Short-term BCI intervention enhances functional brain connectivity associated with motor performance in chronic stroke
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40228398
PubMed Central
PMC12017867
DOI
10.1016/j.nicl.2025.103772
PII: S2213-1582(25)00042-7
Knihovny.cz E-zdroje
- Klíčová slova
- Brain-computer interface, Default mode network, Functional Connectivity, Neuroplasticity, Resting-state fMRI, Stroke,
- MeSH
- cévní mozková příhoda * patofyziologie diagnostické zobrazování MeSH
- chronická nemoc MeSH
- default mode network * patofyziologie diagnostické zobrazování MeSH
- dospělí MeSH
- klinické křížové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- longitudinální studie MeSH
- magnetická rezonanční tomografie MeSH
- mozek * patofyziologie diagnostické zobrazování MeSH
- nervová síť * patofyziologie diagnostické zobrazování MeSH
- rehabilitace po cévní mozkové příhodě * metody MeSH
- rozhraní mozek-počítač * MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Evidence suggests that brain-computer interface (BCI)-based rehabilitation strategies show promise in overcoming the limited recovery potential in the chronic phase of stroke. However, the specific mechanisms driving motor function improvements are not fully understood. OBJECTIVE: We aimed at elucidating the potential functional brain connectivity changes induced by BCI training in participants with chronic stroke. METHODS: A longitudinal crossover design was employed with two groups of participants over the span of 4 weeks to allow for within-subject (n = 21) and cross-group comparisons. Group 1 (n = 11) underwent a 6-day motor imagery-based BCI training during the second week, whereas Group 2 (n = 10) received the same training during the third week. Before and after each week, both groups underwent resting state functional MRI scans (4 for Group 1 and 5 for Group 2) to establish a baseline and monitor the effects of BCI training. RESULTS: Following BCI training, an increased functional connectivity was observed between the medial prefrontal cortex of the default mode network (DMN) and motor-related areas, including the premotor cortex, superior parietal cortex, SMA, and precuneus. Moreover, these changes were correlated with the increased motor function as confirmed with upper-extremity Fugl-Meyer assessment scores, measured before and after the training. CONCLUSIONS: Our findings suggest that BCI training can enhance brain connectivity, underlying the observed improvements in motor function. They provide a basis for developing novel rehabilitation approaches using non-invasive brain stimulation for targeting functionally relevant brain regions, thereby augmenting BCI-induced neuroplasticity and enhancing motor recovery.
Zobrazit více v PubMed
Feigin V.L., Brainin M., Norrving B., et al. World stroke organization (WSO): global stroke fact sheet 2022. Int J Stroke. 2021;17(1):18–29. doi: 10.1177/17474930211065917. PubMed DOI
Grefkes C., Fink G.R. Recovery from stroke: current concepts and future perspectives. Neurol Res Pr. 2020;2(1):17. doi: 10.1186/s42466-020-00060-6. PubMed DOI PMC
Cervera M.A., Soekadar S.R., Ushiba J., et al. Brain‐computer interfaces for post‐stroke motor rehabilitation: a meta‐analysis. Ann Clin Transl Neurol. 2018;5(5):651–663. doi: 10.1002/acn3.544. PubMed DOI PMC
Nojima I., Sugata H., Takeuchi H., Mima T. Brain–computer interface training based on brain activity can induce motor recovery in patients with stroke: a meta-analysis. Neurorehabilit Neural Repair. 2022;36(2):83–96. doi: 10.1177/15459683211062895. PubMed DOI
Zhang M., Zhu F., Jia F., et al. Efficacy of brain-computer interfaces on upper extremity motor function rehabilitation after stroke: A systematic review and meta-analysis. NeuroRehabilitation. 2024;54(2):199–212. doi: 10.3233/nre-230215. PubMed DOI
