy Royal Botanic Gardens Kew Richmond UK
Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden
Department of Biology Sonoma State University Rohnert Park CA USA
Department of Biology Wake Forest University Winston Salem NC USA
Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ USA
Department of Ecology Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
Department of Geography University of Exeter Exeter UK
Department of Life Sciences and Systems Biology University of Turin Turin Italy
Department of Natural Resources Management CSIR College of Science and Technology Kumasi Ghana
Department of Natural Sciences Manchester Metropolitan University Manchester UK
Embrapa Amazônia Oriental Belém Brazil
Embrapa Recursos Genéticos e Biotecnologia Brasília Brazil
Environmental and Rural Science University of New England Armidale New South Wales Australia
Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Ribeirão Preto Brazil
Faculty of Communication and Environment Hochschule Rhein Waal Kamp Lintfort Germany
Federal Rural University of Rio de Janeiro Seropedica Brazil
Forest Ecology Department KSCSTE Kerala Forest Research Institute Kerala India
Forêts et Sociétés Université de Montpellier CIRAD Montpellier France
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Global Green Growth Institute Rwanda Program Kigali Rwanda
IBAM Instituto Bem Ambiental Belo Horizonte Brazil
INRAE Université de Lorraine AgroParisTech UMR Silva Nancy France
Institut de Recherche en Écologie Tropicale Libreville Gabon
Institute for Nature Earth and Energy Pontificia Universidad Católica del Perú Lima Peru
Institute of Biogeosciences IBG2 Plant Sciences Forschungszentrum Jülich GmbH Jülich Germany
Institute of Ecology Leuphana University of Lüneburg Lüneburg Germany
Instituto de Biologia Universidade Federal da Bahia Salvador Brazil
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro Rio de Janeiro Brazil
Instituto Internacional para Sustentabilidade Rio de Janeiro Brazil
Instituto Socioambiental São Paulo Brazil
Jardín Botánico de Bogotá Bogotá Colombia
Laboratório de Ecologia Vegetal Universidade do Estado de Mato Grosso Nova Xavantina Brazil
Laboratório de Manejo Florestal Universidade do Estado do Amapá Macapá Brazil
Lancaster Environment Centre Lancaster University Lancaster UK
Leipzig University Leipzig Germany
Leverhulme Centre for Nature Recovery University of Oxford Oxford UK
Ministry of Water and Forests Abidjan Côte d'Ivoire
Myr Projetos Sustentáveis Belo Horizonte Brazil
Naturalis Biodiversity Center Leiden The Netherlands
Plant Ecology and Evolution Department of Ecology and Genetics Uppsala University Uppsala Sweden
Plant Ecology Lab Ecology Department Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
PPG Ecology and Conservation Universidade do Estado de Mato Grosso Nova Xavantina Brazil
Quantitative Biodiversity Dynamics Utrecht University Utrecht The Netherlands
Royal Botanic Garden Edinburgh Edinburgh UK
Royal Botanic Gardens Kew Richmond UK
School of Biological Sciences University of Aberdeen Aberdeen UK
School of Biological Sciences University of Adelaide Adelaide South Australia Australia
School of Environmental Sciences University of East Anglia Norwich UK
School of Geography Earth and Environmental Sciences University of Birmingham Birmingham UK
School of Geography Earth and Environmental Sciences University of Plymouth Plymouth UK
School of Geography University of Leeds Leeds UK
School of GeoSciences University of Edinburgh Edinburgh UK
School of Informatics Computing and Cyber Systems Northern Arizona University Flagstaff AZ USA
School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
The Santa Fe Institute Santa Fe USA
UMRI SAPT Institut National Polytechnique Félix Houphouët Boigny Yamoussoukro Côte d'Ivoire
Universidad de los Andes Bogotá Colombia
Universidade de São Paulo São Paulo Brazil
Universidade do Estado de Mato Grosso Tangará da Serra Brazil
Universidade Federal de Mato Grosso Sinop Brazil
Universidade Federal do Acre Rio Branco Brazil
Universidade Paulista Polo Rio Branco Brazil
See more in PubMed
Gatti, R. C. et al. The number of tree species on Earth. Proc. Natl Acad. Sci. USA119, e2115329119 (2022). PubMed PMC
Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature559, 517–526 (2018). PubMed
Silman, M. R. Functional megadiversity. Proc. Natl Acad. Sci. USA111, 5763–5764 (2014). PubMed PMC
Wieczynski, D. J. et al. Climate shapes and shifts functional biodiversity in forests worldwide. Proc. Natl Acad. Sci. USA116, 587–592 (2019). PubMed PMC
Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol.27, 19–26 (2012). PubMed
Aguirre-Gutiérrez, J. et al. Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data. Remote Sens. Environ.252, 112122 (2021).
Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants2, 16024 (2016). PubMed
Wallis, C. I. et al. Modeling tropical montane forest biomass, productivity and canopy traits with multispectral remote sensing data. Remote Sens. Environ.225, 77–92 (2019).
Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci.9, 113–122 (1998).
