Effect of Treatment on Steroidome in Women with Multiple Sclerosis
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
NU20-04-00450
Czech Research Health Council
PubMed
40076462
PubMed Central
PMC11899614
DOI
10.3390/ijms26051835
PII: ijms26051835
Knihovny.cz E-resources
- Keywords
- GC-MS/MS, anti-MS drugs, multiple sclerosis, multivariate statistics, steroidomics,
- MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Multiple Sclerosis * drug therapy metabolism MeSH
- Steroids therapeutic use MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Steroids MeSH
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease of the central nervous system. The manifestation of MS is related to steroid changes during the menstrual cycle and pregnancy. As data focusing on the effect of anti-MS drug treatment on steroidome are scarce, we evaluated steroidomic changes (79 steroids) in 61 female MS patients of reproductive age 39 (29, 47) years (median with quartiles) after treatment with anti-MS drugs on the GC-MS/MS platform and immunoassays (cortisol and estradiol). The changes were assessed using steroid levels and steroid molar ratios (SMRs) that may reflect the activities of steroidogenic enzymes (SMRs). A repeated measures ANOVA, followed by multiple comparisons and OPLS models, were used for statistical analyses. The anti-MS treatment decreased steroid levels in the follicular phase. Anti-CD20 monoclonal antibodies (mAb), such as ofatumumab and ocrelizumab; inhibitors of the sphingosine-1-phosphate receptor (S1PRI); and IFNβ-1a decreased circulating 17-hydroxy-pregnanes and shifted the CYP17A1 functioning from the hydroxylase- toward the lyase step. Decreased conjugated/unconjugated steroid ratios were found after treatment with anti-MS drugs, especially for glatiramer acetate and anti-CD20 mAb. In the luteal phase, IFN-β1a treatment increased steroidogenesis; both IFN-β1a and ocrelizumab increased AKR1D1, and S1PRI increased SRD5A functioning. Anti-CD20 mAb reduced the functioning of enzymes catalyzing the synthesis of immunomodulatory 7α/β and 16α-hydroxy-androgens, which may affect the severity of MS. The above findings may be important concerning the alterations in bioactive steroids, such as cortisol; active androgens and estrogens; and neuroactive, neuroprotective, and immunomodulatory steroids in terms of optimization of anti-MS treatment.
Department of Neurology 1st Faculty of Medicine Charles University 128 21 Prague Czech Republic
Institute of Endocrinology 110 00 Prague Czech Republic
MS Center 2nd Faculty of Medicine Charles University 150 06 Prague Czech Republic
See more in PubMed
Ysrraelit M.C., Correale J. Impact of sex hormones on immune function and multiple sclerosis development. Immunology. 2019;156:9–22. doi: 10.1111/imm.13004. PubMed DOI PMC
Sparaco M., Bonavita S. The role of sex hormones in women with multiple sclerosis: From puberty to assisted reproductive techniques. Front. Neuroendocrinol. 2021;60:100889. doi: 10.1016/j.yfrne.2020.100889. PubMed DOI
Smith R., Studd J.W. A pilot study of the effect upon multiple sclerosis of the menopause, hormone replacement therapy and the menstrual cycle. J. R. Soc. Med. 1992;85:612–613. doi: 10.1177/014107689208501008. PubMed DOI PMC
Argyriou A.A., Makris N. Multiple sclerosis and reproductive risks in women. Reprod. Sci. 2008;15:755–764. doi: 10.1177/1933719108324138. PubMed DOI
Trombetta A.C., Meroni M., Cutolo M. Steroids and Autoimmunity. Front. Horm. Res. 2017;48:121–132. PubMed