Donati D., Farì G., Giorgi F., et al. Efficacy of motor imagery in the rehabilitation of stroke patients: a scope review. OBM Neurobiol. 2024;08(03):1–14. doi: 10.21926/obm.neurobiol.2403236. DOI
Khokale R., Mathew G.S., Ahmed S., et al. Virtual and augmented reality in post-stroke rehabilitation: a narrative review. Cureus. 2023;15(4) doi: 10.7759/cureus.37559. PubMed DOI PMC
Johansson B.B. Multisensory stimulation in stroke rehabilitation. Front Hum Neurosci. 2012;6:60. doi: 10.3389/fnhum.2012.00060. PubMed DOI PMC
Donati A.R.C., Shokur S., Morya E., et al. Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Sci Rep. 2016;6(1):30383. doi: 10.1038/srep30383. PubMed DOI PMC
Shin H.E., Kim M., Lee D., et al. Therapeutic effects of functional electrical stimulation on physical performance and muscle strength in post-stroke older adults: a review. J Korean Geriatr Soc. 2022;26(1):16–24. doi: 10.4235/agmr.22.0006. PubMed DOI PMC
Ren C., Li X., Gao Q., et al. The effect of brain-computer interface controlled functional electrical stimulation training on rehabilitation of upper limb after stroke: a systematic review and meta-analysis. Front Hum Neurosci. 2024;18 doi: 10.3389/fnhum.2024.1438095. PubMed DOI PMC
Yakovlev L., Syrov N., Kaplan A. Investigating the influence of functional electrical stimulation on motor imagery related μ-rhythm suppression. Front Neurosci. 2023;17 doi: 10.3389/fnins.2023.1202951. PubMed DOI PMC
Khan M.A., Fares H., Ghayvat H., et al. A systematic review on functional electrical stimulation based rehabilitation systems for upper limb post-stroke recovery. Front Neurol. 2023;14 doi: 10.3389/fneur.2023.1272992. PubMed DOI PMC
Wu C.W., Lin S.H.N., Hsu L.M., et al. Synchrony between default-mode and sensorimotor networks facilitates motor function in stroke rehabilitation: a pilot fMRI study. Front Neurosci. 2020;14:548. doi: 10.3389/fnins.2020.00548. PubMed DOI PMC
Fan Y.T., Wu C.y., Liu H.L., Lin K.C., Wai Y.Y., Chen Y.L. Neuroplastic changes in resting-state functional connectivity after stroke rehabilitation. Front Hum Neurosci. 2015;9(546) doi: 10.3389/fnhum.2015.00546. PubMed DOI PMC
Mattos D.J.S., Rutlin J., Hong X., Zinn K., Shimony J.S., Carter A.R. The role of extra-motor networks in upper limb motor performance post-stroke. Neuroscience. 2023;514:1–13. doi: 10.1016/j.neuroscience:2023.01.033. PubMed DOI PMC
Cassidy J.M., Mark J.I., Cramer S.C. Functional connectivity drives stroke recovery: shifting the paradigm from correlation to causation. Brain. 2021;145(4):1211–1228. doi: 10.1093/brain/awab469. PubMed DOI PMC
Raichle M.E. The brain’s default mode network. Annu Rev Neurosci. 2015;38(1):433–447. doi: 10.1146/annurev-neuro-071013-014030. PubMed DOI
Ge R., Zhang H., Yao L., Long Z. Motor imagery learning induced changes in functional connectivity of the default mode network. IEEE Trans Neural Syst Rehabilitation Eng. 2015;23(1):138–148. doi: 10.1109/tnsre.2014.2332353. PubMed DOI
Zhang Y., Liu H., Wang L., et al. Relationship between functional connectivity and motor function assessment in stroke patients with hemiplegia: a resting-state functional MRI study. Neuroradiology. 2016;58(5):503–511. doi: 10.1007/s00234-016-1646-5. PubMed DOI
Li Y., Yu Z., Zhou X., Wu P., Chen J. Aberrant interhemispheric functional reciprocities of the default mode network and motor network in subcortical ischemic stroke patients with motor impairment: A longitudinal study. Front Neurol. 2022;13 doi: 10.3389/fneur.2022.996621. PubMed DOI PMC
Sharp D.J., Beckmann C.F., Greenwood R., et al. Default mode network functional and structural connectivity after traumatic brain injury. Brain. 2011;134(8):2233–2247. doi: 10.1093/brain/awr175. PubMed DOI
