Neural Dynamics of Visual Stream Interactions During Memory-Guided Actions Investigated by Intracranial EEG
Jazyk angličtina Země Singapur Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40095210
PubMed Central
PMC12314303
DOI
10.1007/s12264-025-01371-x
PII: 10.1007/s12264-025-01371-x
Knihovny.cz E-zdroje
- Klíčová slova
- Alpha oscillations, Dorsal visual stream, Granger causality analysis, Intracranial EEG, Memory-guided actions, Phase-locking value, Theta oscillations, Ventral visual stream,
- MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- elektrokortikografie MeSH
- hipokampus * fyziologie MeSH
- lidé MeSH
- mladý dospělý MeSH
- paměť * fyziologie MeSH
- spánkový lalok * fyziologie MeSH
- temenní lalok * fyziologie MeSH
- zraková percepce * fyziologie MeSH
- zrakové dráhy * fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The dorsal and ventral visual streams have been considered to play distinct roles in visual processing for action: the dorsal stream is assumed to support real-time actions, while the ventral stream facilitates memory-guided actions. However, recent evidence suggests a more integrated function of these streams. We investigated the neural dynamics and functional connectivity between them during memory-guided actions using intracranial EEG. We tracked neural activity in the inferior parietal lobule in the dorsal stream, and the ventral temporal cortex in the ventral stream as well as the hippocampus during a delayed action task involving object identity and location memory. We found increased alpha power in both streams during the delay, indicating their role in maintaining spatial visual information. In addition, we recorded increased alpha power in the hippocampus during the delay, but only when both object identity and location needed to be remembered. We also recorded an increase in theta band phase synchronization between the inferior parietal lobule and ventral temporal cortex and between the inferior parietal lobule and hippocampus during the encoding and delay. Granger causality analysis indicated dynamic and frequency-specific directional interactions among the inferior parietal lobule, ventral temporal cortex, and hippocampus that varied across task phases. Our study provides unique electrophysiological evidence for close interactions between dorsal and ventral streams, supporting an integrated processing model in which both streams contribute to memory-guided actions.
3rd Faculty of Medicine Charles University Prague Czechia
Klinik für Neurochirurgie Universitätsspital Zürich Universität Zürich Zurich Switzerland
Zobrazit více v PubMed
Goodale MA, Milner AD. Separate visual pathways for perception and action. Trends Neurosci 1992, 15: 20–25. PubMed
Goodale MA, Westwood DA, David Milner A. Two distinct modes of control for object-directed action. Prog Brain Res 2004, 144: 131–144. PubMed
Milner AD, Goodale MA. Two visual systems re-viewed. Neuropsychologia 2008, 46: 774–785. PubMed
Baddeley A. Working memory: Looking back and looking forward. Nat Rev Neurosci 2003, 4: 829–839. PubMed
Milner AD, Paulignan Y, Dijkerman HC, Michel F, Jeannerod M. A paradoxical improvement of misreaching in optic PubMed PMC
Singhal A, Monaco S, Kaufman LD, Culham JC. Human fMRI reveals that delayed action re-recruits visual perception. PLoS One 2013, 8: e73629. PubMed PMC
Cohen NR, Cross ES, Tunik E, Grafton ST, Culham JC. Ventral and dorsal stream contributions to the online control of immediate and delayed grasping: A TMS approach. Neuropsychologia 2009, 47: 1553–1562. PubMed
Hsieh LT, Ekstrom AD, Ranganath C. Neural oscillations associated with item and temporal order maintenance in working memory. J Neurosci 2011, 31: 10803–10810. PubMed PMC
Johnson EL, King-Stephens D, Weber PB, Laxer KD, Lin JJ, Knight RT. Spectral imprints of working memory for everyday associations in the frontoparietal network. Front Syst Neurosci 2019, 12: 65. PubMed PMC
Lee B, Kim JS, Chung CK. Parietal and medial temporal lobe interactions in working memory goal-directed behavior. Cortex 2022, 150: 126–136. PubMed