Kamin H.S., Kertes D.A. Cortisol and DHEA in development and psychopathology. Horm. Behav. 2017;89:69–85. doi: 10.1016/j.yhbeh.2016.11.018. PubMed DOI
Mikulska J., Juszczyk G., Gawronska-Grzywacz M., Herbet M. HPA Axis in the Pathomechanism of Depression and Schizophrenia: New Therapeutic Strategies Based on Its Participation. Brain Sci. 2021;11:1298. doi: 10.3390/brainsci11101298. PubMed DOI PMC
Cherian K., Schatzberg A.F., Keller J. HPA axis in psychotic major depression and schizophrenia spectrum disorders: Cortisol, clinical symptomatology, and cognition. Schizophr. Res. 2019;213:72–79. doi: 10.1016/j.schres.2019.07.003. PubMed DOI
Misiak B., Piotrowski P., Chec M., Samochowiec J. Cortisol and dehydroepiandrosterone sulfate in patients with schizophrenia spectrum disorders with respect to cognitive performance. Compr. Psychoneuroendocrinol. 2021;6:100041. doi: 10.1016/j.cpnec.2021.100041. PubMed DOI PMC
Ritsner M., Maayan R., Gibel A., Strous R.D., Modai I., Weizman A. Elevation of the cortisol/dehydroepiandrosterone ratio in schizophrenia patients. Eur. Neuropsychopharmacol. 2004;14:267–273. doi: 10.1016/j.euroneuro.2003.09.003. PubMed DOI
Ritsner M., Gibel A., Maayan R., Ratner Y., Ram E., Modai I., Weizman A. State and trait related predictors of serum cortisol to DHEA(S) molar ratios and hormone concentrations in schizophrenia patients. Eur. Neuropsychopharmacol. 2007;17:257–264. doi: 10.1016/j.euroneuro.2006.09.001. PubMed DOI
Kancheva R., Hill M., Novak Z., Chrastina J., Kancheva L., Starka L. Neuroactive steroids in periphery and cerebrospinal fluid. Neuroscience. 2011;191:22–27. doi: 10.1016/j.neuroscience.2011.05.054. PubMed DOI
Begemann M.J., Dekker C.F., van Lunenburg M., Sommer I.E. Estrogen augmentation in schizophrenia: A quantitative review of current evidence. Schizophr. Res. 2012;141:179–184. doi: 10.1016/j.schres.2012.08.016. PubMed DOI
Qaiser M.Z., Dolman D.E.M., Begley D.J., Abbott N.J., Cazacu-Davidescu M., Corol D.I., Fry J.P. Uptake and metabolism of sulphated steroids by the blood-brain barrier in the adult male rat. J. Neurochem. 2017;142:672–685. doi: 10.1111/jnc.14117. PubMed DOI PMC
Cai H., Cao T., Zhou X., Yao J.K. Neurosteroids in Schizophrenia: Pathogenic and Therapeutic Implications. Front. Psychiatry. 2018;9:73. doi: 10.3389/fpsyt.2018.00073. PubMed DOI PMC
Powrie Y.S.L., Smith C. Central intracrine DHEA synthesis in ageing-related neuroinflammation and neurodegeneration: Therapeutic potential? J. Neuroinflammation. 2018;15:289. doi: 10.1186/s12974-018-1324-0. PubMed DOI PMC
Honcu P., Hill M., Bicikova M., Jandova D., Velikova M., Kajzar J., Kolatorova L., Bestak J., Macova L., Kancheva R., et al. Activation of Adrenal Steroidogenesis and an Improvement of Mood Balance in Postmenopausal Females after Spa Treatment Based on Physical Activity. Int. J. Mol. Sci. 2019;20:3687. doi: 10.3390/ijms20153687. PubMed DOI PMC
Noorbakhsh F., Ellestad K.K., Maingat F., Warren K.G., Han M.H., Steinman L., Baker G.B., Power C. Impaired neurosteroid synthesis in multiple sclerosis. Pt 9Brain. 2011;134:2703–2721. doi: 10.1093/brain/awr200. PubMed DOI PMC
Noorbakhsh F., Baker G.B., Power C. Allopregnanolone and neuroinflammation: A focus on multiple sclerosis. Front. Cell Neurosci. 2014;8:134. doi: 10.3389/fncel.2014.00134. PubMed DOI PMC
Cil A.P., Leventoglu A., Sonmezer M., Soylukoc R., Oktay K. Assessment of ovarian reserve and Doppler characteristics in patients with multiple sclerosis using immunomodulating drugs. J. Turk. Ger. Gynecol. Assoc. 2009;10:213–219. PubMed PMC
