Deep sequencing reveals distinct microRNA-mRNA signatures that differentiate pancreatic neuroendocrine tumor from non-diseased pancreas tissue

. 2025 Apr 11 ; 25 (1) : 669. [epub] 20250411

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40217502

Grantová podpora
2019/69 MXDX-1 Ministry of Health of the Slovak Republic
2019/69 MXDX-1 Ministry of Health of the Slovak Republic
2019/69 MXDX-1 Ministry of Health of the Slovak Republic
2019/69 MXDX-1 Ministry of Health of the Slovak Republic
2019/69 MXDX-1 Ministry of Health of the Slovak Republic
2019/69 MXDX-1 Ministry of Health of the Slovak Republic
2019/69 MXDX-1 Ministry of Health of the Slovak Republic
2019/69 MXDX-1 Ministry of Health of the Slovak Republic
UHHK, 00179906 Ministry of Health Czech Republic
UHHK, 00179906 Ministry of Health Czech Republic
SVV UK, LFHK, No. 260657 Charles University, project GA UK
SVV UK, LFHK, No. 260657 Charles University, project GA UK

Odkazy

PubMed 40217502
PubMed Central PMC11987397
DOI 10.1186/s12885-025-14043-w
PII: 10.1186/s12885-025-14043-w
Knihovny.cz E-zdroje

BACKGROUND: Only a limited number of biomarkers guide personalized management of pancreatic neuroendocrine tumors (PanNETs). Transcriptome profiling of microRNA (miRs) and mRNA has shown value in segregating PanNETs and identifying patients more likely to respond to treatment. Because miRs are key regulators of mRNA expression, we sought to integrate expression data from both RNA species into miR-mRNA interaction networks to advance our understanding of PanNET biology. METHODS: We used deep miR/mRNA sequencing on six low-grade/high-risk, well-differentiated PanNETs compared with seven non-diseased tissues to identify differentially expressed miRs/mRNAs. Then we crossed a list of differentially expressed mRNAs with a list of in silico predicted mRNA targets of the most and least abundant miRs to generate high probability miR-mRNA interaction networks. RESULTS: Gene ontology and pathway analyses revealed several miR-mRNA pairs implicated in cellular processes and pathways suggesting perturbed neuroendocrine function (miR-7 and Reg family genes), cell adhesion (miR-216 family and NLGN1, NCAM1, and CNTN1; miR-670 and the claudins, CLDN1 and CLDN2), and metabolic processes (miR-670 and BCAT1/MPST; miR-129 and CTH). CONCLUSION: These novel miR-mRNA interaction networks identified dysregulated pathways not observed when assessing mRNA alone and provide a foundation for further investigation of their utility as diagnostic and predictive biomarkers.

Zobrazit více v PubMed

Parbhu SK, Adler DG. Pancreatic neuroendocrine tumors: contemporary diagnosis and management. Hosp Pract. 2016;44(3):109–19. PubMed

Li D, Rock A, Kessler J, Ballena R, Hyder S, Mo C, et al. Understanding the management and treatment of Well-Differentiated pancreatic neuroendocrine tumors: A clinician’s guide to a complex illness. JCO Oncol Pract. 2020;16(11):720–8. PubMed

Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, et al. The eighth edition AJCC cancer staging manual: continuing to build a Bridge from a population-based to a more personalized approach to cancer staging. CA Cancer J Clin. 2017;67(2):93–9. PubMed

Kos-Kudła B, Castaño JP, Denecke T, Grande E, Kjaer A, Koumarianou A, et al. European neuroendocrine tumour society (ENETS) 2023 guidance paper for nonfunctioning pancreatic neuroendocrine tumours. J Neuroendocrinol. 2023;35(12):e13343. PubMed

Perren A, Couvelard A, Scoazec JY, Costa F, Borbath I, Delle Fave G, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: Pathology - Diagnosis and prognostic stratification. Neuroendocrinology. 2017;105(3):196–200. PubMed

Nagtegaal ID, Odze RD, Klimstra D, Paradis V, Rugge M, Schirmacher P, et al. The 2019 WHO classification of tumours of the digestive system. Histopathology. 2020;76(2):182–8. PubMed PMC

Ahn B, Jung JK, Jung H, Ryu YM, Kim YW, Song TJ, et al. Double Ki-67 and synaptophysin labeling in pancreatic neuroendocrine tumor biopsies. Pancreatology. 2022;22(3):427–34. PubMed

Heaphy CM, Singhi AD. The diagnostic and prognostic utility of incorporating DAXX, ATRX, and alternative lengthening of telomeres to the evaluation of pancreatic neuroendocrine tumors. Hum Pathol. 2022;129:11–20. PubMed

Mafficini A, Scarpa A. Genetics and epigenetics of gastroenteropancreatic neuroendocrine neoplasms. Endocr Rev. 2019;40(2):506–36. PubMed PMC

Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, et al. DAXX/ATRX, MEN1 and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331(6021):1199–203. PubMed PMC

Scarpa A, Chang DK, Nones K, Corbo V, Patch AM, Bailey P, et al. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature. 2017;543(7643):65–71. PubMed

