A comparative study of deterministic and stochastic computational modeling approaches for analyzing and optimizing COVID-19 control

. 2025 Apr 05 ; 15 (1) : 11710. [epub] 20250405

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, srovnávací studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid40188294
Odkazy

PubMed 40188294
PubMed Central PMC11972319
DOI 10.1038/s41598-025-96127-y
PII: 10.1038/s41598-025-96127-y
Knihovny.cz E-zdroje

This paper presents a comparative analysis of deterministic and stochastic computational modeling approaches for the optimal control of COVID-19. We formulate a compartmental epidemic model with perturbation by white noise that incorporates various factors influencing disease transmission. By incorporating stochastic effects, the model accounts for uncertainties inherent in real-world epidemic data. We establish the mathematical properties of the model, such as well-posedness and the existence of stationary distributions, which are crucial for understanding long-term epidemic dynamics. Moreover, the study presents an optimal control strategies to mitigate the epidemic's impact, both in deterministic and stochastic sceneries. Reported data from Algeria are used to parameterize the model, ensuring its relevance and applicability to practical satiation. Through numerical simulations, the study provides insights into the effectiveness of different control measures in managing COVID-19 outbreaks. This research contributes to advancing our understanding of epidemic dynamics and informs decision-making processes for epidemic controlling interventions.

Zobrazit více v PubMed

Brauer, F., Castillo-Chavez, C. & Castillo-Chavez, C. Mathematical Models in Population Biology and Epidemiology. Vol. 2(No. 40). (Springer, 2012).

Capasso, V. Mathematical Structures of Epidemic Systems Vol. 97 (Springer, 2008).

Wang, C., Horby, P. W., Hayden, F. G. & Gao, G. F. A novel coronavirus outbreak of global health concern. Lancet395(10223), 470–473 (2020). PubMed PMC

Khan, A. A., Ullah, S. & Amin, R. Optimal control analysis of COVID-19 vaccine epidemic model: A case study. Eur. Phys. J. Plus137(1), 1–25 (2022). PubMed PMC

El Hadj Moussa, Y., Boudaoui, A., Ullah, S., Muzammil, K. & Bilal Riaz, M. Application of fractional optimal control theory for the mitigating of novel coronavirus in Algeria. Results Phys.39, 105651 (2022). PubMed PMC

Parhusip, H. A., Trihandaru, S., Wicaksono, B. A. A., Indrajaya, D., Sardjono, Y., & Vyas, O. P. Susceptible vaccine infected removed (SVIR) model for COVID-19 cases in Indonesia. Sci. Technol. Indonesia7(3) (2022).

Al-arydah, M. Mathematical modeling and optimal control for COVID-19 with population behavior. Math. Methods Appl. Sci.46, 19184–19198 (2023).

Amir, K., Ghulam, H., Mostafa, Z., Gul, Z. & Wan-nasingha, H.U. A stochastic SACR epidemic model for HBV transmission. J. Biol. Dyn. 14(1), 788–801 (2020). PubMed

Anwarud, D. & Yongjin, L. Lévy noise impact on a stochastic hepatitis B epidemic model under real statistical data and its fractal-fractional Atangana-Baleanu order model. Phys. Scr. (2021).

Din, Anwarud & Li, Yongjin. Stationary distribution extinction and optimal control for the stochastic hepatitis B epidemic model with partial immunity. Phys. Scr.96, 074005 (2021).

Alqahtani, R. T. & Ajbar, A. Study of dynamics of a COVID-19 model for Saudi Arabia with vaccination rate, saturated treatment function and saturated incidence rate. Mathematics9, 3134 (2021).

Alshehri, A. & Ullah, S. A numerical study of COVID-19 epidemic model with vaccination and diffusion. Math. Biosci. Eng20(3), 4643–4672 (2023). PubMed

Mao, X., Marion, G. & Renshaw, E. Environmental Brownian noise suppresses explosions in population dynamics. Stoch. Process. Heir Appl.97(1), 95–110 (2002).

Settati, A. & Lahrouz, A. Stationary distribution of stochastic population systems under regime switching. Appl. Math. Comput.244, 235–243 (2014).

El Koufi, A., Adnani, J., Bennar, A., & Yousfi, N. Dynamics of a stochastic SIR epidemic model driven by Levy jumps with ‘ saturated incidence rate and saturated treatment function. Stoch. Anal. Appl. 1–19 (2021).

Rajasekar, S. P. & Pitchaimani, M. Ergodic stationary distribution and extinction of a stochastic SIRS epidemic model with logistic growth and nonlinear incidence. Appl. Math. Comput.377, 125143 (2020).

Alshammari, F. S., Akyildiz, F. T., Khan, M. A., Din, A. & Sunthrayuth, P. A stochastic mathematical model for understanding the COVID-19 infection using real data. Symmetry14, 2521 (2022).

Liu, P. & Tan, X. Dynamics analysis of a class of stochastic SEIR models with saturation incidence rate. Symmetry14, 2414 (2022).

Zhu, J. et al. A novel numerical solution of nonlinear stochastic model for the propagation of malicious codes in wireless sensor networks using a high order spectral collocation technique. Sci. Rep.15(1), 228 (2025). PubMed PMC

Din, Anwarud, Li, Yongjin, Khan, Tahir & Zaman, Gul. Mathematical analysis of spread and control of the novel corona virus (COVID-19) in China. Chaos Solitons Fract.141, 110286 (2020). PubMed PMC

Abioye, A.I. et al Mathematical model of COVID-19 in Nigeria with optimal control. Results Phys.28, 104598 (2021). PubMed PMC

Lestari, D. et al. A minimum principle for stochastic control of hepatitis C epidemic model. Bound Value Probl.2023, 52 (2023).

Jia, Panpan Wangand Jianwen. Stationary distribution of a stochastic SIRD epidemic model of Ebola with double saturated incidence rates and vaccination. Adv. Differ. Equ.2019, 433 (2019).

Driessche,, P. & Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci.180, 29–48 (2002). PubMed

Rihan, F. A., Alsakaji, H. J., & Rajivganthi, C. Stochastic SIRC epidemic model with time-delay for COVID-19. Adv. Differ. Equ. (2020). PubMed PMC

Fleming, W. H., & Rishel, R. W. Deterministic and Stochastic Optimal Control (Springer, 1975).

COVID-19 in Algeria. https://www.worldometers.info/coronavirus/country/algeria/.

Samsuzzoha, Md., Singh, M. & Lucy, D. Uncertainty and sensitivity analysis of the basic reproduction number of a vaccinated epidemic model of influenza. Appl. Math. Model.37, 903–915 (2013).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...