Griffiths W.J., Wang Y. Sterols, Oxysterols, and Accessible Cholesterol: Signalling for Homeostasis, in Immunity and During Development. Front. Physiol. 2021;12:723224. doi: 10.3389/fphys.2021.723224. PubMed DOI PMC
Sukocheva O., Wadham C., Gamble J., Xia P. Sphingosine-1-phosphate receptor 1 transmits estrogens’ effects in endothelial cells. Steroids. 2015;104:237–245. doi: 10.1016/j.steroids.2015.10.009. PubMed DOI
Lucki N.C., Li D., Sewer M.B. Sphingosine-1-phosphate rapidly increases cortisol biosynthesis and the expression of genes involved in cholesterol uptake and transport in H295R adrenocortical cells. Mol. Cell Endocrinol. 2012;348:165–175. doi: 10.1016/j.mce.2011.08.003. PubMed DOI PMC
Guzman A., Rosales-Torres A.M., Medina-Moctezuma Z.B., Gonzalez-Aretia D., Hernandez-Coronado C.G. Effects and action mechanism of gonadotropins on ovarian follicular cells: A novel role of Sphingosine-1-Phosphate (S1P). A review. Gen. Comp. Endocrinol. 2024;357:114593. doi: 10.1016/j.ygcen.2024.114593. PubMed DOI
Siavoshi F., Ladakis D.C., Muller A., Nourbakhsh B., Bhargava P. Ocrelizumab alters the circulating metabolome in people with relapsing-remitting multiple sclerosis. Ann. Clin. Transl. Neurol. 2024;11:2485–2498. doi: 10.1002/acn3.52167. PubMed DOI PMC
Ito K., Ito N., Yadav S.K., Suresh S., Lin Y., Dhib-Jalbut S. Effect of switching glatiramer acetate formulation from 20 mg daily to 40 mg three times weekly on immune function in multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin. 2021;7:20552173211032323. doi: 10.1177/20552173211032323. PubMed DOI PMC
Dargahi N., Katsara M., Tselios T., Androutsou M.E., de Courten M., Matsoukas J., Apostolopoulos V. Multiple Sclerosis: Immunopathology and Treatment Update. Brain Sci. 2017;7:78. doi: 10.3390/brainsci7070078. PubMed DOI PMC
Murdoch D., Lyseng-Williamson K.A. Spotlight on subcutaneous recombinant interferon-beta-1a (Rebif) in relapsing-remitting multiple sclerosis. BioDrugs. 2005;19:323–325. doi: 10.2165/00063030-200519050-00005. PubMed DOI
Giovannoni G., Munschauer F.E., 3rd, Deisenhammer F. Neutralising antibodies to interferon beta during the treatment of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2002;73:465–469. doi: 10.1136/jnnp.73.5.465. PubMed DOI PMC
Hauser S.L., Kappos L., Bar-Or A., Wiendl H., Paling D., Williams M., Gold R., Chan A., Milo R., Das Gupta A., et al. The Development of Ofatumumab, a Fully Human Anti-CD20 Monoclonal Antibody for Practical Use in Relapsing Multiple Sclerosis Treatment. Neurol. Ther. 2023;12:1491–1515. doi: 10.1007/s40120-023-00518-0. PubMed DOI PMC
McGinley M.P., Moss B.P., Cohen J.A. Safety of monoclonal antibodies for the treatment of multiple sclerosis. Expert. Opin. Drug Saf. 2017;16:89–100. doi: 10.1080/14740338.2017.1250881. PubMed DOI
Lamb Y.N. Ocrelizumab: A Review in Multiple Sclerosis. Drugs. 2022;82:323–334. doi: 10.1007/s40265-022-01672-9. PubMed DOI PMC
Kancheva R., Hill M., Velikova M., Kancheva L., Vcelak J., Ampapa R., Zido M., Stetkarova I., Libertinova J., Vosatkova M., et al. Altered Steroidome in Women with Multiple Sclerosis. Int. J. Mol. Sci. 2024;25:12033. doi: 10.3390/ijms252212033. PubMed DOI PMC
Labrie F., Martel C., Belanger A., Pelletier G. Androgens in women are essentially made from DHEA in each peripheral tissue according to intracrinology. J. Steroid Biochem. Mol. Biol. 2017;168:9–18. doi: 10.1016/j.jsbmb.2016.12.007. PubMed DOI
