Changes in community composition and functional diversity of European bats under climate change

. 2025 Apr 01 ; () : e70025. [epub] 20250401

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40165613

Grantová podpora
Natural Environment Research Council
NE/M018660/1, NE/S007504/1
COST ACTION CA18107 'Climate change and bats: from science to conservation - ClimBats' (https://climbats.eu/)

Climate change is predicted to drive geographical range shifts that will result in changes in species diversity and functional composition and have potential repercussions for ecosystem functioning. However, the effect of these changes on species composition and functional diversity (FD) remains unclear, especially for mammals, specifically bats. We used species distribution models and a comprehensive ecological and morphometrical trait database to estimate how projected future climate and land-use changes could influence the distribution, composition, and FD of the European bat community. Future bat assemblages were predicted to undergo substantial shifts in geographic range and trait structure. Range suitability decreased substantially in southern Europe and increased in northern latitudes. Our findings highlight the potential for climate change to drive shifts in bat FD, which has implications for ecosystem function and resilience at a continental scale. It is important to incorporate FD in conservation strategies. These efforts should target species with key functional traits predicted to be lost and areas expected to experience losses in FD. Conservation strategies should include habitat and roost protection, enhancing landscape connectivity, and international monitoring to preserve bat populations and their ecosystem services.

Cambios en la composición de la comunidad y la diversidad funcional de murciélagos europeos bajo el cambio climático Resumen Se prevé que el cambio climático provocará desplazamientos geográficos que alterarán la diversidad de las especies y su composición funcional, con posibles repercusiones en el funcionamiento de los ecosistemas. Sin embargo, el efecto de estos cambios sobre la composición de las especies y la diversidad funcional aun no es claro, especialmente en el caso de los mamíferos, en concreto los murciélagos. Utilizamos modelos de distribución de especies y una base de datos integral de rasgos ecológicos y morfométricos para estimar cómo los futuros cambios previstos en el clima y el uso del suelo podrían influir en la distribución, composición y diversidad funcional de la comunidad europea de murciélagos. Se predijo que los futuros conjuntos de murciélagos sufrirían cambios sustanciales en su distribución geográfica y en la estructura de sus atributos. La idoneidad del área de distribución disminuyó sustancialmente en el sur de Europa y aumentó en las latitudes septentrionales. Nuestros resultados ponen de relieve la posibilidad de que el cambio climático provoque cambios en la diversidad funcional de los murciélagos, lo que tiene implicaciones para la función y la resiliencia de los ecosistemas a escala continental. Es importante incorporar la diversidad funcional a las estrategias de conservación. Estos esfuerzos deberían centrarse en las especies con rasgos funcionales clave que se prevé que se pierdan y en las zonas en las que se espera que se produzcan pérdidas de diversidad funcional. Las estrategias de conservación deberían incluir la protección del hábitat y de los dormideros, la mejora de la conectividad del paisaje y el seguimiento internacional para preservar las poblaciones de murciélagos y sus servicios ecosistémicos.

Bat Conservation Ireland Dublin Ireland

BiBio Research Group Natural Sciences Museum of Granollers Granollers Spain

Center for Evolutionary Hologenomics GLOBE Institute University of Copenhagen Copenhagen Denmark

Centre d'´Ecologie et des Sciences de la Conservation Muséum national d'Histoire naturelle Centre National de la Recherche Scientifique Sorbonne Université Paris France

Centre for Bat Research and Conservation Cluj Napoca Romania

Centre for Cartography of Fauna and Flora Ljubljana Office Ljubljana Slovenia

Centre for Ecology Evolution and Environmental Changes Faculty of Sciences University of Lisbon Lisbon Portugal

CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos InBIO Laboratório Associado Universidade do Porto Vairão Portugal

Comportement et Ecologie de la Faune sauvage Auzeville Tolosane France

Conservation Biology Research Group Department of Biology University of Malta Msida Malta

Department of Biology and Biotechnologies Charles Darwin Sapienza University of Rome Rome Italy

Department of Biology Norwegian University of Science and Technology Trondheim Norway

Department of Biosciences University of Exeter Exeter UK

Department of Ecology and Evolution Estacion Biologica Doñana Sevilla Spain

Department of Global Change Ecology Universitat Wurzburg Wurzburg Germany

Department of Life Sciences Ben Gurion University of the Negev Beer Sheva Israel

Department of Parasitology and Parasitic Diseases Faculty of Veterinary Medicine University of Agricultural Sciences and Veterinary Medicine Cluj Napocac Cluj Napoca Romania

