Changes in glucose-related parameters according to LDL-cholesterol concentration ranges in non-diabetic patients

. 2025 Mar ; 23 (1) : 26-35. [epub] 20250325

Jazyk angličtina Země Polsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40145883

The study focused on the changes in C-peptide, glycemia, insulin concentration, and insulin resistance according to LDL-cholesterol concentration ranges. The metabolic profile of individuals in the Czech Republic (n = 1840) was classified by quartiles of LDL-cholesterol into four groups with the following ranges: 0.46-2.45 (n = 445), 2.46-3.00 (n = 474), 3.01-3.59 (n = 459), and 3.60-7.18 mmol/l (n = 462). The level of glucose, C-peptide, insulin, and area of parameters during OGTT and HOMA IR were compared with a relevant LDL-cholesterol range. The evaluation involved correlations between LDL-cholesterol and the above parameters, F-test and t-test. Generally, mean values of glucose homeostasis-related parameters were higher with increasing LDL-cholesterol levels, except for mean HOMA IR values which rapidly increased (2.7-3.4) between LDL-cholesterol ranges of 3.00-3.59 and 3.60-7.18 mmol/l. Glucose, C-peptide, insulin concentrations, and the area of parameters reached greater changes especially after glucose load during OGTT (p ≤ 0.001). Considerable changes were already observed for the above parameters between groups with LDL-cholesterol ranges of 2.46-3.00 and 3.01-3.59 mmol/l. HOMA IR increased with higher LDL-cholesterol concentrations, but the differences in mean values were not statistically significant. Most important differences appeared in glucose metabolism at LDL-cholesterol concentrations of 3.60-7.18 mmol/l in comparison to LDL-cholesterol lower ranges. In particular, the areas of C-peptide, glucose, and insulin ranges showed statistically significant differences between all groups with growing LDL-cholesterol ranges. The variances of HOMA IR statistically differed between groups created according to LDL-cholesterol concentrations ranges.

Zobrazit více v PubMed

Abbasi F, Tern PJ, Reaven GM (2019). Plasma glucose concentration 60 min post oral glucose load and risk of type 2 diabetes and cardiovascular disease: pathophysiological implications. Diab Vasc Dis Res 16(4): 337-343. DOI: 10.1177/1479164119827239. DOI

Branchi A, Torri A, Berra C, Colombo E, Sommariva D (2012). Changes in serum lipids and blood glucose in non-diabetic patients with metabolic syndrome after mixed meals of different composition. Nutr Metab 2012: 215052. DOI: 10.1155/2012/215052. DOI

Dannecker C, Wagner R, Peter A, Hummel J, Vosseler A, Häring HU, et al. (2021). Low-density lipoprotein cholesterol is associated with insulin secretion. J Clin Endocrinol Metab 106(6): 1576-1584. DOI: 10.1210/clinem/dgab147. DOI

Díaz-Ruiz M, Martínez-Triguero ML, López-Ruiz A, Fernández de la Cruz F, Bañuls C, Hernández-Mijares A (2019). Metabolic disorders and inflammation are associated with familial combined hyperlipemia. Clin Chim Acta 490(3): 194-199. DOI: 10.1016/j.cca.2018.09.009. DOI

Horáková D, Štěpánek L, Janout V, Janoutová J, Pastucha D, Kollárová H, et al. (2019). Optimal homeostasis model assessment of insulin resistance (HOMA-IR) cut off in Czech population. Medicina 55(5): 158. DOI: 10.3390/medicina55050158. DOI

Horáková D, Štěpánek L, Pastucha D, Janoutová J, Janout V, Kron V, et al. (2022). What are the real associations of homeostasis model assessment (HOMA) with body mass index and age? Endokrynol Pol 73(4): 736-742. DOI: 10.5603/EP.a2022.0031. DOI

IDF Diabetes Atlas. Diabetes around the world in 2021. [online] [cit. 2024-06-30]. Available from: https://www.diabetesatlas.org/en/

Ikeoka D, Krusinova E (2009). Insulin resistance and lipid metabolism. Rev Assoc Med Bras 55(3): 234. DOI: 10.1590/s0104-42302009000300003. DOI

Kim F, Tysseling KA, Rice J, Pham M, Lutfiyah H, Gallis BM, et al. (2005). Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKK beta. Arterioscler Thromb Vasc Biol 25(5): 989-994. DOI: 10.1161/01.ATV.0000160549. 60980.a8. DOI