Angeli A., Masera R.G., Sartori M.L., Fortunati N., Racca S., Dovio A., Staurenghi A., Frairia R. Modulation by cytokines of glucocorticoid action. Ann. N. Y. Acad. Sci. 1999;876:210–220. doi: 10.1111/j.1749-6632.1999.tb07641.x. PubMed DOI
de Kloet E.R., Joels M., Holsboer F. Stress and the brain: From adaptation to disease. Nat. Rev. Neurosci. 2005;6:463–475. doi: 10.1038/nrn1683. PubMed DOI
Hildebrandt H., Stachowiak R., Heber I., Schlake H.P., Eling P. Relation between cognitive fatigue and circadian or stress related cortisol levels in MS patients. Mult. Scler. Relat. Disord. 2020;45:102440. doi: 10.1016/j.msard.2020.102440. PubMed DOI
Slominski R.M., Tuckey R.C., Manna P.R., Jetten A.M., Postlethwaite A., Raman C., Slominski A.T. Extra-adrenal glucocorticoid biosynthesis: Implications for autoimmune and inflammatory disorders. Genes. Immun. 2020;21:150–168. doi: 10.1038/s41435-020-0096-6. PubMed DOI PMC
Tucha L., Fuermaier A.B., Koerts J., Buggenthin R., Aschenbrenner S., Weisbrod M., Thome J., Lange K.W., Tucha O. Sustained attention in adult ADHD: Time-on-task effects of various measures of attention. J. Neural Transm. 2017;124((Suppl. 1)):39–53. doi: 10.1007/s00702-015-1426-0. PubMed DOI PMC
Vedhara K., Hyde J., Gilchrist I.D., Tytherleigh M., Plummer S. Acute stress, memory, attention and cortisol. Psychoneuroendocrinology. 2000;25:535–549. doi: 10.1016/S0306-4530(00)00008-1. PubMed DOI
Pereira G.M., Soares N.M., Souza A.R., Becker J., Finkelsztejn A., Almeida R.M.M. Basal cortisol levels and the relationship with clinical symptoms in multiple sclerosis: A systematic review. Arq. Neuropsiquiatr. 2018;76:622–634. doi: 10.1590/0004-282x20180091. PubMed DOI
Heidbrink C., Hausler S.F., Buttmann M., Ossadnik M., Strik H.M., Keller A., Buck D., Verbraak E., van Meurs M., Krockenberger M., et al. Reduced cortisol levels in cerebrospinal fluid and differential distribution of 11beta-hydroxysteroid dehydrogenases in multiple sclerosis: Implications for lesion pathogenesis. Brain Behav. Immun. 2010;24:975–984. doi: 10.1016/j.bbi.2010.04.003. PubMed DOI
Foroughipour A., Norbakhsh V., Najafabadi S.H., Meamar R. Evaluating sex hormone levels in reproductive age women with multiple sclerosis and their relationship with disease severity. J. Res. Med. Sci. 2012;17:882–885. PubMed PMC
Wei T., Lightman S.L. The neuroendocrine axis in patients with multiple sclerosis. Pt 6Brain. 1997;120:1067–1076. doi: 10.1093/brain/120.6.1067. PubMed DOI
Hamidovic A., Karapetyan K., Serdarevic F., Choi S.H., Eisenlohr-Moul T., Pinna G. Higher Circulating Cortisol in the Follicular vs. Luteal Phase of the Menstrual Cycle: A Meta-Analysis. Front. Endocrinol. 2020;11:311. doi: 10.3389/fendo.2020.00311. PubMed DOI PMC
Marx C.E., Keefe R.S., Buchanan R.W., Hamer R.M., Kilts J.D., Bradford D.W., Strauss J.L., Naylor J.C., Payne V.M., Lieberman J.A., et al. Proof-of-concept trial with the neurosteroid pregnenolone targeting cognitive and negative symptoms in schizophrenia. Neuropsychopharmacology. 2009;34:1885–1903. doi: 10.1038/npp.2009.26. PubMed DOI PMC
Matuszewska A., Kowalski K., Jawien P., Tomkalski T., Gawel-Dabrowska D., Merwid-Lad A., Szelag E., Blaszczak K., Wiatrak B., Danielewski M., et al. The Hypothalamic-Pituitary-Gonadal Axis in Men with Schizophrenia. Int. J. Mol. Sci. 2023;24:6492. doi: 10.3390/ijms24076492. PubMed DOI PMC
Tomassini V., Pozzilli C. Sex hormones, brain damage and clinical course of Multiple Sclerosis. J. Neurol. Sci. 2009;286:35–39. doi: 10.1016/j.jns.2009.04.014. PubMed DOI