Department of Zoology and Animal Cell Biology Facultyof Science and Technology University of the BasqueCountry UPV EHU Sarriena Z G The Basque Country Leioa Spain

Department of Zoology Faculty of Science Charles University Prague Prague Czech Republic

Department of Zoology Institute of Biology and Ecology University of Pavol Jozef Šafárik Košice Slovakia

EcoHealth Alliance New York New York USA

Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences Ås Norway

Eurasia Institute of Earth Sciences Department of Ecology and Evolution Istanbul Technical University Maslak Turkey

Faculty of Agriculture Bosnia and Herzegovina University of Banja Luka Banja Luka Bosnia and Herzegovina

Faculty of Behavioural Ecology University of Wroclaw Wroclaw Poland

Faculty of Veterinary Medicine Latvia University of Life Sciences and Technologies Jelgava Latvia

Finnish Environment Institute Helsinki Finland

Finnish Museum of Natural History University of Helsinki Helsinki Finland

Geonatura Ltd Zagreb Croatia

Institute for Agriculture and Forestry Systems in the Mediterranean National Research Council of Italy Portici Italy

Institute for Environment and Nature Ministry of Economy and Sustainable Development Zagreb Croatia

Institute for the Research on Terrestrial Ecosystems Sesto Fiorentino Italy

Institute of Animal Science Warsaw University of Life Sciences Warsaw Poland

Institute of Biology University of Latvia Salaspils Latvia

Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia

Institute of Forest Ecology Slovak Academy of Sciences Zvolen Slovakia

Institute of Zoology Moldova State University Chisinau Moldova

Instituto da Conservação da Natureza e das Florestas Lisbon Portugal

Laboratory of Animal Ecology and Evolution Dipartimento di Agraria Università degli Studi di Napoli Federico 2 Portici Italy

Laboratory of Environmental Biomonitoring Bizerte Faculty of Science University of Carthage Zarzouna Tunisia

Leibniz Institute for Zoo and Wildlife Research Berlin Germany

Luxembourg Institute of Science and Technology Esch sur Alzette Luxembourg

Mammal Research Institute PAS Białowieża Poland

Mitrani Department of Desert Ecology Jacob Blaustein Institutes for Desert Research Ben Gurion University of the Negev Midreshet Ben Gurion Israel

Museum für Naturkunde Leibniz Institute for Evolution and Biodiversity Science Berlin Germany

Myotis Bat Conservation Group Miercurea Ciuc Romania

National Museum of Natural History Bulgarian Academy of Sciences Sofia Bulgaria

Natural History Museum of Crete University of Crete Heraklion Greece

Naturalia Environnement Avignon France

Nature Education Research and Consultancy van der Kooij Slattum Norway

PatriNat Paris France

Program of Hunting and Wildlife Department of Forestry Food and Agriculture Vocational School University of Çankırı Karatekin Çankırı Turkey

School of Life Sciences University of Sussex Brighton UK

Station de Biologie Marine Concarneau France

UNEP EUROBATS Secretariat Bonn Germany

Unità di Analisi e Gestione delle Risorse Ambientali Giuso Tosi Research Group Dipartimento di Scienze Teoriche e Applicate Università degli Studi dell'insubria Varese Italy

University of Ljubljana Subterranean Biology Lab Department of Biology Biotechnical Faculty Kongresni Ljubljana Slovenia

Wildlife Ecology and Conservation Lab Departamento de Zoología Facultad de Ciencias Naturales y Oceanográficas Universidad de Concepción Concepción Chile

Zobrazit více v PubMed

Aiello‐Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5), 541–545.

Ancillotto, L., Santini, L., Ranc, N., Maiorano, L., & Russo, D. (2016). Extraordinary range expansion in a common bat: The potential roles of climate change and urbanisation. Science of Nature, 103(3‐4), Article 15. https://doi.org/10.1007/s00114‐016‐1334‐7

Araújo, M. B., Anderson, R. P., Márcia Barbosa, A., Beale, C. M., Dormann, C. F., Early, R., Garcia, R. A., Guisan, A., Maiorano, L., & Naimi, B. (2019). Standards for distribution models in biodiversity assessments. Science Advances, 5(1), Article eaat4858.

Austin, G. E., & Rehfisch, M. M. (2005). Shifting nonbreeding distributions of migratory fauna in relation to climatic change. Global Change Biology, 11(1), 31–38.