Kim H, Haluzik M, Asghar Z, Yau D, Joseph JW, Fernandez AM, et al. (2003). Peroxisome Proliferator-Activated Receptor-α Agonist Treatment in a Transgenic Model of Type 2 Diabetes Reverses the Lipotoxic State and Improves Glucose Homeostasis. Diabetes 52(7): 1770-1778. DOI: 10.2337/diabetes.52.7.1770. DOI

Krawczyk M, Rumińska M, Witkowska-Sędek E, Majcher A, Pyrżak B (2018). Usefulness of the triglycerides to high-density lipoprotein, cholesterol ratio (TG/HDL-C) in prediction of metabolic syndrome in Polish obese children and adolescents. Acta Biochim Pol 65(4): 605-611. DOI: 10.18388/abp.2018_2649. DOI

Kruit J, Brunham L, Verchere C, Hayden M (2010). HDL and LDL cholesterol significantly influence β-cell function in type 2 diabetes mellitus. Curr Opin Lipidol 21(3): 178-185. DOI: 10.1097/MOL.0b013e328339387b. DOI

Kupsal K, Mudigonda S, Gundapaneni KK, Tupurani MA, Galimudi RK, Nyayapathi VBKS, et al. (2015). Glucotoxicity and lipotoxicity induced beta-cell apoptosis in type 2 diabetes mellitus. Int J Anal Bio-Sci 3(4): 84-89.

Martha L, Kimura T, Yoshida A, Tsunekawa K, Aoki T, Araki O, et al. (2022). Association between insulin resistance and cardinal rheological parameters in young healthy Japanese individuals during 75g oral glucose tolerance test. Endocr Metab Immune Disord Drug Targets 22(1): 125-132. DOI: 10.2174/1871530321666210720124554. DOI

Methodology of glucose, total, HDL and LDL cholesterol (2020). Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové. [online] [cit. 2024-07-30]. Available from: http://ukbd.fnhk.cz/seznam-metod.html

Parhofer KG (2015). Interaction between glucose and lipid metabolism: more than diabetic dyslipidemia. Diabetes Metab J 39(5): 353-362. DOI: 10.4093/dmj.2015.39.5.353. DOI

Perego C, Da Dalt L, Pirillo A, Galli A, Catapano AL, Norata GD (2019). Cholesterol metabolism, pancreatic β-cell function and

diabetes. Biochim Biophys Acta Mol Basis Dis 1865(9): 2149-2156. DOI: 10.1016/j.bbadis.2019.04.012. DOI

Sapkota LB, Thapa S (2017). Correlation between glycemic parameters and lipid profile in type 2 diabetic patients attending tertiary care centre in central region of Nepal. J Innov Health Inform 7(19): 20-24. DOI: 10.3126/jcmc.v7i1.17365. DOI

Sharma RB, Alonso LC (2014). Lipotoxicity in the pancreatic beta cell: not just survival and function, but proliferation as well? Curr Diab Rep 14(6): 492. DOI: 10.1007/s11892-014-0492-2. DOI

Wang S, Ji X, Zhang Z, Xue F (2020). Relationship between lipid profiles and glycemic control among patients with type 2 diabetes in Qingdao, China. Int J Environ Res Public Health 17(15): 5317. DOI: 10.3390/ijerph17155317. DOI

Wildberg Ch, Masuch A, Budde K, Kastenmüller G, Artati A, Rathmann W, et al. (2019). Plasma metabolomics to identify and stratify patients with impaired glucose tolerance. J Clin Endocrinol Metab 104(12): 6357-6370. DOI: 10.1210/jc.2019-01104. DOI

Ye R, Gordillo R, Shao M, Onodera T, Chen Z, Chen S, et al. (2018). Intracellular lipid metabolism impairs β cell compensation during diet-induced obesity. J Clin Invest 128(3): 1178-1189. DOI: 10.1172/JCI97702. DOI

Zheng S, Xu H, Zhou H, Ren X, Han T, Chen Y, et al. (2017). Associations of lipid profiles with insulin resistance and β cell function in adults with normal glucose tolerance and different categories of impaired glucose regulation. PloS One 12(2): e0172221. DOI: 10.1371/journal.pone.0172221. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...