Messier, J., McGill, B. J. & Lechowicz, M. J. How do traits vary across ecological scales? A case for trait‐based ecology. Ecol. Lett.13, 838–848 (2010). PubMed
Enquist, B. J. et al. Scaling from traits to ecosystems: developing a general trait driver theory via integrating trait-based and metabolic scaling theories. Adv. Ecol. Res.52, 249–318 (2015).
Asner, G. P. et al. Amazonian functional diversity from forest canopy chemical assembly. Proc. Natl Acad. Sci. USA111, 5604–5609 (2014). PubMed PMC
Fyllas, N. M. et al. Solar radiation and functional traits explain the decline of forest primary productivity along a tropical elevation gradient. Ecol. Lett.20, 730–740 (2017). PubMed
Brun, P. et al. Plant community impact on productivity: trait diversity or key(stone) species effects? Ecol. Lett.25, 913–925 (2022). PubMed PMC
Schmitt, S. et al. Functional diversity improves tropical forest resilience: insights from a long‐term virtual experiment. J. Ecol.108, 831–843 (2020).
Schnabel, F. et al. Species richness stabilizes productivity via asynchrony and drought-tolerance diversity in a large-scale tree biodiversity experiment. Sci. Adv.7, eabk1643 (2021). PubMed PMC
Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl Acad. Sci. USA114, E10937–E10946 (2017). PubMed PMC
Moreno-Martínez, Á. et al. A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote Sens. Environ.218, 69–88 (2018).
Vallicrosa, H. et al. Global maps and factors driving forest foliar elemental composition: the importance of evolutionary history. New Phytol.233, 169–181 (2022). PubMed
Dechant, B. et al. Intercomparing global foliar trait and canopy height maps: upscaling approaches and spatial patterns. In AGU Fall Meeting 2021 (AGU, 2021).
Gallagher, R. V. et al. Open Science principles for accelerating trait-based science across the Tree of Life. Nat. Ecol. Evol.4, 294–303 (2020). PubMed
Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Chang. Biol.26, 119–188 (2020). PubMed
ter Steege, H. et al. Biased-corrected richness estimates for the Amazonian tree flora. Sci. Rep.10, 10130 (2020). PubMed PMC
Díaz, S. et al. The global spectrum of plant form and function. Nature529, 167–171 (2016). PubMed
Wright, I. J. et al. The worldwide leaf economics spectrum. Nature428, 821–827 (2004). PubMed
Lamour, J. et al. The effect of the vertical gradients of photosynthetic parameters on the CO2 assimilation and transpiration of a Panamanian tropical forest. New Phytol.238, 2345–2362 (2023). PubMed
Malhi, Y. et al. African rainforests: past, present and future. Phil. Trans. R. Soc. B368, 20120312 (2013). PubMed PMC
Parmentier, I. et al. The odd man out? Might climate explain the lower tree α-diversity of African rain forests relative to amazonian rain forests? J. Ecol.95, 1058–1071 (2007).
Moore, S. et al. Forest biomass, productivity and carbon cycling along a rainfall gradient in West Africa. Glob. Chang. Biol.24, e496–e510 (2018). PubMed
Inagawa, T. et al. Radial and vertical variation of wood nutrients in Bornean tropical forest trees. Biotropica55, 1019–1032 (2023).
Malhi, Y. et al. The Global Ecosystems Monitoring network: monitoring ecosystem productivity and carbon cycling across the tropics. Biol. Conserv.253, 108889 (2021).
ForestPlots.net et al. Taking the pulse of Earth’s tropical forests using networks of highly distributed plots. Biol. Conserv.260, 108849 (2021).
Díaz, S. et al. The global spectrum of plant form and function: enhanced species-level trait dataset. Sci. Data9, 755 (2022). PubMed PMC
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data5, 170191 (2018). PubMed PMC
Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun.11, 4540 (2020). PubMed PMC
Sullivan, M. J. P. et al. Diversity and carbon storage across the tropical forest biome. Sci. Rep.7, 39102 (2017). PubMed PMC
Aguirre-Gutiérrez, J. et al. Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nat. Commun.11, 3346 (2020). PubMed PMC
Allen, K. et al. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environ. Res. Lett.12, 023001 (2017).
Aguirre‐Gutiérrez, J. et al. Drier tropical forests are susceptible to functional changes in response to a long‐term drought. Ecol. Lett.22, 855–865 (2019). PubMed
Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience67, 534–545 (2017). PubMed PMC
Markesteijn, L., Poorter, L. & Bongers, F. Light‐dependent leaf trait variation in 43 tropical dry forest tree species. Amer. J. Bot.94, 515–525 (2007). PubMed
Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta‐analyses of interspecific variation and environmental control. New Phytol.193, 30–50 (2012). PubMed
Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA96, 1463–1468 (1999). PubMed PMC
Aguirre‐Gutiérrez, J. et al. Functional susceptibility of tropical forests to climate change. Nat. Ecol. Evol.6, 878–889 (2022). PubMed
Carmona, C. P., de Bello, F., Mason, N. W. & Lepš, J. Traits without borders: integrating functional diversity across scales. Trends Ecol. Evol.31, 382–394 (2016). PubMed
Kraft, N. J. B. et al. The relationship between wood density and mortality in a global tropical forest data set. New Phytol.188, 1124–1136 (2010). PubMed
Malhi, Y. et al. The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. New Phytol.214, 1019–1032 (2017). PubMed
Vitousek, P. M. & Sanford, R. L. Jr Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Syst.17, 137–167 (1986).