Barbet‐Massin, M., & Jetz, W. (2015). The effect of range changes on the functional turnover, structure and diversity of bird assemblages under future climate scenarios. Global Change Biology, 21(8), 2917–2928.

Baselga, A., & Orme, C. D. L. (2012). Betapart: An R package for the study of beta diversity. Methods in Ecology and Evolution, 3(5), 808–812.

Beck, J., Böller, M., Erhardt, A., & Schwanghart, W. (2014). Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecological Informatics, 19, 10–15.

Biggs, C. R., Yeager, L. A., Bolser, D. G., Bonsell, C., Dichiera, A. M., Hou, Z., Keyser, S. R., Khursigara, A. J., Lu, K., Muth, A. F., Negrete, B., & Erisman, B. E. (2020). Does functional redundancy affect ecological stability and resilience? A review and meta‐analysis. Ecosphere, 11(7), Article e03184. https://doi.org/10.1002/ecs2.3184

Bilgin, R., Keşişoǧlu, A., & Rebelo, H. (2012). Distribution patterns of bats in the eastern mediterranean region through a climate change perspective. Acta Chiropterologica, 14(2), 425–437.

Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C., & Finnegan, S. (2013). Climate change and the past, present, and future of biotic interactions. Science, 341(6145), 499–504.

Blomberg, A. S., Vasko, V., Meierhofer, M. B., Johnson, J. S., Eeva, T., & Lilley, T. M. (2021). Winter activity of boreal bats. Mammalian Biology, 101(5), 609–618.

Blomberg, A. S., Vasko, V., Salonen, S., Petersons, G., & Lilley, T. M. (2021). First record of a Nathusius’ pipistrelle (Pipistrellus nathusii) overwintering at a latitude above 60°N. Mammalia, 85(1), 74–78.

Brodie, J. F., Williams, S., & Garner, B. (2021). The decline of mammal functional and evolutionary diversity worldwide. Proceedings of the National Academy of Sciences of the United States of America, 118(3), Article e1921849118. https://doi.org/10.1073/pnas.1921849118/

Cadotte, M. W., Carscadden, K., & Mirotchnick, N. (2011). Beyond species: Functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 48, 1079–1087.

Carlson, C. J., Albery, G. F., Merow, C., Trisos, C. H., Zipfel, C. M., Eskew, E. A., Olival, K. J., Ross, N., & Bansal, S. (2022). Climate change increases cross‐species viral transmission risk. Nature, 607(7919), 555–562.

Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333(6045), 1024–1026.

Clavel, J., Julliard, R., & Devictor, V. (2011). Worldwide decline of specialist species: Toward a global functional homogenization? Frontiers in Ecology and the Environment, 9(4), 222–228.

Devictor, V., Julliard, R., Couvet, D., & Jiguet, F. (2008). Birds are tracking climate warming, but not fast enough. Proceedings of the Royal Society B: Biological Sciences, 275(1652), 2743–2748.

Dullinger, S., Gattringer, A., Thuiller, W., Moser, D., Zimmermann, N. E., Guisan, A., Willner, W., Plutzar, C., Leitner, M., Mang, T., Caccianiga, M., Dirnböck, T., Ertl, S., Fischer, A., Lenoir, J., Svenning, J. C., Psomas, A., Schmatz, D. R., Silc, U., … Hülber, K. (2012). Extinction debt of high‐mountain plants under twenty‐first‐century climate change. Nature Climate Change, 2(8), 619–622.

Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range‐shifting species. Methods in Ecology and Evolution, 1, 330–342.

Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77(4), 802–813.

Elmqvist, T., Folke, C., Nyström, M., Peterson, G., Bengtsson, J., Walker, B., & Norberg, J. (2003). Response diversity, ecosystem change, and resilience. Frontiers in Ecology and the Environment, 1(9), 488–494.

Festa, F., Ancillotto, L., Santini, L., Pacifici, M., Rocha, R., Toshkova, N., Amorim, F., Benítez‐López, A., Domer, A., Hamidović, D., Kramer‐Schadt, S., Mathews, F., Radchuk, V., Rebelo, H., Ruczynski, I., Solem, E., Tsoar, A., Russo, D., & Razgour, O. (2022). Bat responses to climate change: A systematic review. Biological Reviews, 98(1), 19–33. https://doi.org/10.1111/brv.12893

Fjelldal, M. A., Muller, A. S., Ratikainen, I. I., Stawski, C., & Wright, J. (2023). The small‐bat‐in‐summer paradigm: Energetics and adaptive behavioural routines of bats investigated through a stochastic dynamic model. Journal of Animal Ecology, 92(10), 2078–2093.

