A comparative study of deterministic and stochastic computational modeling approaches for analyzing and optimizing COVID-19 control
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, srovnávací studie
PubMed
40188294
PubMed Central
PMC11972319
DOI
10.1038/s41598-025-96127-y
PII: 10.1038/s41598-025-96127-y
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19 stochastic modeling, Extinction, Simulation, Stationary distribution, Stochastic optimized control,
- MeSH
- COVID-19 * epidemiologie prevence a kontrola přenos MeSH
- lidé MeSH
- počítačová simulace MeSH
- SARS-CoV-2 MeSH
- stochastické procesy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
This paper presents a comparative analysis of deterministic and stochastic computational modeling approaches for the optimal control of COVID-19. We formulate a compartmental epidemic model with perturbation by white noise that incorporates various factors influencing disease transmission. By incorporating stochastic effects, the model accounts for uncertainties inherent in real-world epidemic data. We establish the mathematical properties of the model, such as well-posedness and the existence of stationary distributions, which are crucial for understanding long-term epidemic dynamics. Moreover, the study presents an optimal control strategies to mitigate the epidemic's impact, both in deterministic and stochastic sceneries. Reported data from Algeria are used to parameterize the model, ensuring its relevance and applicability to practical satiation. Through numerical simulations, the study provides insights into the effectiveness of different control measures in managing COVID-19 outbreaks. This research contributes to advancing our understanding of epidemic dynamics and informs decision-making processes for epidemic controlling interventions.
Department of Mathematics University of Peshawar Peshawar KP 25000 Pakistan
Faculty of Education Nangrahar University Nangrahar Afghanistan
IT4Innovations VSB Technical University of Ostrava Ostrava Czech Republic
Jadara University Research Center Jadara University Jadara Jordan
Laboratory of Mathematics Modeling and Applications University of Adrar Adrar Algeria
Zobrazit více v PubMed
Brauer, F., Castillo-Chavez, C. & Castillo-Chavez, C. Mathematical Models in Population Biology and Epidemiology. Vol. 2(No. 40). (Springer, 2012).
Capasso, V. Mathematical Structures of Epidemic Systems Vol. 97 (Springer, 2008).
Wang, C., Horby, P. W., Hayden, F. G. & Gao, G. F. A novel coronavirus outbreak of global health concern. Lancet395(10223), 470–473 (2020). PubMed PMC
Khan, A. A., Ullah, S. & Amin, R. Optimal control analysis of COVID-19 vaccine epidemic model: A case study. Eur. Phys. J. Plus137(1), 1–25 (2022). PubMed PMC
El Hadj Moussa, Y., Boudaoui, A., Ullah, S., Muzammil, K. & Bilal Riaz, M. Application of fractional optimal control theory for the mitigating of novel coronavirus in Algeria. Results Phys.39, 105651 (2022). PubMed PMC
Parhusip, H. A., Trihandaru, S., Wicaksono, B. A. A., Indrajaya, D., Sardjono, Y., & Vyas, O. P. Susceptible vaccine infected removed (SVIR) model for COVID-19 cases in Indonesia. Sci. Technol. Indonesia7(3) (2022).
Al-arydah, M. Mathematical modeling and optimal control for COVID-19 with population behavior. Math. Methods Appl. Sci.46, 19184–19198 (2023).
Amir, K., Ghulam, H., Mostafa, Z., Gul, Z. & Wan-nasingha, H.U. A stochastic SACR epidemic model for HBV transmission. J. Biol. Dyn. 14(1), 788–801 (2020). PubMed
Anwarud, D. & Yongjin, L. Lévy noise impact on a stochastic hepatitis B epidemic model under real statistical data and its fractal-fractional Atangana-Baleanu order model. Phys. Scr. (2021).
Din, Anwarud & Li, Yongjin. Stationary distribution extinction and optimal control for the stochastic hepatitis B epidemic model with partial immunity. Phys. Scr.96, 074005 (2021).
Alqahtani, R. T. & Ajbar, A. Study of dynamics of a COVID-19 model for Saudi Arabia with vaccination rate, saturated treatment function and saturated incidence rate. Mathematics9, 3134 (2021).
Alshehri, A. & Ullah, S. A numerical study of COVID-19 epidemic model with vaccination and diffusion. Math. Biosci. Eng20(3), 4643–4672 (2023). PubMed
Mao, X., Marion, G. & Renshaw, E. Environmental Brownian noise suppresses explosions in population dynamics. Stoch. Process. Heir Appl.97(1), 95–110 (2002).
Settati, A. & Lahrouz, A. Stationary distribution of stochastic population systems under regime switching. Appl. Math. Comput.244, 235–243 (2014).
El Koufi, A., Adnani, J., Bennar, A., & Yousfi, N. Dynamics of a stochastic SIR epidemic model driven by Levy jumps with ‘ saturated incidence rate and saturated treatment function. Stoch. Anal. Appl. 1–19 (2021).
Rajasekar, S. P. & Pitchaimani, M. Ergodic stationary distribution and extinction of a stochastic SIRS epidemic model with logistic growth and nonlinear incidence. Appl. Math. Comput.377, 125143 (2020).
Alshammari, F. S., Akyildiz, F. T., Khan, M. A., Din, A. & Sunthrayuth, P. A stochastic mathematical model for understanding the COVID-19 infection using real data. Symmetry14, 2521 (2022).
Liu, P. & Tan, X. Dynamics analysis of a class of stochastic SEIR models with saturation incidence rate. Symmetry14, 2414 (2022).
Zhu, J. et al. A novel numerical solution of nonlinear stochastic model for the propagation of malicious codes in wireless sensor networks using a high order spectral collocation technique. Sci. Rep.15(1), 228 (2025). PubMed PMC
Din, Anwarud, Li, Yongjin, Khan, Tahir & Zaman, Gul. Mathematical analysis of spread and control of the novel corona virus (COVID-19) in China. Chaos Solitons Fract.141, 110286 (2020). PubMed PMC
Abioye, A.I. et al Mathematical model of COVID-19 in Nigeria with optimal control. Results Phys.28, 104598 (2021). PubMed PMC
Lestari, D. et al. A minimum principle for stochastic control of hepatitis C epidemic model. Bound Value Probl.2023, 52 (2023).
Jia, Panpan Wangand Jianwen. Stationary distribution of a stochastic SIRD epidemic model of Ebola with double saturated incidence rates and vaccination. Adv. Differ. Equ.2019, 433 (2019).
Driessche,, P. & Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci.180, 29–48 (2002). PubMed
Rihan, F. A., Alsakaji, H. J., & Rajivganthi, C. Stochastic SIRC epidemic model with time-delay for COVID-19. Adv. Differ. Equ. (2020). PubMed PMC
Fleming, W. H., & Rishel, R. W. Deterministic and Stochastic Optimal Control (Springer, 1975).
COVID-19 in Algeria. https://www.worldometers.info/coronavirus/country/algeria/.
Samsuzzoha, Md., Singh, M. & Lucy, D. Uncertainty and sensitivity analysis of the basic reproduction number of a vaccinated epidemic model of influenza. Appl. Math. Model.37, 903–915 (2013).