Gubbels Bupp M.R., Jorgensen T.N. Androgen-Induced Immunosuppression. Front. Immunol. 2018;9:794. doi: 10.3389/fimmu.2018.00794. PubMed DOI PMC
Tomassini V., Onesti E., Mainero C., Giugni E., Paolillo A., Salvetti M., Nicoletti F., Pozzilli C. Sex hormones modulate brain damage in multiple sclerosis: MRI evidence. J. Neurol. Neurosurg. Psychiatry. 2005;76:272–275. doi: 10.1136/jnnp.2003.033324. PubMed DOI PMC
Garcia-Estrada J., Del Rio J.A., Luquin S., Soriano E., Garcia-Segura L.M. Gonadal hormones down-regulate reactive gliosis and astrocyte proliferation after a penetrating brain injury. Brain Res. 1993;628:271–278. doi: 10.1016/0006-8993(93)90964-O. PubMed DOI
Bovolenta P., Wandosell F., Nieto-Sampedro M. CNS glial scar tissue: A source of molecules which inhibit central neurite outgrowth. Prog. Brain Res. 1992;94:367–379. PubMed
Burda J.E., Sofroniew M.V. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron. 2014;81:229–248. doi: 10.1016/j.neuron.2013.12.034. PubMed DOI PMC
Dalal M., Kim S., Voskuhl R.R. Testosterone therapy ameliorates experimental autoimmune encephalomyelitis and induces a T helper 2 bias in the autoantigen-specific T lymphocyte response. J. Immunol. 1997;159:3–6. doi: 10.4049/jimmunol.159.1.3. PubMed DOI
Caruso A., Di Giorgi Gerevini V., Castiglione M., Marinelli F., Tomassini V., Pozzilli C., Caricasole A., Bruno V., Caciagli F., Moretti A., et al. Testosterone amplifies excitotoxic damage of cultured oligodendrocytes. J. Neurochem. 2004;88:1179–1185. doi: 10.1046/j.1471-4159.2004.02284.x. PubMed DOI
Ghoumari A.M., Ibanez C., El-Etr M., Leclerc P., Eychenne B., O’Malley B.W., Baulieu E.E., Schumacher M. Progesterone and its metabolites increase myelin basic protein expression in organotypic slice cultures of rat cerebellum. J. Neurochem. 2003;86:848–859. doi: 10.1046/j.1471-4159.2003.01881.x. PubMed DOI
Bodhankar S., Wang C., Vandenbark A.A., Offner H. Estrogen-induced protection against experimental autoimmune encephalomyelitis is abrogated in the absence of B cells. Eur. J. Immunol. 2011;41:1165–1175. doi: 10.1002/eji.201040992. PubMed DOI PMC
Gupta M.K., Guryev O.L., Auchus R.J. 5alpha-reduced C21 steroids are substrates for human cytochrome P450c17. Arch. Biochem. Biophys. 2003;418:151–160. doi: 10.1016/j.abb.2003.07.003. PubMed DOI
Rege J., Nakamura Y., Wang T., Merchen T.D., Sasano H., Rainey W.E. Transcriptome profiling reveals differentially expressed transcripts between the human adrenal zona fasciculata and zona reticularis. J. Clin. Endocrinol. Metab. 2014;99:E518–E527. doi: 10.1210/jc.2013-3198. PubMed DOI PMC
Park-Chung M., Wu F.S., Purdy R.H., Malayev A.A., Gibbs T.T., Farb D.H. Distinct sites for inverse modulation of N-methyl-D-aspartate receptors by sulfated steroids. Mol. Pharmacol. 1997;52:1113–1123. doi: 10.1124/mol.52.6.1113. PubMed DOI
Park-Chung M., Malayev A., Purdy R.H., Gibbs T.T., Farb D.H. Sulfated and unsulfated steroids modulate gamma-aminobutyric acidA receptor function through distinct sites. Brain Res. 1999;830:72–87. doi: 10.1016/S0006-8993(99)01381-5. PubMed DOI
Smejkalova T., Korinek M., Krusek J., Hrcka Krausova B., Candelas Serra M., Hajdukovic D., Kudova E., Chodounska H., Vyklicky L. Endogenous neurosteroids pregnanolone and pregnanolone sulfate potentiate presynaptic glutamate release through distinct mechanisms. Br. J. Pharmacol. 2021;178:3888–3904. doi: 10.1111/bph.15529. PubMed DOI PMC
Labrie F. Adrenal androgens and intracrinology. Semin. Reprod. Med. 2004;22:299–309. doi: 10.1055/s-2004-861547. PubMed DOI