Fleming, T. H., Eby, P., Kunz, T. H., & Fenton, M. B. (2003). Ecology of bat migration. Bat Ecology, 156, 164–165.

Forister, M. L., Pelton, E. M., & Black, S. H. (2019). Declines in insect abundance and diversity: We know enough to act now. Conservation Science and Practice, 1(8), Article e80.

Frank, E. G. (2024). The economic impacts of ecosystem disruptions: Costs from substituting biological pest control. Science, 385(6713), Article eadg0344.

Frey‐Ehrenbold, A., Bontadina, F., Arlettaz, R., & Obrist, M. K. (2013). Landscape connectivity, habitat structure and activity of bat guilds in farmland‐dominated matrices. Journal of Applied Ecology, 50(1), 252–261.

Frick, W. F., Kingston, T., & Flanders, J. (2020). A review of the major threats and challenges to global bat conservation. Annals of the New York Academy of Sciences, 1469(1), 5–25.

Froidevaux, J. S. P., Toshkova, N., Barbaro, L., Benítez‐López, A., Kerbiriou, C., Le Viol, I., Pacifici, M., Santini, L., Stawski, C., Russo, D., Dekker, J., Alberdi, A., Amorim, F., Ancillotto, L., Barré, K., Bas, Y., Cantú‐Salazar, L., Dechmann, D. K. N., Devaux, T., … Razgour, O. (2023). A species‐level trait dataset of bats in Europe and beyond. Scientific Data, 10, Article 253. https://doi.org/10.1038/s41597‐023‐02157‐4

Gallagher, R. V., Hughes, L., & Leishman, M. R. (2013). Species loss and gain in communities under future climate change: Consequences for functional diversity. Ecography, 36(5), 531–540.

García‐Mudarra, J. L., Ibáñez, C., & Juste, J. (2009). The Straits of Gibraltar: Barrier or bridge to Ibero‐Moroccan bat diversity? Biological Journal of the Linnean Society, 96(2), 434–450.

Gladstone‐Gallagher, R. V., Pilditch, C. A., Stephenson, F., & Thrush, S. F. (2019). Linking traits across ecological scales determines functional resilience. Trends in Ecology and Evolution, 34(12), 1080–1091.

Hackländer, K., & Zachos, F. E. (2020). The new handbook of the mammals of Europe: Background and introduction. In K. Hackländer & F. E. Zachos (Eds.), Mammals of Europe—Past, present, and future (pp. 1–7). Springer.

Hall, L. K., Lambert, C. T., Larsen, R. T., Knight, R. N., & McMillan, B. R. (2016). Will climate change leave some desert bat species thirstier than others? Biological Conservation, 201, 284–292.

Hickling, R., Roy, D. B., Hill, J. K., & Thomas, C. D. (2005). A northward shift of range margins in British Odonata. Global Change Biology, 11(3), 502–506.

Hijmans, R. J., Phillips, S., Leathwick, J., Elith, J., & Hijmans, M. R. J. (2017). Package ‘dismo’. Circles, 9, 1–68.

Hijmans, R. J., Van Etten, J., Cheng, J., Mattiuzzi, M., Sumner, M., Greenberg, J. A., Lamigueiro, O. P., Bevan, A., Racine, E. B., & Shortridge, A. (2015). Package ‘raster’. R package 734:473.

Hoban, S., Archer, F. I., Bertola, L. D., Bragg, J. G., Breed, M. F., Bruford, M. W., Coleman, M. A., Ekblom, R., Funk, W. C., Grueber, C. E., Hand, B. K., Jaffé, R., Jensen, E., Johnson, J. S., Kershaw, F., Liggins, L., MacDonald, A. J., Mergeay, J., Miller, J. M., … Hunter, M. E. (2022). Global genetic diversity status and trends: Towards a suite of Essential Biodiversity Variables (EBVs) for genetic composition. Biological Reviews, 97(4), 1511–1538.

Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A. J., Vandermeer, J., & Wardle, D. A. (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 75(1), 3–35.

Huntley, B., Collingham, Y. C., Willis, S. G., & Green, R. E. (2008). Potential impacts of climatic change on European breeding birds. PLoS ONE, 3(1), Article e1439. https://doi.org/10.1371/journal.pone.0001439

Hutterer, R., Ivanova, T., Meyer‐Cords, C., & Rodrigues, L. (2005). Bat migrations in Europe: A review of banding data and literature. BfN‐Schriftenvertrieb im Landwirtschaftsverlag.

IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (T. F. Stocker, D. Qin, G.‐K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al., Eds.). Cambridge University Press. https://www.ipcc.ch/report/ar5/wg1/

IPCC. (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (H.‐O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, et al., Eds.). Cambridge University Press. https://doi.org/10.1017/9781009325844

IUCN. (2022). The IUCN Red List of Threatened Species. Version 2022‐2. https://www.iucnredlist.org

Jetz, W., Wilcove, D. S., & Dobson, A. P. (2007). Projected impacts of climate and land‐use change on the global diversity of birds. PLoS Biology, 5(6), Article e157.

Jones, G., Jacobs, D. S., Kunz, T. H., Wilig, M. R., & Racey, P. A. (2009). Carpe noctem: The importance of bats as bioindicators. Endangered Species Research, 8(1–2), 93–115.

Jones, G., & Rydell, J. (1994). Foraging strategy and predation risk as factors influencing emergence time in echolocating bats. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 346, 445–455.

Kahmen, A., Perner, J., & Buchmann, N. (2005). Diversity‐dependent productivity in semi‐natural grasslands following climate perturbations. Functional Ecology, 19(4), 594–601.

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria‐Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth's land surface areas. Scientific Data, 4, Article 170122. https://doi.org/10.1038/sdata.2017.122

Kellomäki, S., Strandman, H., Nuutinen, T., Peltola, H., Korhonen, K. T., & Väisänen, H. (2005). Adaptation of forest ecosystems, forests and forestry to climate change (FINADAPT Working Paper 4; Mimeographs 334). Finnish Environment Institute.

Kerr, J., & Packer, L. (1998). The impact of climate change on mammal diversity in Canada. Environmental Monitoring and Assessment, 49, 263–270.

Korine, C., Adams, R., Russo, D., Fisher‐Phelps, M., & Jacobs, D. (2016). Bats and water: Anthropogenic alterations threaten global bat populations. In C. Voigt & T. Kingston (Eds.), Bats in the Anthropocene: Conservation of bats in a changing world (pp. 215–241). Springer.

Krauel, J. J., Westbrook, J. K., & Mccracken, G. F. (2015). Weather‐driven dynamics in a dual‐migrant system: Moths and bats. Journal of Animal Ecology, 84(3), 604–614.

Kunz, T. H., de Torrez, E. B., Bauer, D., Lobova, T., & Fleming, T. H. (2011). Ecosystem services provided by bats. Annals of the New York Academy of Sciences, 1223(1), 1–38.

Laliberté, E., & Legendre, P. (2010). A distance‐based framework for measuring functional diversity from multiple traits. Ecology, 91(1), 299–305.

Laliberté, E., Legendre, P., Shipley, B., & Laliberté, M. E. (2014). Package ‘fd’: Measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0‐12.

Lek, S., & Guégan, J.‐F. (1999). Artificial neural networks as a tool in ecological modelling, an introduction. Ecological Modelling, 120(2–3), 65–73.

Levinsky, I., Skov, F., Svenning, J. C., & Rahbek, C. (2007). Potential impacts of climate change on the distributions and diversity patterns of European mammals. Biodiversity and Conservation, 16(13), 3803–3816. https://doi.org/10.1007/s10531‐007‐9181‐7

Liira, J., & Jürjendal, I. (2023). Are bees attracted by flower richness? Implications for ecosystem service‐based policy. Ecological Indicators, 154, Article 110927.

Liu, C., White, M., Newell, G., & Griffioen, P. (2013). Species distribution modelling for conservation planning in Victoria, Australia. Ecological Modelling, 249, 68–74.

Loeb, S. C., & Winters, E. A. (2013). Indiana bat summer maternity distribution: Effects of current and future climates. Ecology and Evolution, 3(1), 103–114. https://doi.org/10.1002/ece3.440

Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J. P., Hector, A., Hooper, D. U., Huston, M. A., Raffaelli, D., & Schmid, B. (2001). Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science, 294(5543), 804–808.

Lundy, M., Montgomery, I., & Russ, J. (2010). Climate change‐linked range expansion of Nathusius’ pipistrelle bat, Pipistrellus nathusii (Keyserling & Blasius, 1839). Journal of Biogeography, 37(12), 2232–2242.

Maclean, I. M. D., & Wilson, R. J. (2011). Recent ecological responses to climate change support predictions of high extinction risk. Proceedings of the National Academy of Sciences of the United States of America, 108(30), 12337–12342.