Himmelbach M, Nau M, Zündorf I, Erb M, Perenin MT, Karnath HO. Brain activation during immediate and delayed reaching in optic PubMed
Fiehler K, Bannert MM, Bischoff M, Blecker C, Stark R, Vaitl D. Working memory maintenance of grasp-target information in the human posterior parietal cortex. Neuroimage 2011, 54: 2401–2411. PubMed
Schenk T, Hesse C. Do we have distinct systems for immediate and delayed actions? A selective review on the role of visual memory in action. Cortex 2018, 98: 228–248. PubMed
Yonelinas AP. The hippocampus supports high-resolution binding in the service of perception, working memory and long-term memory. Behav Brain Res 2013, 254: 34–44. PubMed PMC
Ekstrom AD, Yonelinas AP. Precision, binding, and the hippocampus: Precisely what are we talking about? Neuropsychologia 2020, 138: 107341. PubMed PMC
Borders AA, Ranganath C, Yonelinas AP. The hippocampus supports high-precision binding in visual working memory. Hippocampus 2022, 32: 217–230. PubMed
Boran E, Fedele T, Klaver P, Hilfiker P, Stieglitz L, Grunwald T, PubMed PMC
Su M, Hu K, Liu W, Wu Y, Wang T, Cao C, PubMed PMC
Fries P. Rhythms for cognition: Communication through coherence. Neuron 2015, 88: 220–235. PubMed PMC
Pesaran B, Vinck M, Einevoll GT, Sirota A, Fries P, Siegel M, PubMed PMC
Sarnthein J, Petsche H, Rappelsberger P, Shaw GL, von Stein A. Synchronization between prefrontal and posterior association cortex during human working memory. Proc Natl Acad Sci U S A 1998, 95: 7092–7096. PubMed PMC
Solomon EA, Kragel JE, Sperling MR, Sharan A, Worrell G, Kucewicz M, PubMed PMC
Bastos AM, Schoffelen JM. A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front Syst Neurosci 2016, 9: 175. PubMed PMC
Dimakopoulos V, Mégevand P, Stieglitz LH, Imbach L, Sarnthein J. Information flows from hippocampus to auditory cortex during replay of verbal working memory items. Elife 2022, 11: e78677. PubMed PMC
Moraresku S, Vlcek K. The use of egocentric and allocentric reference frames in static and dynamic conditions in humans. Physiol Res 2020, 69: 787–801. PubMed PMC
Dempsey LA, Cooper RJ, Roque T, Correia T, Magee E, Powell S, PubMed
Peirce J, Gray JR, Simpson S, MacAskill M, Höchenberger R, Sogo H, PubMed PMC
Janca R, Tomasek M, Kalina A, Marusic P, Krsek P, Lesko R. Automated identification of stereoelectroencephalography contacts and measurement of factors influencing accuracy of frame stereotaxy. IEEE J Biomed Health Inform 2023, 27: 3326–3336. PubMed
Trongnetrpunya A, Nandi B, Kang D, Kocsis B, Schroeder CE, Ding M. Assessing granger causality in electrophysiological data: Removing the adverse effects of common signals PubMed PMC
Vlcek K, Fajnerova I, Nekovarova T, Hejtmanek L, Janca R, Jezdik P, PubMed PMC
Moraresku S, Hammer J, Janca R, Jezdik P, Kalina A, Marusic P, PubMed PMC
Gunia A, Moraresku S, Janča R, Ježdík P, Kalina A, Hammer J, PubMed
Miller KJ, Honey CJ, Hermes D, Rao RPN, DenNijs M, Ojemann JG. Broadband changes in the cortical surface potential track activation of functionally diverse neuronal populations. Neuroimage 2014, 85(Pt 2): 711–720. PubMed PMC
Janca R, Jezdik P, Cmejla R, Tomasek M, Worrell GA, Stead M, PubMed
Lachaux JP, Rodriguez E, Martinerie J, Varela FJ. Measuring phase synchrony in brain signals. Hum Brain Mapp 1999, 8: 194–208. PubMed PMC
Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011, 2011: 156869. PubMed PMC
Park YM, Park J, Baek JH, Kim SI, Kim IY, Kang JK, PubMed PMC
Jenison RL. Directional influence between the human amygdala and orbitofrontal cortex at the time of decision-making. PLoS One 2014, 9: e109689. PubMed PMC
Galati G, Lobel E, Vallar G, Berthoz A, Pizzamiglio L, Le Bihan D. The neural basis of egocentric and allocentric coding of space in humans: A functional magnetic resonance study. Exp Brain Res 2000, 133: 156–164. PubMed
Saj A, Cojan Y, Musel B, Honoré J, Borel L, Vuilleumier P. Functional neuro-anatomy of egocentric versus allocentric space representation. Neurophysiol Clin 2014, 44: 33–40. PubMed
