- MeSH
- Humans MeSH
- Conditioning, Psychological psychology MeSH
- Psychopathology MeSH
- Check Tag
- Humans MeSH
- MeSH
- Infant, Newborn MeSH
- Reflex MeSH
- Check Tag
- Infant, Newborn MeSH
With only three living individuals left on this planet, the northern white rhinoceros (Ceratotherium simum cottoni) could be considered doomed for extinction. It might still be possible, however, to rescue the (sub)species by combining novel stem cell and assisted reproductive technologies. To discuss the various practical options available to us, we convened a multidisciplinary meeting under the name "Conservation by Cellular Technologies." The outcome of this meeting and the proposed road map that, if successfully implemented, would ultimately lead to a self-sustaining population of an extremely endangered species are outlined here. The ideas discussed here, while centered on the northern white rhinoceros, are equally applicable, after proper adjustments, to other mammals on the brink of extinction. Through implementation of these ideas we hope to establish the foundation for reversal of some of the effects of what has been termed the sixth mass extinction event in the history of Earth, and the first anthropogenic one. Zoo Biol. 35:280-292, 2016. © 2016 The Authors. Zoo Biology published by Wiley Periodicals, Inc.
- MeSH
- Species Specificity MeSH
- Extinction, Biological MeSH
- Endangered Species * MeSH
- Perissodactyla physiology MeSH
- Mammals MeSH
- Conservation of Natural Resources * trends MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424 vol. 105, suppl. 1, May 12, 2008
iv, 11453-11586 : il., tab. ; 28 cm
- MeSH
- Biodiversity MeSH
- Biological Evolution MeSH
- Extinction, Biological MeSH
- Publication type
- Collected Work MeSH
- Conspectus
- Životní prostředí a jeho ochrana
- NML Fields
- environmentální vědy
The pattern of sightings of a species that is rare, and then no longer observed, can be used to estimate its extinction date. However, other than physical captures or specimens, the veracity of any sighting is ambiguous, and should be treated probabilistically when used to infer extinction dates. We present a simple yet powerful computational approach for incorporating observational reliability into extinction date estimators (EDE). Our method (1) combines repeated within-year sightings probabilistically, (2) samples observations using reliability as an inclusion probability, (3) infers a probability distribution and summary statistics of extinction dates with any EDE, and (4) computes the frequency distribution of the extinction date. We applied this method to eight exemplar sighting records covering a range of lengths, sighting rates and uncertainties, using a variety of statistical EDEs, and compared these results with a threshold approach for selecting sightings. We also demonstrated a robust coverage of "true" extinction dates based on selected real-world examples of rediscovered species and confirmed extinctions, and simulated sighting records. Our approach represents a powerful generalization of past work because it is not predicated on any specific method for inferring extinction dates, and yet is simple to implement (with R script provided).
A widespread opinion is that conservation efforts disproportionately benefit charismatic species. However, this doesn't mean that they are not threatened, and which species are "charismatic" remains unclear. Here, we identify the 10 most charismatic animals and show that they are at high risk of imminent extinction in the wild. We also find that the public ignores these animals' predicament and we suggest it could be due to the observed biased perception of their abundance, based more on their profusion in our culture than on their natural populations. We hypothesize that this biased perception impairs conservation efforts because people are unaware that the animals they cherish face imminent extinction and do not perceive their urgent need for conservation. By freely using the image of rare and threatened species in their product marketing, many companies may participate in creating this biased perception, with unintended detrimental effects on conservation efforts, which should be compensated by channeling part of the associated profits to conservation. According to our hypothesis, this biased perception would be likely to last as long as the massive cultural and commercial presence of charismatic species is not accompanied by adequate information campaigns about the imminent threats they face.