Maiorano, L., Falcucci, A., Zimmermann, N. E., Psomas, A., Pottier, J., Baisero, D., Rondinini, C., Guisan, A., & Boitani, L. (2011). The future of terrestrial mammals in the Mediterranean basin under climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1578), 2681–2692.

Mäntylä, E., Klemola, T., & Laaksonen, T. (2011). Birds help plants: A meta‐analysis of top‐down trophic cascades caused by avian predators. Oecologia, 165(1), 143–151.

Maxwell, S. L., Fuller, R. A., Brooks, T. M., & Watson, J. E. M. (2016). Biodiversity: The ravages of guns, nets and bulldozers. Nature, 536(7615), 143–145.

McCarthy, N., Lipper, L., & Branca, G. (2011). Climate smart agriculture: Smallholder adoption and implications for climate change adaptation and mitigation. FAO Mitigation of Climate Change in Agriculture Working Paper.

McCarty, J. P. (2001). Consecuencias Biológicas de Cambios Climáticos Recientes [Ecological consequences of recent climate change]. Conservation Biology, 15(2), 320–331.

McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models. 2nd Edition, Chapman and Hall, London. https://doi.org/10.1007/978‐1‐4899‐3242‐6

McKinney, M. L., & Lockwood, J. L. (1999). Biotic homogenization: A few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution, 14(11), 450–453.

Meehl, G. A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J. F. B., Stouffer, R. J., & Taylor, K. E. (2007). The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bulletin of the American Meteorological Society, 88(9), 1383–1394.

Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography, 36(10), 1058–1069.

Mundinger, C., Scheuerlein, A., & Kerth, G. (2021). Long‐term study shows that increasing body size in response to warmer summers is associated with a higher mortality risk in a long‐lived bat species. Proceedings of the Royal Society B: Biological Sciences, 288(1952), Article 20210508.

Pacifici, M., Visconti, P., Butchart, S. H. M., Watson, J. E. M., Cassola, F. M., & Rondinini, C. (2017). Species’ traits influenced their response to recent climate change. Nature Climate Change, 7(3), 205–208.

Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J. K., Thomas, C. D., Descimon, H., Huntley, B., Kaila, L., Kullberg, J., & Tammaru, T. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399(6736), 579–583.

Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change. Nature, 421, 37–42.

Pawluk, M., Fujiwara, M., & Martinez‐Andrade, F. (2022). Climate change linked to functional homogenization of a subtropical estuarine system. Ecology and Evolution, 12(4), Article e8783. https://doi.org/10.1002/ece3.8783

Penone, C., Davidson, A. D., Shoemaker, K. T., Di Marco, M., Rondinini, C., Brooks, T. M., Young, B. E., Graham, C. H., & Costa, G. C. (2014). Imputation of missing data in life‐history trait datasets: Which approach performs the best? Methods in Ecology and Evolution, 5(9), 961–970.

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259.

Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Grewal, A. S., Srivastav, A. L., & Kaushal, J. (2021). An extensive review on the consequences of chemical pesticides on human health and environment. Journal of Cleaner Production, 283, Article 124657.

Razgour, O., Juste, J., Ibáñez, C., Kiefer, A., Rebelo, H., Puechmaille, S. J., Arlettaz, R., Burke, T., Dawson, D. A., Beaumont, M., & Jones, G. (2013). The shaping of genetic variation in edge‐of‐range populations under past and future climate change. Ecology Letters, 16(10), pp.1258–1266.

Razgour, O. (2015). Beyond species distribution modeling: A landscape genetics approach to investigating range shifts under future climate change. Ecological Informatics, 30, 250–256.

Razgour, O., Persey, M., Shamir, U., & Korine, C. (2018). The role of climate, water and biotic interactions in shaping biodiversity patterns in arid environments across spatial scales. Diversity and Distributions, 24(10), 1440–1452.

Rebelo, H., Tarroso, P., & Jones, G. (2010). Predicted impact of climate change on European bats in relation to their biogeographic patterns. Global Change Biology, 16(2), 561–576.

Rebelo, H., Froufe, E., Ferrand, N., & Jones, G. (2012). Integrating molecular ecology and predictive modelling: implications for the conservation of the barbastelle bat (Barbastella barbastellus) in Portugal. European Journal of Wildlife Research, 58, pp. 721–732.

Robillard, C. M., Coristine, L. E., Soares, R. N., & Kerr, J. T. (2015). Facilitating climate‐change‐induced range shifts across continental land‐use barriers. Conservation Biology, 29(6), 1586–1595.