Majewska M.D. Steroid regulation of the GABAA receptor: Ligand binding, chloride transport and behaviour. Ciba Found. Symp. 1990;153:83–97; discussion 97–106. PubMed
Petrovic M., Sedlacek M., Horak M., Chodounska H., Vyklicky L., Jr. 20-oxo-5beta-pregnan-3alpha-yl sulfate is a use-dependent NMDA receptor inhibitor. J. Neurosci. 2005;25:8439–8450. doi: 10.1523/JNEUROSCI.1407-05.2005. PubMed DOI PMC
Johansson T., Le Greves P. The effect of dehydroepiandrosterone sulfate and allopregnanolone sulfate on the binding of [(3)H]ifenprodil to the N-methyl-d-aspartate receptor in rat frontal cortex membrane. J. Steroid Biochem. Mol. Biol. 2005;94:263–266. doi: 10.1016/j.jsbmb.2005.01.020. PubMed DOI
Barnard L., Gent R., van Rooyen D., Swart A.C. Adrenal C11-oxy C(21) steroids contribute to the C11-oxy C(19) steroid pool via the backdoor pathway in the biosynthesis and metabolism of 21-deoxycortisol and 21-deoxycortisone. J. Steroid Biochem. Mol. Biol. 2017;174:86–95. doi: 10.1016/j.jsbmb.2017.07.034. PubMed DOI
do Nascimento F.V., Piccoli V., Beer M.A., von Frankenberg A.D., Crispim D., Gerchman F. Association of HSD11B1 polymorphic variants and adipose tissue gene expression with metabolic syndrome, obesity and type 2 diabetes mellitus: A systematic review. Diabetol. Metab. Syndr. 2015;7:38. doi: 10.1186/s13098-015-0036-1. PubMed DOI PMC
Bottasso O., Bay M.L., Besedovsky H., del Rey A. The immuno-endocrine component in the pathogenesis of tuberculosis. Scand. J. Immunol. 2007;66:166–175. doi: 10.1111/j.1365-3083.2007.01962.x. PubMed DOI
Du C., Khalil M.W., Sriram S. Administration of dehydroepiandrosterone suppresses experimental allergic encephalomyelitis in SJL/J mice. J. Immunol. 2001;167:7094–7101. doi: 10.4049/jimmunol.167.12.7094. PubMed DOI
Rontzsch A., Thoss K., Petrow P.K., Henzgen S., Brauer R. Amelioration of murine antigen-induced arthritis by dehydroepiandrosterone (DHEA) Inflamm. Res. 2004;53:189–198. PubMed
Tan X.D., Dou Y.C., Shi C.W., Duan R.S., Sun R.P. Administration of dehydroepiandrosterone ameliorates experimental autoimmune neuritis in Lewis rats. J. Neuroimmunol. 2009;207:39–44. doi: 10.1016/j.jneuroim.2008.11.011. PubMed DOI
Choi I.S., Cui Y., Koh Y.A., Lee H.C., Cho Y.B., Won Y.H. Effects of dehydroepiandrosterone on Th2 cytokine production in peripheral blood mononuclear cells from asthmatics. Korean J. Intern. Med. 2008;23:176–181. doi: 10.3904/kjim.2008.23.4.176. PubMed DOI PMC
Sudo N., Yu X.N., Kubo C. Dehydroepiandrosterone attenuates the spontaneous elevation of serum IgE level in NC/Nga mice. Immunol. Lett. 2001;79:177–179. doi: 10.1016/S0165-2478(01)00285-1. PubMed DOI
Kasperska-Zajac A., Brzoza Z., Rogala B. Dehydroepiandrosterone and dehydroepiandrosterone sulphate in atopic allergy and chronic urticaria. Inflammation. 2008;31:141–145. doi: 10.1007/s10753-008-9059-1. PubMed DOI
Romagnani S., Kapsenberg M., Radbruch A., Adorini L. Th1 and Th2 cells. Res. Immunol. 1998;149:871–873. doi: 10.1016/S0923-2494(99)80016-9. PubMed DOI
Pratschke S., von Dossow-Hanfstingl V., Dietz J., Schneider C.P., Tufman A., Albertsmeier M., Winter H., Angele M.K. Dehydroepiandrosterone modulates T-cell response after major abdominal surgery. J. Surg. Res. 2014;189:117–125. doi: 10.1016/j.jss.2014.02.002. PubMed DOI
Sterzl I., Hampl R., Sterzl J., Votruba J., Starka L. 7Beta-OH-DHEA counteracts dexamethasone induced suppression of primary immune response in murine spleenocytes. J. Steroid Biochem. Mol. Biol. 1999;71:133–137. doi: 10.1016/S0960-0760(99)00134-X. PubMed DOI