Runyan, C. W., Lawrence, D., Vandecar, K. L. & D’Odorico, P. Experimental evidence for limited leaching of phosphorus from canopy leaves in a tropical dry forest. Ecohydrology6, 806–817 (2013).
Oliveras, I. et al. The influence of taxonomy and environment on leaf trait variation along tropical abiotic gradients. Front. For. Glob. Chang.3, 18 (2020).
Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ.1, 14–27 (2020).
Vallé, C. et al. Species associations in joint species distribution models: from missing variables to conditional predictions. J. Biogeogr.51, 311–324 (2024).
Yan, P. et al. Integrating multiple plant functional traits to predict ecosystem productivity. Commun. Biol.6, 239 (2023). PubMed PMC
Franklin, J. Species distribution modelling supports the study of past, present and future biogeographies. J. Biogeogr.50, 1533–1545 (2023).
Newman, S. J. & Furbank, R. T. Explainable machine learning models of major crop traits from satellite-monitored continent-wide field trial data. Nat. Plants7, 1354–1363 (2021). PubMed
Schiller, C. et al. Deep learning and citizen science enable automated plant trait predictions from photographs. Sci. Rep.11, 16395 (2021). PubMed PMC
Lang, N. et al. A high-resolution canopy height model of the Earth. Nat. Ecol. Evol.7, 1778–1789 (2023). PubMed PMC
Cherif, E. et al. From spectra to plant functional traits: transferable multi-trait models from heterogeneous and sparse data. Remote Sens. Environ.292, 113580 (2023).
Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M., Baker, T. R. & Phillips, O. L. ForestPlots.net Database (www.forestplots.net; 2009).
Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M. & Phillips, O. L. ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. J. Veg. Sci.22, 610–613 (2011).
Both, S. et al. Logging and soil nutrients independently explain plant trait expression in tropical forests. New Phytol.221, 1853–1865 (2019). PubMed
Martin, R. E. et al. Covariance of sun and shade leaf traits along a tropical forest elevation gradient. Front. Plant Sci.10, 1810 (2020). PubMed PMC
Enquist, B. J. et al. Assessing trait‐based scaling theory in tropical forests spanning a broad temperature gradient. Global Ecol. Biogeogr.26, 1357–1373 (2017).
Gvozdevaite, A. The Role of Economic, Venation and Morphological Leaf Traits in Plant and Ecosystem Function Along Forest-Savanna Gradients in the Tropics. PhD thesis, Oxford Univ. (2018).
Thomson, E. R. et al. Multiscale mapping of plant functional groups and plant traits in the High Arctic using field spectroscopy, UAV imagery and Sentinel-2A data. Environ. Res. Lett.16, 055006 (2021).
Haralick, R. M., Shanmugam, K. & Dinstein, I. H. Textural features for image classification. IEEE Trans. Syst. Man Cybernet.3, 610–621 (1973).
Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ.202, 18–27 (2017).
Harris, I. C. & Jones, P. D. CRU TS4.00: Climatic Research Unit (CRU) Time-Series (TS) version 4.00 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2015) (Centre for Environmental Data Analysis, 2017).
Kobayashi, S. et al. The JRA-55 reanalysis: general specifications and basic characteristics. J. Meteorol. Soc. Jpn93, 5–48 (2015).
Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA106, 20610–20615 (2009). PubMed PMC
Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys.45, RG2004 (2007).
Meir, P. & Pennington, R. T. in Seasonally Dry Tropical Forests (eds. Dirzo, R. et al.) 279–299 (Springer, 2011).
Poggio, L. et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil7, 217–240 (2021).
Breiman, L. Random forests. Mach. Learn.45, 5–32 (2001).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023).
Boonman, C. et al. Assessing the reliability of predicted plant trait distributions at the global scale. Glob. Ecol. Biogeogr.29, 1034–1051 (2020). PubMed PMC
Ali, A. et al. Machine learning methods’ performance in radiative transfer model inversion to retrieve plant traits from Sentinel-2 data of a mixed mountain forest. Int. J. Digit. Earth14, 106–120 (2021).
Cai, L. et al. Global models and predictions of plant diversity based on advanced machine learning techniques. New Phytol.237, 1432–1445 (2023). PubMed
Simonetti, D., Pimple, U., Langner, A. & Marelli, A. Pan-tropical Sentinel-2 cloud-free annual composite datasets. Data in Brief39, 107488 (2021). PubMed PMC
ESA. Land Cover CCI Product User Guide Version 2. Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf.
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science342, 850–853 (2013). PubMed
Carmona, C. P. et al. Erosion of global functional diversity across the tree of life. Sci. Adv.7, eabf2675 (2021). PubMed PMC
Aguirre-Gutiérrez, J. Sample R code for ‘Canopy functional trait variation across Earth’s tropical forests’. Zenodo10.5281/zenodo.14509493 (2024). PubMed PMC