Neural Dynamics of Visual Stream Interactions During Memory-Guided Actions Investigated by Intracranial EEG

. 2025 Aug ; 41 (8) : 1347-1363. [epub] 20250317

Jazyk angličtina Země Singapur Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40095210
Odkazy

PubMed 40095210
PubMed Central PMC12314303
DOI 10.1007/s12264-025-01371-x
PII: 10.1007/s12264-025-01371-x
Knihovny.cz E-zdroje

The dorsal and ventral visual streams have been considered to play distinct roles in visual processing for action: the dorsal stream is assumed to support real-time actions, while the ventral stream facilitates memory-guided actions. However, recent evidence suggests a more integrated function of these streams. We investigated the neural dynamics and functional connectivity between them during memory-guided actions using intracranial EEG. We tracked neural activity in the inferior parietal lobule in the dorsal stream, and the ventral temporal cortex in the ventral stream as well as the hippocampus during a delayed action task involving object identity and location memory. We found increased alpha power in both streams during the delay, indicating their role in maintaining spatial visual information. In addition, we recorded increased alpha power in the hippocampus during the delay, but only when both object identity and location needed to be remembered. We also recorded an increase in theta band phase synchronization between the inferior parietal lobule and ventral temporal cortex and between the inferior parietal lobule and hippocampus during the encoding and delay. Granger causality analysis indicated dynamic and frequency-specific directional interactions among the inferior parietal lobule, ventral temporal cortex, and hippocampus that varied across task phases. Our study provides unique electrophysiological evidence for close interactions between dorsal and ventral streams, supporting an integrated processing model in which both streams contribute to memory-guided actions.

Erratum v

PubMed

Zobrazit více v PubMed

Goodale MA, Milner AD. Separate visual pathways for perception and action. Trends Neurosci 1992, 15: 20–25. PubMed

Goodale MA, Westwood DA, David Milner A. Two distinct modes of control for object-directed action. Prog Brain Res 2004, 144: 131–144. PubMed

Milner AD, Goodale MA. Two visual systems re-viewed. Neuropsychologia 2008, 46: 774–785. PubMed

Baddeley A. Working memory: Looking back and looking forward. Nat Rev Neurosci 2003, 4: 829–839. PubMed

Milner AD, Paulignan Y, Dijkerman HC, Michel F, Jeannerod M. A paradoxical improvement of misreaching in optic PubMed PMC

Singhal A, Monaco S, Kaufman LD, Culham JC. Human fMRI reveals that delayed action re-recruits visual perception. PLoS One 2013, 8: e73629. PubMed PMC

Cohen NR, Cross ES, Tunik E, Grafton ST, Culham JC. Ventral and dorsal stream contributions to the online control of immediate and delayed grasping: A TMS approach. Neuropsychologia 2009, 47: 1553–1562. PubMed

Hsieh LT, Ekstrom AD, Ranganath C. Neural oscillations associated with item and temporal order maintenance in working memory. J Neurosci 2011, 31: 10803–10810. PubMed PMC

Johnson EL, King-Stephens D, Weber PB, Laxer KD, Lin JJ, Knight RT. Spectral imprints of working memory for everyday associations in the frontoparietal network. Front Syst Neurosci 2019, 12: 65. PubMed PMC

Lee B, Kim JS, Chung CK. Parietal and medial temporal lobe interactions in working memory goal-directed behavior. Cortex 2022, 150: 126–136. PubMed

Himmelbach M, Nau M, Zündorf I, Erb M, Perenin MT, Karnath HO. Brain activation during immediate and delayed reaching in optic PubMed

Fiehler K, Bannert MM, Bischoff M, Blecker C, Stark R, Vaitl D. Working memory maintenance of grasp-target information in the human posterior parietal cortex. Neuroimage 2011, 54: 2401–2411. PubMed

Schenk T, Hesse C. Do we have distinct systems for immediate and delayed actions? A selective review on the role of visual memory in action. Cortex 2018, 98: 228–248. PubMed

Yonelinas AP. The hippocampus supports high-resolution binding in the service of perception, working memory and long-term memory. Behav Brain Res 2013, 254: 34–44. PubMed PMC

Ekstrom AD, Yonelinas AP. Precision, binding, and the hippocampus: Precisely what are we talking about? Neuropsychologia 2020, 138: 107341. PubMed PMC