Hennebert O., Chalbot S., Alran S., Morfin R. Dehydroepiandrosterone 7alpha-hydroxylation in human tissues: Possible interference with type 1 11beta-hydroxysteroid dehydrogenase-mediated processes. J. Steroid Biochem. Mol. Biol. 2007;104:326–333. doi: 10.1016/j.jsbmb.2007.03.026. PubMed DOI
Le Mee S., Hennebert O., Ferrec C., Wulfert E., Morfin R. 7beta-Hydroxy-epiandrosterone-mediated regulation of the prostaglandin synthesis pathway in human peripheral blood monocytes. Steroids. 2008;73:1148–1159. doi: 10.1016/j.steroids.2008.05.001. PubMed DOI
Pettersson H., Lundqvist J., Norlin M. Effects of CYP7B1-mediated catalysis on estrogen receptor activation. Biochim. Biophys. Acta. 2010;1801:1090–1097. doi: 10.1016/j.bbalip.2010.05.011. PubMed DOI
Tang W., Eggertsen G., Chiang J.Y., Norlin M. Estrogen-mediated regulation of CYP7B1: A possible role for controlling DHEA levels in human tissues. J. Steroid Biochem. Mol. Biol. 2006;100:42–51. doi: 10.1016/j.jsbmb.2006.02.005. PubMed DOI
Ahlem C.N., Page T.M., Auci D.L., Kennedy M.R., Mangano K., Nicoletti F., Ge Y., Huang Y., White S.K., Villegas S., et al. Novel components of the human metabolome: The identification, characterization and anti-inflammatory activity of two 5-androstene tetrols. Steroids. 2011;76:145–155. doi: 10.1016/j.steroids.2010.10.005. PubMed DOI
Reading C.L., Frincke J.M., White S.K. Molecular targets for 17alpha-ethynyl-5-androstene-3beta,7beta,17beta-triol, an anti-inflammatory agent derived from the human metabolome. PLoS ONE. 2012;7:e32147. doi: 10.1371/journal.pone.0032147. PubMed DOI PMC
Reddy D.S. Neurosteroids: Endogenous role in the human brain and therapeutic potentials. Prog. Brain Res. 2010;186:113–137. PubMed PMC
Balan I., Beattie M.C., O’Buckley T.K., Aurelian L., Morrow A.L. Endogenous Neurosteroid (3alpha,5alpha)3-Hydroxypregnan-20-one Inhibits Toll-like-4 Receptor Activation and Pro-inflammatory Signaling in Macrophages and Brain. Sci. Rep. 2019;9:1220. doi: 10.1038/s41598-018-37409-6. PubMed DOI PMC
Lapchak P.A. The neuroactive steroid 3-alpha-ol-5-beta-pregnan-20-one hemisuccinate, a selective NMDA receptor antagonist improves behavioral performance following spinal cord ischemia. Brain Res. 2004;997:152–158. doi: 10.1016/j.brainres.2003.10.047. PubMed DOI
Kudova E., Mares P., Hill M., Vondrakova K., Tsenov G., Chodounska H., Kubova H., Vales K. The Neuroactive Steroid Pregnanolone Glutamate: Anticonvulsant Effect, Metabolites and Its Effect on Neurosteroid Levels in Developing Rat Brains. Pharmaceuticals. 2021;15:49. doi: 10.3390/ph15010049. PubMed DOI PMC
Abramova V., Leal Alvarado V., Hill M., Smejkalova T., Maly M., Vales K., Dittert I., Bozikova P., Kysilov B., Hrcka Krausova B., et al. Effects of Pregnanolone Glutamate and Its Metabolites on GABA(A) and NMDA Receptors and Zebrafish Behavior. ACS Chem. Neurosci. 2023;14:1870–1883. doi: 10.1021/acschemneuro.3c00131. PubMed DOI PMC
Munawar Cheema M., Macakova Kotrbova Z., Hrcka Krausova B., Adla S.K., Slavikova B., Chodounska H., Kratochvil M., Vondrasek J., Sedlak D., Balastik M., et al. 5beta-reduced neuroactive steroids as modulators of growth and viability of postnatal neurons and glia. J. Steroid Biochem. Mol. Biol. 2024;239:106464. doi: 10.1016/j.jsbmb.2024.106464. PubMed DOI
Akwa Y. Steroids and Alzheimer’s Disease: Changes Associated with Pathology and Therapeutic Potential. Int. J. Mol. Sci. 2020;21:4812. doi: 10.3390/ijms21134812. PubMed DOI PMC