Jiang L., Geng W., Chen H., et al. Decreased functional connectivity within the default-mode network in acute brainstem ischemic stroke. Eur J Radiol. 2018;105:221–226. doi: 10.1016/j.ejrad.2018.06.018. PubMed DOI
Chen H., Shi M., Zhang H., et al. Different patterns of functional connectivity alterations within the default-mode network and sensorimotor network in basal ganglia and pontine stroke. Méd Sci Monit : Int Méd J Exp Clin Res. 2019;25:9585–9593. doi: 10.12659/msm.918185. PubMed DOI PMC
Fugl-Meyer A., Jääskö L., Leyman I., Olsson S., Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. J Rehabilitation Med. 1975;7(1):13–31. doi: 10.2340/1650197771331. PubMed DOI
Irimia D, Sabathiel N, Ortner R, et al. RecoveriX: A New BCI-Based Technology for Persons with Stroke1*Research supported by the SME Phase II Instrument recoveriX (No. 693928), the European Union FP7 Integrated Project VERE (No. 257695), and the Romanian Executive Agency for Higher Education, Research, Development and Innovation Funding (UEFISCDI grant PCCA 180/2012). 2016 38th Annu Int Conf IEEE Eng Med Biol Soc (EMBC). 2016;2016:1504-1507. doi:10.1109/embc.2016.7590995. PubMed
Sebastián-Romagosa M., Cho W., Ortner R., et al. Brain computer interface treatment for motor rehabilitation of upper extremity of stroke patients—a feasibility study. Front Neurosci. 2020;14 doi: 10.3389/fnins.2020.591435. PubMed DOI PMC
Weiskopf N., Suckling J., Williams G., et al. Quantitative multi-parameter mapping of R1, PD*, MT, and R2* at 3T: a multi-center validation. Front Neurosci. 2013;7:95. doi: 10.3389/fnins.2013.00095. PubMed DOI PMC
Weiskopf N., Lutti A., Helms G., Novak M., Ashburner J., Hutton C. Unified segmentation based correction of R1 brain maps for RF transmit field inhomogeneities (UNICORT) NeuroImage. 2011;54(3):2116–2124. doi: 10.1016/j.neuroimage.2010.10.023. PubMed DOI PMC
Trampel R., Bazin P.L., Pine K., Weiskopf N. In-vivo magnetic resonance imaging (MRI) of laminae in the human cortex. NeuroImage. 2019;197:707–715. doi: 10.1016/j.neuroimage.2017.09.037. PubMed DOI
Whitfield-Gabrieli S., Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2(3):125–141. doi: 10.1089/brain.2012.0073. PubMed DOI
Nieto-Castanon A., Whitfield-Gabrieli S. Hilbert Press; 2022. CONN Functional Connectivity Toolbox: RRID SCR_009550, Release 22.
Penny W.D., Friston K.J., Ashburner J.T., Kiebel S.J., Nichols T.E. Elsevier; 2011. Statistical Parametric Mapping: The Analysis of Functional Brain Images.
Handbook of functional connectivity Magnetic Resonance Imaging methods in CONN. In: Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN. Hilbert Press.; 2020:3-16. doi:10.56441/hilbertpress.2207.6598.
Andersson J.L.R., Hutton C., Ashburner J., Turner R., Friston K. Modeling Geometric Deformations in EPI Time Series. NeuroImage. 2001;13(5):903–919. doi: 10.1006/nimg.2001.0746. PubMed DOI
KarlJ F., Ashburner J., Frith C.D., Poline J.-B., Heather J.D., Frackowiak R.S.J. Spatial registration and normalization of images. Hum Brain Mapp. 1995;3(3):165–189. doi: 10.1002/hbm.460030303. DOI
Sladky R., Friston K.J., Tröstl J., Cunnington R., Moser E., Windischberger C. Slice-timing effects and their correction in functional MRI. NeuroImage. 2011;58(2):588–594. doi: 10.1016/j.neuroimage.2011.06.078. PubMed DOI PMC
Whitfield-Gabrieli S., Nieto-Castanon A., Artifact G.S. Detection Tools (ART) 2009
Ashburner J., Friston K.J. Unified segmentation. NeuroImage. 2005;26(3):839–851. doi: 10.1016/j.neuroimage.2005.02.018. PubMed DOI
Ashburner J. A fast diffeomorphic image registration algorithm. NeuroImage. 2007;38(1):95–113. doi: 10.1016/j.neuroimage.2007.07.007. PubMed DOI
Handbook of functional connectivity Magnetic Resonance Imaging methods in CONN. In: Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN. Hilbert Press.; 2020:17-25. doi:10.56441/hilbertpress.2207.6598.