Rosenfeld, J. S. (2002). Functional redundancy in ecology and conservation. Oikos, 98(1), 156–162.

Rowe, R. J., Finarelli, J. A., & Rickart, E. A. (2010). Range dynamics of small mammals along an elevational gradient over an 80‐year interval. Global Change Biology, 16(11), 2930–2943.

Roy, D. B., Oliver, T. H., Botham, M. S., Beckmann, B., Brereton, T., Dennis, R. L. H., Harrower, C., Phillimore, A. B., & Thomas, J. A. (2015). Similarities in butterfly emergence dates among populations suggest local adaptation to climate. Global Change Biology, 21(9), 3313–3322.

Russo, D., & Cistrone, L. (2023a). Rhinolophus mehelyi (Europe assessment). The IUCN Red List of Threatened Species 2023: e.T19515A216726767. International Union for Conservation of Nature.

Russo, D., & Cistrone, L. (2023b). Myotis capaccinii (Europe assessment). The IUCN Red List of Threatened Species 2023: e.T14126A216724016. International Union for Conservation of Nature.

Russo, D., & Cistrone, L. (2023c). Rhinolophus blasii (Europe assessment). The IUCN Red List of Threatened Species 2023: e.T19515A216726767. International Union for Conservation of Nature.

Russo, D., & Cistrone, L. (2023). Myotis dasycneme (Europe assessment) (errata version published in 2024). The IUCN Red List of Threatened Species 2023: e.T14127A254043181. International Union for Conservation of Nature.

Sachanowicz, K., Wower, A., & Bashta, A. T. (2006). Further range extension of Pipistrellus kuhlii (Kuhl, 1817) in central and eastern Europe. Acta Chiropterologica, 8, 543–548.

Sala, O. E., Stuart Chapin, F., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber‐Sanwald, E., Huenneke, L. F., Jackson, R. B., & Kinzig, A. (2000). Global biodiversity scenarios for the year 2100. Science, 287(5459), 1770–1774.

Salicini, I., Ibáñez, C., & Juste, J. (2013). Deep differentiation between and within Mediterranean glacial refugia in a flying mammal, the Myotis nattereri bat complex. Journal of Biogeography, 40(6), pp.1182–1193.

Salinas‐Ramos, V. B., Agnelli, P., Bosso, L., Ancillotto, L., & Russo, D. (2021). Body size of Italian greater horseshoe bats (Rhinolophus ferrumequinum) increased over one century and a half: A response to climate change? Mammalian Biology, 101(6), 1127–1131.

Salinas‐Ramos, V. B., Ancillotto, L., Bosso, L., Sánchez‐Cordero, V., & Russo, D. (2020). Interspecific competition in bats: State of knowledge and research challenges. Mammal Review, 50(1), 68–81.

Schipper, A. M., Hilbers, J. P., Meijer, J. R., Antão, L. H., Benítez‐López, A., de Jonge, M. M. J., Leemans, L. H., Scheper, E., Alkemade, R., Doelman, J. C., Mylius, S., Stehfest, E., van Vuuren, D. P., van Zeist, W. J., & Huijbregts, M. A. J. (2020). Projecting terrestrial biodiversity intactness with GLOBIO 4. Global Change Biology, 26(2), 760–771.

Schmitt, L., Greenberg, R., Ibarra‐Núñez, G., Bichier, P., Gordon, C. E., & Perfecto, I. (2021). Cascading effects of birds and bats in a shaded coffee agroforestry system. Frontiers in Sustainable Food Systems, 5, Article 512998. https://doi.org/10.3389/fsufs.2021.512998

Schneider, F. D., Brose, U., Rall, B. C., & Guill, C. (2016). Animal diversity and ecosystem functioning in dynamic food webs. Nature Communications, 7, Article 12718. https://doi.org/10.1038/ncomms12718

Sherwin, H. A., Montgomery, W. I., & Lundy, M. G. (2013). The impact and implications of climate change for bats. Mammal Review, 43(3), 171–182.

Smeraldo, S., Bosso, L., Salinas‐Ramos, V. B., Ancillotto, L., Sánchez‐Cordero, V., Gazaryan, S., & Russo, D. (2021). Generalists yet different: Distributional responses to climate change may vary in opportunistic bat species sharing similar ecological traits. Mammal Review, 51(4), 571–584.

Speakman, J. R., Rydell, J., Webb, P. I., Hayes, J. P., Hays, G. C., Hulbert, I. A. R., & Mcdevitt, R. M. (2000). Activity patterns of insectivorous bats and birds in Northern Scandinavia (69° N), during continuous midsummer daylight. Oikos, 88(1), 75–86.