- MeSH
- Acinonyx MeSH
- Extinction, Biological MeSH
- Gorilla gorilla MeSH
- Lions MeSH
- Marketing ethics MeSH
- Ursidae MeSH
- Endangered Species trends MeSH
- Panthera MeSH
- Elephants MeSH
- Social Perception * MeSH
- Tigers MeSH
- Wolves MeSH
- Conservation of Natural Resources methods MeSH
- Giraffes MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Few data are available about the regional or local extinction of tropical butterfly species. When confirmed, local extinction was often due to the loss of host-plant species. We used published lists and recent monitoring programs to evaluate changes in butterfly composition on Barro Colorado Island (BCI, Panama) between an old (1923-1943) and a recent (1993-2013) period. Although 601 butterfly species have been recorded from BCI during the 1923-2013 period, we estimate that 390 species are currently breeding on the island, including 34 cryptic species, currently only known by their DNA Barcode Index Number. Twenty-three butterfly species that were considered abundant during the old period could not be collected during the recent period, despite a much higher sampling effort in recent times. We consider these species locally extinct from BCI and they conservatively represent 6% of the estimated local pool of resident species. Extinct species represent distant phylogenetic branches and several families. The butterfly traits most likely to influence the probability of extinction were host growth form, wing size and host specificity, independently of the phylogenetic relationships among butterfly species. On BCI, most likely candidates for extinction were small hesperiids feeding on herbs (35% of extinct species). However, contrary to our working hypothesis, extinction of these species on BCI cannot be attributed to loss of host plants. In most cases these host plants remain extant, but they probably subsist at lower or more fragmented densities. Coupled with low dispersal power, this reduced availability of host plants has probably caused the local extinction of some butterfly species. Many more bird than butterfly species have been lost from BCI recently, confirming that small preserves may be far more effective at conserving invertebrates than vertebrates and, therefore, should not necessarily be neglected from a conservation viewpoint.
- MeSH
- Ecosystem MeSH
- Extinction, Biological * MeSH
- Phylogeny * MeSH
- Butterflies genetics physiology MeSH
- Islands MeSH
- DNA Barcoding, Taxonomic * MeSH
- Tropical Climate MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geographicals
- Islands MeSH
- Panama MeSH
Mass extinctions disrupt ecological communities. Although climate changes produce stress in ecological communities, few paleobiological studies have systematically addressed the impact of global climate changes on the fine details of community structure with a view to understanding how changes in community structure presage, or even cause, biodiversity decline during mass extinctions. Based on a novel Bayesian approach to biotope assessment, we present a study of changes in species abundance distribution patterns of macroplanktonic graptolite faunas (∼447-444 Ma) leading into the Late Ordovician mass extinction. Communities at two contrasting sites exhibit significant decreases in complexity and evenness as a consequence of the preferential decline in abundance of dysaerobic zone specialist species. The observed changes in community complexity and evenness commenced well before the dramatic population depletions that mark the tipping point of the extinction event. Initially, community changes tracked changes in the oceanic water masses, but these relations broke down during the onset of mass extinction. Environmental isotope and biomarker data suggest that sea surface temperature and nutrient cycling in the paleotropical oceans changed sharply during the latest Katian time, with consequent changes in the extent of the oxygen minimum zone and phytoplankton community composition. Although many impacted species persisted in ephemeral populations, increased extinction risk selectively depleted the diversity of paleotropical graptolite species during the latest Katian and early Hirnantian. The effects of long-term climate change on habitats can thus degrade populations in ways that cascade through communities, with effects that culminate in mass extinction.
- MeSH
- Bayes Theorem MeSH
- Invertebrates classification growth & development MeSH
- Biodiversity MeSH
- Models, Biological MeSH
- Time Factors MeSH
- Extinction, Biological * MeSH
- Geologic Sediments MeSH
- Climate Change * MeSH
- Oceans and Seas MeSH
- Aquatic Organisms classification growth & development MeSH
- Fossils * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geographicals
- Oceans and Seas MeSH
- MeSH
- Electric Stimulation MeSH
- Animal Experimentation MeSH
- Rats MeSH
- Learning MeSH
- Check Tag
- Rats MeSH