Borders AA, Ranganath C, Yonelinas AP. The hippocampus supports high-precision binding in visual working memory. Hippocampus 2022, 32: 217–230. PubMed

Boran E, Fedele T, Klaver P, Hilfiker P, Stieglitz L, Grunwald T, PubMed PMC

Su M, Hu K, Liu W, Wu Y, Wang T, Cao C, PubMed PMC

Fries P. Rhythms for cognition: Communication through coherence. Neuron 2015, 88: 220–235. PubMed PMC

Pesaran B, Vinck M, Einevoll GT, Sirota A, Fries P, Siegel M, PubMed PMC

Sarnthein J, Petsche H, Rappelsberger P, Shaw GL, von Stein A. Synchronization between prefrontal and posterior association cortex during human working memory. Proc Natl Acad Sci U S A 1998, 95: 7092–7096. PubMed PMC

Solomon EA, Kragel JE, Sperling MR, Sharan A, Worrell G, Kucewicz M, PubMed PMC

Bastos AM, Schoffelen JM. A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front Syst Neurosci 2016, 9: 175. PubMed PMC

Dimakopoulos V, Mégevand P, Stieglitz LH, Imbach L, Sarnthein J. Information flows from hippocampus to auditory cortex during replay of verbal working memory items. Elife 2022, 11: e78677. PubMed PMC

Moraresku S, Vlcek K. The use of egocentric and allocentric reference frames in static and dynamic conditions in humans. Physiol Res 2020, 69: 787–801. PubMed PMC

Dempsey LA, Cooper RJ, Roque T, Correia T, Magee E, Powell S, PubMed

Peirce J, Gray JR, Simpson S, MacAskill M, Höchenberger R, Sogo H, PubMed PMC

Janca R, Tomasek M, Kalina A, Marusic P, Krsek P, Lesko R. Automated identification of stereoelectroencephalography contacts and measurement of factors influencing accuracy of frame stereotaxy. IEEE J Biomed Health Inform 2023, 27: 3326–3336. PubMed

Trongnetrpunya A, Nandi B, Kang D, Kocsis B, Schroeder CE, Ding M. Assessing granger causality in electrophysiological data: Removing the adverse effects of common signals PubMed PMC

Vlcek K, Fajnerova I, Nekovarova T, Hejtmanek L, Janca R, Jezdik P, PubMed PMC

Moraresku S, Hammer J, Janca R, Jezdik P, Kalina A, Marusic P, PubMed PMC

Gunia A, Moraresku S, Janča R, Ježdík P, Kalina A, Hammer J, PubMed

Miller KJ, Honey CJ, Hermes D, Rao RPN, DenNijs M, Ojemann JG. Broadband changes in the cortical surface potential track activation of functionally diverse neuronal populations. Neuroimage 2014, 85(Pt 2): 711–720. PubMed PMC

Janca R, Jezdik P, Cmejla R, Tomasek M, Worrell GA, Stead M, PubMed

Lachaux JP, Rodriguez E, Martinerie J, Varela FJ. Measuring phase synchrony in brain signals. Hum Brain Mapp 1999, 8: 194–208. PubMed PMC

Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011, 2011: 156869. PubMed PMC

Park YM, Park J, Baek JH, Kim SI, Kim IY, Kang JK, PubMed PMC

Jenison RL. Directional influence between the human amygdala and orbitofrontal cortex at the time of decision-making. PLoS One 2014, 9: e109689. PubMed PMC

Galati G, Lobel E, Vallar G, Berthoz A, Pizzamiglio L, Le Bihan D. The neural basis of egocentric and allocentric coding of space in humans: A functional magnetic resonance study. Exp Brain Res 2000, 133: 156–164. PubMed

Saj A, Cojan Y, Musel B, Honoré J, Borel L, Vuilleumier P. Functional neuro-anatomy of egocentric versus allocentric space representation. Neurophysiol Clin 2014, 44: 33–40. PubMed

Ruotolo F, Ruggiero G, Raemaekers M, Iachini T, van der Ham IM, Fracasso A, PubMed

Goodale MA, Haffenden A. Frames of reference for perception and action in the human visual system. Neurosci Biobehav Rev 1998, 22: 161–172. PubMed

Hay L, Redon C. Response delay and spatial representation in pointing movements. Neurosci Lett 2006, 408: 194–198. PubMed