Hill M., Parizek A., Simjak P., Koucky M., Anderlova K., Krejci H., Vejrazkova D., Ondrejikova L., Cerny A., Kancheva R. Steroids, steroid associated substances and gestational diabetes mellitus. Physiol. Res. 2021;70((Suppl. 4)):S617–S634. doi: 10.33549/physiolres.934794. PubMed DOI PMC
Burczynski M.E., Sridhar G.R., Palackal N.T., Penning T.M. The reactive oxygen species--and Michael acceptor-inducible human aldo-keto reductase AKR1C1 reduces the alpha,beta-unsaturated aldehyde 4-hydroxy-2-nonenal to 1,4-dihydroxy-2-nonene. J. Biol. Chem. 2001;276:2890–2897. doi: 10.1074/jbc.M006655200. PubMed DOI
Murgia F., Giagnoni F., Lorefice L., Caria P., Dettori T., D’Alterio M.N., Angioni S., Hendren A.J., Caboni P., Pibiri M., et al. Sex Hormones as Key Modulators of the Immune Response in Multiple Sclerosis: A Review. Biomedicines. 2022;10:3107. doi: 10.3390/biomedicines10123107. PubMed DOI PMC
Xu C., Liu W., You X., Leimert K., Popowycz K., Fang X., Wood S.L., Slater D.M., Sun Q., Gu H., et al. PGF2alpha modulates the output of chemokines and pro-inflammatory cytokines in myometrial cells from term pregnant women through divergent signaling pathways. Mol. Hum. Reprod. 2015;21:603–614. doi: 10.1093/molehr/gav018. PubMed DOI PMC
Zheng L., Fei J., Feng C.M., Xu Z., Fu L., Zhao H. Serum 8-iso-PGF2alpha Predicts the Severity and Prognosis in Patients With Community-Acquired Pneumonia: A Retrospective Cohort Study. Front. Med. 2021;8:633442. doi: 10.3389/fmed.2021.633442. PubMed DOI PMC
Sharma I., Dhaliwal L.K., Saha S.C., Sangwan S., Dhawan V. Role of 8-iso-prostaglandin F2alpha and 25-hydroxycholesterol in the pathophysiology of endometriosis. Fertil. Steril. 2010;94:63–70. doi: 10.1016/j.fertnstert.2009.01.141. PubMed DOI
Tchernof A., Mansour M.F., Pelletier M., Boulet M.M., Nadeau M., Luu-The V. Updated survey of the steroid-converting enzymes in human adipose tissues. J. Steroid Biochem. Mol. Biol. 2015;147:56–69. doi: 10.1016/j.jsbmb.2014.11.011. PubMed DOI
Nakamura Y., Hornsby P.J., Casson P., Morimoto R., Satoh F., Xing Y., Kennedy M.R., Sasano H., Rainey W.E. Type 5 17beta-hydroxysteroid dehydrogenase (AKR1C3) contributes to testosterone production in the adrenal reticularis. J. Clin. Endocrinol. Metab. 2009;94:2192–2198. doi: 10.1210/jc.2008-2374. PubMed DOI PMC
Ostinelli G., Vijay J., Vohl M.C., Grundberg E., Tchernof A. AKR1C2 and AKR1C3 expression in adipose tissue: Association with body fat distribution and regulatory variants. Mol. Cell Endocrinol. 2021;527:111220. doi: 10.1016/j.mce.2021.111220. PubMed DOI PMC
Rizner T.L., Penning T.M. Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism. Steroids. 2014;79:49–63. doi: 10.1016/j.steroids.2013.10.012. PubMed DOI PMC
Luu-The V. Assessment of steroidogenesis and steroidogenic enzyme functions. J. Steroid Biochem. Mol. Biol. 2013;137:176–182. doi: 10.1016/j.jsbmb.2013.05.017. PubMed DOI
Miller W.L., Auchus R.J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 2011;32:81–151. doi: 10.1210/er.2010-0013. PubMed DOI PMC
Thompson A.J., Banwell B.L., Barkhof F., Carroll W.M., Coetzee T., Comi G., Correale J., Fazekas F., Filippi M., Freedman M.S., et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–173. doi: 10.1016/S1474-4422(17)30470-2. PubMed DOI
Hill M., Hana V., Jr., Velikova M., Parizek A., Kolatorova L., Vitku J., Skodova T., Simkova M., Simjak P., Kancheva R., et al. A method for determination of one hundred endogenous steroids in human serum by gas chromatography-tandem mass spectrometry. Physiol. Res. 2019;68:179–207. doi: 10.33549/physiolres.934124. PubMed DOI