Friston K.J., Williams S., Howard R., Frackowiak R.S.J., Turner R. Movement‐Related effects in fMRI time‐series. Magn Reson Med. 1996;35(3):346–355. doi: 10.1002/mrm.1910350312. PubMed DOI
Hallquist M.N., Hwang K., Luna B. The nuisance of nuisance regression: Spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. NeuroImage. 2013;82:208–225. doi: 10.1016/j.neuroimage.2013.05.116. PubMed DOI PMC
Behzadi Y., Restom K., Liau J., Liu T.T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage. 2007;37(1):90–101. doi: 10.1016/j.neuroimage.2007.04.042. PubMed DOI PMC
Chai X.J., Castañón A.N., Öngür D., Whitfield-Gabrieli S. Anticorrelations in resting state networks without global signal regression. NeuroImage. 2012;59(2):1420–1428. doi: 10.1016/j.neuroimage.2011.08.048. PubMed DOI PMC
Handbook of functional connectivity Magnetic Resonance Imaging methods in CONN. In: Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN. Hilbert Press.; 2020:26-62. doi:10.56441/hilbertpress.2207.6598.
Handbook of functional connectivity Magnetic Resonance Imaging methods in CONN. In: Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN. Hilbert Press.; 2020:63-82. doi:10.56441/hilbertpress.2207.6598.
Worsley K.J., Marrett S., Neelin P., Vandal A.C., Friston K.J., Evans A.C. A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp. 1996;4(1):58–73. doi: 10.1002/(sici)1097-0193(1996)4:1<58::aid-hbm4>3.0.co;2-o. PubMed DOI
Worsley K.J., Friston K.J. Analysis of fMRI time-series revisited—again. NeuroImage. 1995;2(3):173–181. doi: 10.1006/nimg.1995.1023. PubMed DOI
Eklund A., Nichols T.E., Knutsson H. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci. 2016;113(28):7900–7905. doi: 10.1073/pnas.1602413113. PubMed DOI PMC
Flandin G., Friston K.J. Analysis of family‐wise error rates in statistical parametric mapping using random field theory. Hum Brain Mapp. 2019;40(7):2052–2054. doi: 10.1002/hbm.23839. PubMed DOI PMC
Jafri M.J., Pearlson G.D., Stevens M., Calhoun V.D. A method for functional network connectivity among spatially independent resting-state components in schizophrenia. NeuroImage. 2008;39(4):1666–1681. doi: 10.1016/j.neuroimage.2007.11.001. PubMed DOI PMC
Sørensen T. Munksgaard; 1945. A Method of Establishing Groups of Equal Amplitude in Plant Sociology Based on Similarity of Species Content and Its Application to Analyses of the Vegetation on Danish Commons. https://books.google.de/books?id=rpS8GAAACAAJ.
Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc: Ser B (methodol). 1995;57(1):289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI
Abraham A., Pedregosa F., Eickenberg M., et al. Machine learning for neuroimaging with scikit-learn. Front Neuroinformatics. 2014;8:14. doi: 10.3389/fninf.2014.00014. PubMed DOI PMC
Habes M, Lancaster JL, Martinez MJ. Multi-Image Analysis GUI (Mango, Version 4.1).; 2019. https://mangoviewer.com/index.html.
Andrews-Hanna J.R., Smallwood J., Spreng R.N. The default network and self‐generated thought: component processes, dynamic control, and clinical relevance. Ann N York Acad Sci. 2014;1316(1):29–52. doi: 10.1111/nyas.12360. PubMed DOI PMC
Picard N., Strick P.L. Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex. 1996;6(3):342–353. doi: 10.1093/cercor/6.3.342. PubMed DOI
Rosazza C., Minati L. Resting-state brain networks: literature review and clinical applications. Neurol Sci. 2011;32(5):773–785. doi: 10.1007/s10072-011-0636-y. PubMed DOI
Cramer S.C. Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann Neurol. 2008;63(3):272–287. doi: 10.1002/ana.21393. PubMed DOI
Grefkes C., Fink G.R. Connectivity-based approaches in stroke and recovery of function. Lancet Neurol. 2014;13(2):206–216. doi: 10.1016/s1474-4422(13)70264-3. PubMed DOI
Rehme A.K., Grefkes C. Cerebral network disorders after stroke: evidence from imaging‐based connectivity analyses of active and resting brain states in humans. J Physiol. 2013;591(1):17–31. doi: 10.1113/jphysiol.2012.243469. PubMed DOI PMC