Chen Y, Byrne P, Douglas Crawford J. Time course of allocentric decay, egocentric decay, and allocentric-to-egocentric conversion in memory-guided reach. Neuropsychologia 2011, 49: 49–60. PubMed

Ilardi CR, Iavarone A, Villano I, Rapuano M, Ruggiero G, Iachini T, PubMed

Pfurtscheller G, Stancák A Jr, Neuper C. Event-related synchronization (ERS) in the alpha band—an electrophysiological correlate of cortical idling: A review. Int J Psychophysiol 1996, 24: 39–46. PubMed

Sauseng P, Klimesch W, Doppelmayr M, Pecherstorfer T, Freunberger R, Hanslmayr S. EEG alpha synchronization and functional coupling during top-down processing in a working memory task. Hum Brain Mapp 2005, 26: 148–155. PubMed PMC

Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: The inhibition-timing hypothesis. Brain Res Rev 2007, 53: 63–88. PubMed

Klimesch W. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci 2012, 16: 606–617. PubMed PMC

Hammer J, Kajsova M, Kalina A, Krysl D, Fabera P, Kudr M, PubMed PMC

Jensen O, Gelfand J, Kounios J, Lisman JE. Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cereb Cortex 2002, 12: 877–882. PubMed

Pacheco-Estefan D, Fellner MC, Kunz L, Zhang H, Reinacher P, Roy C, PubMed PMC

Sederberg PB, Kahana MJ, Howard MW, Donner EJ, Madsen JR. PubMed PMC

Caplan JB, Glaholt MG. The roles of EEG oscillations in learning relational information. Neuroimage 2007, 38: 604–616. PubMed

Herweg NA, Solomon EA, Kahana MJ. PubMed PMC

Joensen BH, Bush D, Vivekananda U, Horner AJ, Bisby JA, Diehl B, PubMed PMC

Foxe JJ, Snyder AC. The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Front Psychol 2011, 2: 154. PubMed PMC

Babiloni C, Del Percio C, Arendt-Nielsen L, Soricelli A, Romani GL, Rossini PM, PubMed

Magosso E, De Crescenzio F, Ricci G, Piastra S, Ursino M. EEG alpha power is modulated by attentional changes during cognitive tasks and virtual reality immersion. Comput Intell Neurosci 2019, 2019: 7051079. PubMed PMC

Cichy RM, Chen Y, Haynes JD. Encoding the identity and location of objects in human LOC. NeuroImage 2011, 54: 2297–2307. PubMed

Grill-Spector K, Weiner KS. The functional architecture of the ventral temporal cortex and its role in categorization. Nat Rev Neurosci 2014, 15: 536–548. PubMed PMC

Ray D, Hajare N, Roy D, Banerjee A. Large-scale functional integration, rather than functional dissociation along dorsal and ventral streams, underlies visual perception and action. J Cogn Neurosci 2020, 32: 847–861. PubMed

Axmacher N, Mormann F, Fernández G, Cohen MX, Elger CE, Fell J. Sustained neural activity patterns during working memory in the human medial temporal lobe. J Neurosci 2007, 27: 7807–7816. PubMed PMC

Boran E, Hilfiker P, Stieglitz L, Sarnthein J, Klaver P. Persistent neuronal firing in the medial temporal lobe supports performance and workload of visual working memory in humans. Neuroimage 2022, 254: 119123. PubMed

Olson IR, Page K, Moore KS, Chatterjee A, Verfaellie M. Working memory for conjunctions relies on the medial temporal lobe. J Neurosci 2006, 26: 4596–4601. PubMed PMC

Lega BC, Jacobs J, Kahana M. Human hippocampal PubMed

Lisman JE, Jensen O. The PubMed PMC

Watrous AJ, Lee DJ, Izadi A, Gurkoff GG, Shahlaie K, Ekstrom AD. A comparative study of human and rat hippocampal low-frequency oscillations during spatial navigation. Hippocampus 2013, 23: 656–661. PubMed PMC

Hammer J, Schirrmeister RT, Hartmann K, Marusic P, Schulze-Bonhage A, Ball T. Interpretable functional specialization emerges in deep convolutional networks trained on brain signals. J Neural Eng 2022, 19. PubMed

Lachaux JP, Rudrauf D, Kahane P. Intracranial EEG and human brain mapping. J Physiol Paris 2003, 97: 613–628. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...