Spoelstra, K., van Grunsven, R. H. A., Ramakers, J. J. C., Ferguson, K. B., Raap, T., Donners, M., Veenendaal, E. M., & Visser, M. E. (2017). Response of bats to light with different spectra: Light‐shy and agile bat presence is affected by white and green, but not red light. Proceedings of the Royal Society B: Biological Sciences, 284(1855), Article 20170075. https://doi.org/10.1098/rspb.2017.0075

Stebbings, R. E., & Griffith, F. (1986). Distribution and status of bats in Europe. Institute of Terrestrial Ecology.

Stekhoven, D. J., & Bühlmann, P. (2012). MissForest—Non‐parametric missing value imputation for mixed‐type data. Bioinformatics, 28(1), 112–118.

Stewart, K., Carmona, C. P., Clements, C., Venditti, C., Tobias, J. A., & González‐Suárez, M. (2023). Functional diversity metrics can perform well with highly incomplete data sets. Methods in Ecology and Evolution, 14(11), 2856–2872.

Suominen, K. M., Vesterinen, E. J., Kivistö, I., Reiman, M., Virtanen, T., Meierhofer, M. B., Vasko, V., Sironen, T., & Lilley, T. M. (2023). Environmental features around roost sites drive species‐specific roost preferences for boreal bats. Global Ecology and Conservation, 46, Article e02589. https://doi.org/10.1016/j.gecco.2023.e02589

Tannerfeldt, M., Elmhagen, B., & Angerbjörn, A. (2002). Exclusion by interference competition? The relationship between red and arctic foxes. Oecologia, 132(2), 213–220.

Thackeray, S. J. (2016). Phenological sensitivity to climate across taxa and trophic levels. Nature, 535(7611), 241–245. https://doi.org/10.1038/nature18608

Thévenin, C., Mouchet, M., Robert, A., Kerbiriou, C., & Sarrazin, F. (2022). Functional representativeness and distinctiveness of reintroduced birds and mammals in Europe. Scientific Reports, 12(1), Article 4081. https://doi.org/10.1038/s41598‐022‐07991‐x

Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., De Siqueira, M. F., Grainger, A., & Hannah, L. (2004). Extinction risk from climate change. Nature, 427(6970), 145–148.

Thuiller, W., Araújo, M. B., Pearson, R. G., Whittaker, R. J., Brotons, L., & Lavorel, S. (2004). Uncertainty in predictions of extinction risk. Nature, 430(6995), 34–34.

Thuiller, W., Georges, D., Engler, R., Breiner, F., Georges, M. D., & Thuiller, C. W. (2016). Package ‘biomod2’: Species distribution modeling within an ensemble forecasting framework. R package.

Thuiller, W., Lavorel, S., Sykes, M. T., & Araújo, M. B. (2006). Using niche‐based modelling to assess the impact of climate change on tree functional diversity in Europe. Diversity and Distributions, 12(1), 49–60.

Valavi, R., Elith, J., Lahoz‐Monfort, J. J., & Guillera‐Arroita, G. (2019). blockCV: An R package for generating spatially or environmentally separated folds for k‐fold cross‐validation of species distribution models. Methods in Ecology and Evolution, 10(2), 225–232.

Vignali, S., Barras, A. G., Arlettaz, R., & Braunisch, V. (2020). SDMtune: An R package to tune and evaluate species distribution models. Ecology and Evolution, 10(20), 11488–11506.

Virkkala, R., Heikkinen, R. K., Leikola, N., & Luoto, M. (2008). Projected large‐scale range reductions of northern‐boreal land bird species due to climate change. Biological Conservation, 141(5), 1343–1353.

Walker, B. H. (1992). Biodiversity and ecological redundancy. Conservation Biology, 6(1), 18–23.

Walther, G.‐R., Post, E., Convey, P., Menzel, A., Parmesank, C., Beebee, T. J. C., Fromentin, J.‐M., Hoegh‐Guldberg, O., & Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 416, 389–395.

Willi, Y., Van Buskirk, J., & Hoffmann, A. A. (2006). Limits to the adaptive potential of small populations. Annual Review of Ecology, Evolution, and Systematics, 37, 433–458.

Williams, J. W., & Jackson, S. T. (2007). Novel climates, no‐analog communities, and ecological surprises. Frontiers in Ecology and the Environment, 5(9), 475–482.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...