Pavel M, Öberg K, Falconi M, Krenning EP, Sundin A, Perren A, et al. Gastroenteropancreatic neuroendocrine neoplasms: ESMO clinical practice guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2020;31(7):844–60. PubMed

Bartel DP. Metazoan MicroRNAs. Cell. 2018;173(1):20–51. PubMed PMC

Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97. PubMed

Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33. PubMed PMC

Lee YS, Kim H, Kim HW, Lee JC, Paik KH, Kang J, et al. High expression of MicroRNA-196a indicates poor prognosis in resected pancreatic neuroendocrine tumor. Med (Baltim). 2015;94(50):e2224. PubMed PMC

Grolmusz VK, Kövesdi A, Borks K, Igaz P, Patócs A. Prognostic relevance of proliferation-related MiRNAs in pancreatic neuroendocrine neoplasms. Eur J Endocrinol. 2018;179(4):219–28. PubMed

Bai J, Na H, Hua X, Wei Y, Ye T, Zhang Y, et al. A retrospective study of NENs and miR-224 promotes apoptosis of BON-1 cells by targeting PCSK9 Inhibition. Oncotarget. 2016;8(4):6929–39. PubMed PMC

Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S, et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24(29):4677–84. PubMed

Korotaeva A, Mansorunov D, Apanovich N, Kuzevanova A, Karpukhin A. MiRNA expression in neuroendocrine neoplasms of frequent localizations. Non-Coding RNA. 2021;7(3):38. PubMed PMC

Panarelli N, Tyryshkin K, Wong JJM, Majewski A, Yang X, Scognamiglio T, et al. Evaluating gastroenteropancreatic neuroendocrine tumors through MicroRNA sequencing. Endocr Relat Cancer. 2019;26(1):47–57. PubMed

Cejas P, Drier Y, Dreijerink KMA, Brosens LAA, Deshpande V, Epstein CB, et al. Enhancer signatures stratify and predict outcomes of non-functional pancreatic neuroendocrine tumors. Nat Med. 2019;25(8):1260–5. PubMed PMC

Sadanandam A, Wullschleger S, Lyssiotis CA, Grötzinger C, Barbi S, Bersani S, et al. A Cross-Species analysis in pancreatic neuroendocrine tumors reveals molecular subtypes with distinctive clinical, metastatic, developmental, and metabolic characteristics. Cancer Discov. 2015;5(12):1296–313. PubMed PMC

Moderated estimation of fold change. and dispersion for RNA-seq data with DESeq2| Genome Biology| Full Text [Internet]. [cited 2024 Feb 5]. Available from: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8 PubMed PMC

Li Y, Ge X, Peng F, Li W, Li JJ. Exaggerated false positives by popular differential expression methods when analyzing human population samples. Genome Biol. 2022;23(1):79. PubMed PMC

The Gene Ontology Consortium, Aleksander SA, Balhoff J, Carbon S, Cherry JM, Drabkin HJ, et al. The gene ontology knowledgebase in 2023. Genetics. 2023;224(1):iyad031. PubMed PMC

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25(1):25–9. PubMed PMC

Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50(W1):W216–21. PubMed PMC

Chen Y, Wang X. MiRDB: an online database for prediction of functional MicroRNA targets. Nucleic Acids Res. 2020;48(D1):D127–31. PubMed PMC

Yu G, Wang LG, Han Y, He QY. ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS J Integr Biol. 2012;16(5):284–7. PubMed PMC

Luo W, Brouwer C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinforma Oxf Engl. 2013;29(14):1830–1. PubMed PMC

Tang D, Chen M, Huang X, Zhang G, Zeng L, Zhang G, et al. SRplot: A free online platform for data visualization and graphing. PLoS ONE. 2023;18(11):e0294236. PubMed PMC

Zhou HQ, Chen QC, Qiu ZT, Tan WL, Mo CQ, Gao SW. Integrative microRNA-mRNA and protein-protein interaction analysis in pancreatic neuroendocrine tumors. Eur Rev Med Pharmacol Sci. 2016;20(13):2842–52. PubMed

Heverhagen AE, Legrand N, Wagner V, Fendrich V, Bartsch DK, Slater EP. Overexpression of MicroRNA miR-7-5p is a potential biomarker in neuroendocrine neoplasms of the small intestine. Neuroendocrinology. 2018;106(4):312–7. PubMed

Nanayakkara J, Tyryshkin K, Yang X, Wong JJM, Vanderbeck K, Ginter PS, et al. Characterizing and classifying neuroendocrine neoplasms through MicroRNA sequencing and data mining. NAR Cancer. 2020;2(3):zcaa009. PubMed PMC

Downing S, Zhang F, Chen Z, Tzanakakis ES. MicroRNA-7 directly targets Reg1 in pancreatic cells. Am J Physiol-Cell Physiol. 2019;317(2):C366–74. PubMed

Zimmermann N, Knief J, Kacprowski T, Lazar-Karsten P, Keck T, Billmann F, et al. MicroRNA analysis of gastroenteropancreatic neuroendocrine tumors and metastases. Oncotarget. 2018;9(47):28379–90. PubMed PMC