Ruotolo F, Ruggiero G, Raemaekers M, Iachini T, van der Ham IM, Fracasso A, PubMed
Goodale MA, Haffenden A. Frames of reference for perception and action in the human visual system. Neurosci Biobehav Rev 1998, 22: 161–172. PubMed
Hay L, Redon C. Response delay and spatial representation in pointing movements. Neurosci Lett 2006, 408: 194–198. PubMed
Chen Y, Byrne P, Douglas Crawford J. Time course of allocentric decay, egocentric decay, and allocentric-to-egocentric conversion in memory-guided reach. Neuropsychologia 2011, 49: 49–60. PubMed
Ilardi CR, Iavarone A, Villano I, Rapuano M, Ruggiero G, Iachini T, PubMed
Pfurtscheller G, Stancák A Jr, Neuper C. Event-related synchronization (ERS) in the alpha band—an electrophysiological correlate of cortical idling: A review. Int J Psychophysiol 1996, 24: 39–46. PubMed
Sauseng P, Klimesch W, Doppelmayr M, Pecherstorfer T, Freunberger R, Hanslmayr S. EEG alpha synchronization and functional coupling during top-down processing in a working memory task. Hum Brain Mapp 2005, 26: 148–155. PubMed PMC
Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: The inhibition-timing hypothesis. Brain Res Rev 2007, 53: 63–88. PubMed
Klimesch W. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci 2012, 16: 606–617. PubMed PMC
Hammer J, Kajsova M, Kalina A, Krysl D, Fabera P, Kudr M, PubMed PMC
Jensen O, Gelfand J, Kounios J, Lisman JE. Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cereb Cortex 2002, 12: 877–882. PubMed
Pacheco-Estefan D, Fellner MC, Kunz L, Zhang H, Reinacher P, Roy C, PubMed PMC
Sederberg PB, Kahana MJ, Howard MW, Donner EJ, Madsen JR. PubMed PMC
Caplan JB, Glaholt MG. The roles of EEG oscillations in learning relational information. Neuroimage 2007, 38: 604–616. PubMed
Herweg NA, Solomon EA, Kahana MJ. PubMed PMC
Joensen BH, Bush D, Vivekananda U, Horner AJ, Bisby JA, Diehl B, PubMed PMC
Foxe JJ, Snyder AC. The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Front Psychol 2011, 2: 154. PubMed PMC
Babiloni C, Del Percio C, Arendt-Nielsen L, Soricelli A, Romani GL, Rossini PM, PubMed
Magosso E, De Crescenzio F, Ricci G, Piastra S, Ursino M. EEG alpha power is modulated by attentional changes during cognitive tasks and virtual reality immersion. Comput Intell Neurosci 2019, 2019: 7051079. PubMed PMC
Cichy RM, Chen Y, Haynes JD. Encoding the identity and location of objects in human LOC. NeuroImage 2011, 54: 2297–2307. PubMed
Grill-Spector K, Weiner KS. The functional architecture of the ventral temporal cortex and its role in categorization. Nat Rev Neurosci 2014, 15: 536–548. PubMed PMC
Ray D, Hajare N, Roy D, Banerjee A. Large-scale functional integration, rather than functional dissociation along dorsal and ventral streams, underlies visual perception and action. J Cogn Neurosci 2020, 32: 847–861. PubMed
Axmacher N, Mormann F, Fernández G, Cohen MX, Elger CE, Fell J. Sustained neural activity patterns during working memory in the human medial temporal lobe. J Neurosci 2007, 27: 7807–7816. PubMed PMC
Boran E, Hilfiker P, Stieglitz L, Sarnthein J, Klaver P. Persistent neuronal firing in the medial temporal lobe supports performance and workload of visual working memory in humans. Neuroimage 2022, 254: 119123. PubMed
Olson IR, Page K, Moore KS, Chatterjee A, Verfaellie M. Working memory for conjunctions relies on the medial temporal lobe. J Neurosci 2006, 26: 4596–4601. PubMed PMC
Lega BC, Jacobs J, Kahana M. Human hippocampal PubMed
Lisman JE, Jensen O. The PubMed PMC
Watrous AJ, Lee DJ, Izadi A, Gurkoff GG, Shahlaie K, Ekstrom AD. A comparative study of human and rat hippocampal low-frequency oscillations during spatial navigation. Hippocampus 2013, 23: 656–661. PubMed PMC
Hammer J, Schirrmeister RT, Hartmann K, Marusic P, Schulze-Bonhage A, Ball T. Interpretable functional specialization emerges in deep convolutional networks trained on brain signals. J Neural Eng 2022, 19. PubMed
Lachaux JP, Rudrauf D, Kahane P. Intracranial EEG and human brain mapping. J Physiol Paris 2003, 97: 613–628. PubMed