Ruan Y, Chen L, Xie D, Luo T, Xu Y, Ye T et al. Mechanisms of Cell Adhesion Molecules in Endocrine-Related Cancers: A Concise Outlook. Front Endocrinol [Internet]. 2022 [cited 2024 Feb 21];13. Available from: https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2022.865436 PubMed PMC

Ezzat S, Asa SL. The molecular pathogenetic role of cell adhesion in endocrine neoplasia. J Clin Pathol. 2005;58(11):1121–5. PubMed PMC

Marques P, Barry S, Carlsen E, Collier D, Ronaldson A, Grieve J, et al. The expression of neural cell adhesion molecule and the microenvironment of pituitary neuroendocrine tumours. J Neuroendocrinol. 2021;33(12):e13052. PubMed

Pollerberg GE, Thelen K, Theiss MO, Hochlehnert BC. The role of cell adhesion molecules for navigating axons: density matters. Mech Dev. 2013;130(6):359–72. PubMed

Tanigawa M, Nakayama M, Taira T, Hattori S, Mihara Y, Kondo R, et al. Insulinoma-associated protein 1 (INSM1) is a useful marker for pancreatic neuroendocrine tumor. Med Mol Morphol. 2018;51(1):32–40. PubMed

Liu B, Kudo A, Kinowaki Y, Ogura T, Ogawa K, Ono H, et al. A simple and practical index predicting the prognoses of the patients with well-differentiated pancreatic neuroendocrine neoplasms. J Gastroenterol. 2019;54(9):819–28. PubMed

Chen X, Guo C, Cui W, Sun K, Wang Z, Chen X. CD56 expression is associated with biological behavior of pancreatic neuroendocrine neoplasms. Cancer Manag Res. 2020;12:4625–31. PubMed PMC

Li Y, Bi X, Zhao J, Huang Z, Zhou J, Li Z, et al. CEA level, radical surgery, CD56 and CgA expression are prognostic factors for patients with locoregional Gastrin-Independent GNET. Med (Baltim). 2016;95(18):e3567. PubMed PMC

Borka K, Kaliszky P, Szabó E, Lotz G, Kupcsulik P, Schaff Z, et al. Claudin expression in pancreatic endocrine tumors as compared with ductal adenocarcinomas. Virchows Arch. 2007;450(5):549–57. PubMed

Jannin A, Dessein AF, Do Cao C, Vantyghem MC, Chevalier B, Van Seuningen I et al. Metabolism of pancreatic neuroendocrine tumors: what can omics tell us? Front Endocrinol [Internet]. 2023 [cited 2024 Feb 21];14. Available from: https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2023.1248575 PubMed PMC

Ramadhan IA, Sulaiman LR, Salihi A. NOS3 and CTH gene mutations as new molecular markers for detection of lung adenocarcinoma. PeerJ. 2023;11:e16209. PubMed PMC

Wang Y, Huang J, Chen W, Wang R, Kao M, Pan Y, et al. Dysregulation of cystathionine γ-lyase promotes prostate cancer progression and metastasis. EMBO Rep. 2019;20(10):e45986. PubMed PMC

Xiang J, Wu X, Liu W, Wei H, Zhu Z, Liu S, et al. Bioinformatic analyzes and validation of cystathionine gamma-lyase as a prognostic biomarker and related to immune infiltrates in hepatocellular carcinoma. Heliyon. 2023;9(5):e16152. PubMed PMC

Peleli M, Antoniadou I, Rodrigues-Junior DM, Savvoulidou O, Caja L, Katsouda A, et al. Cystathionine gamma-lyase (CTH) Inhibition attenuates glioblastoma formation. Redox Biol. 2023;64:102773. PubMed PMC

Bonifácio VDB, Pereira SA, Serpa J, Vicente JB. Cysteine metabolic circuitries: druggable targets in cancer. Br J Cancer. 2021;124(5):862–79. PubMed PMC

Szabo C. Gasotransmitters in cancer: from pathophysiology to experimental therapy. Nat Rev Drug Discov. 2016;15(3):185–203. PubMed PMC

Lauinger L, Kaiser P. Sensing and signaling of methionine metabolism. Metabolites. 2021;11(2):83. PubMed PMC

Malczewska A, Kidd M, Matar S, Kos-Kudla B, Modlin IM. A comprehensive assessment of the role of MiRNAs as biomarkers in gastroenteropancreatic neuroendocrine tumors. Neuroendocrinology. 2018;107(1):73–90. PubMed

Said S, Kurtin PJ, Nasr SH, Graham RP, Dasari S, Vrana JA, et al. Carboxypeptidase A1 and regenerating islet-derived 1α as new markers for pancreatic acinar cell carcinoma. Hum Pathol. 2020;103:120–6. PubMed

Uhlig R, Contreras H, Weidemann S, Gorbokon N, Menz A, Büscheck F, et al. Carboxypeptidase A1 (CPA1) immunohistochemistry is highly sensitive and specific for acinar cell carcinoma (ACC) of the pancreas. Am J Surg Pathol. 2022;46(1):97–104. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...