Short-term BCI intervention enhances functional brain connectivity associated with motor performance in chronic stroke

. 2025 ; 46 () : 103772. [epub] 20250319

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40228398
Odkazy

PubMed 40228398
PubMed Central PMC12017867
DOI 10.1016/j.nicl.2025.103772
PII: S2213-1582(25)00042-7
Knihovny.cz E-zdroje

BACKGROUND: Evidence suggests that brain-computer interface (BCI)-based rehabilitation strategies show promise in overcoming the limited recovery potential in the chronic phase of stroke. However, the specific mechanisms driving motor function improvements are not fully understood. OBJECTIVE: We aimed at elucidating the potential functional brain connectivity changes induced by BCI training in participants with chronic stroke. METHODS: A longitudinal crossover design was employed with two groups of participants over the span of 4 weeks to allow for within-subject (n = 21) and cross-group comparisons. Group 1 (n = 11) underwent a 6-day motor imagery-based BCI training during the second week, whereas Group 2 (n = 10) received the same training during the third week. Before and after each week, both groups underwent resting state functional MRI scans (4 for Group 1 and 5 for Group 2) to establish a baseline and monitor the effects of BCI training. RESULTS: Following BCI training, an increased functional connectivity was observed between the medial prefrontal cortex of the default mode network (DMN) and motor-related areas, including the premotor cortex, superior parietal cortex, SMA, and precuneus. Moreover, these changes were correlated with the increased motor function as confirmed with upper-extremity Fugl-Meyer assessment scores, measured before and after the training. CONCLUSIONS: Our findings suggest that BCI training can enhance brain connectivity, underlying the observed improvements in motor function. They provide a basis for developing novel rehabilitation approaches using non-invasive brain stimulation for targeting functionally relevant brain regions, thereby augmenting BCI-induced neuroplasticity and enhancing motor recovery.

Zobrazit více v PubMed

Feigin V.L., Brainin M., Norrving B., et al. World stroke organization (WSO): global stroke fact sheet 2022. Int J Stroke. 2021;17(1):18–29. doi: 10.1177/17474930211065917. PubMed DOI

Grefkes C., Fink G.R. Recovery from stroke: current concepts and future perspectives. Neurol Res Pr. 2020;2(1):17. doi: 10.1186/s42466-020-00060-6. PubMed DOI PMC

Cervera M.A., Soekadar S.R., Ushiba J., et al. Brain‐computer interfaces for post‐stroke motor rehabilitation: a meta‐analysis. Ann Clin Transl Neurol. 2018;5(5):651–663. doi: 10.1002/acn3.544. PubMed DOI PMC

Nojima I., Sugata H., Takeuchi H., Mima T. Brain–computer interface training based on brain activity can induce motor recovery in patients with stroke: a meta-analysis. Neurorehabilit Neural Repair. 2022;36(2):83–96. doi: 10.1177/15459683211062895. PubMed DOI

Zhang M., Zhu F., Jia F., et al. Efficacy of brain-computer interfaces on upper extremity motor function rehabilitation after stroke: A systematic review and meta-analysis. NeuroRehabilitation. 2024;54(2):199–212. doi: 10.3233/nre-230215. PubMed DOI

Donati D., Farì G., Giorgi F., et al. Efficacy of motor imagery in the rehabilitation of stroke patients: a scope review. OBM Neurobiol. 2024;08(03):1–14. doi: 10.21926/obm.neurobiol.2403236. DOI

Khokale R., Mathew G.S., Ahmed S., et al. Virtual and augmented reality in post-stroke rehabilitation: a narrative review. Cureus. 2023;15(4) doi: 10.7759/cureus.37559. PubMed DOI PMC

Johansson B.B. Multisensory stimulation in stroke rehabilitation. Front Hum Neurosci. 2012;6:60. doi: 10.3389/fnhum.2012.00060. PubMed DOI PMC

Donati A.R.C., Shokur S., Morya E., et al. Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Sci Rep. 2016;6(1):30383. doi: 10.1038/srep30383. PubMed DOI PMC

Shin H.E., Kim M., Lee D., et al. Therapeutic effects of functional electrical stimulation on physical performance and muscle strength in post-stroke older adults: a review. J Korean Geriatr Soc. 2022;26(1):16–24. doi: 10.4235/agmr.22.0006. PubMed DOI PMC

Ren C., Li X., Gao Q., et al. The effect of brain-computer interface controlled functional electrical stimulation training on rehabilitation of upper limb after stroke: a systematic review and meta-analysis. Front Hum Neurosci. 2024;18 doi: 10.3389/fnhum.2024.1438095. PubMed DOI PMC

Yakovlev L., Syrov N., Kaplan A. Investigating the influence of functional electrical stimulation on motor imagery related μ-rhythm suppression. Front Neurosci. 2023;17 doi: 10.3389/fnins.2023.1202951. PubMed DOI PMC

Khan M.A., Fares H., Ghayvat H., et al. A systematic review on functional electrical stimulation based rehabilitation systems for upper limb post-stroke recovery. Front Neurol. 2023;14 doi: 10.3389/fneur.2023.1272992. PubMed DOI PMC

Wu C.W., Lin S.H.N., Hsu L.M., et al. Synchrony between default-mode and sensorimotor networks facilitates motor function in stroke rehabilitation: a pilot fMRI study. Front Neurosci. 2020;14:548. doi: 10.3389/fnins.2020.00548. PubMed DOI PMC

Fan Y.T., Wu C.y., Liu H.L., Lin K.C., Wai Y.Y., Chen Y.L. Neuroplastic changes in resting-state functional connectivity after stroke rehabilitation. Front Hum Neurosci. 2015;9(546) doi: 10.3389/fnhum.2015.00546. PubMed DOI PMC

Mattos D.J.S., Rutlin J., Hong X., Zinn K., Shimony J.S., Carter A.R. The role of extra-motor networks in upper limb motor performance post-stroke. Neuroscience. 2023;514:1–13. doi: 10.1016/j.neuroscience:2023.01.033. PubMed DOI PMC

Cassidy J.M., Mark J.I., Cramer S.C. Functional connectivity drives stroke recovery: shifting the paradigm from correlation to causation. Brain. 2021;145(4):1211–1228. doi: 10.1093/brain/awab469. PubMed DOI PMC

Raichle M.E. The brain’s default mode network. Annu Rev Neurosci. 2015;38(1):433–447. doi: 10.1146/annurev-neuro-071013-014030. PubMed DOI

Ge R., Zhang H., Yao L., Long Z. Motor imagery learning induced changes in functional connectivity of the default mode network. IEEE Trans Neural Syst Rehabilitation Eng. 2015;23(1):138–148. doi: 10.1109/tnsre.2014.2332353. PubMed DOI

Zhang Y., Liu H., Wang L., et al. Relationship between functional connectivity and motor function assessment in stroke patients with hemiplegia: a resting-state functional MRI study. Neuroradiology. 2016;58(5):503–511. doi: 10.1007/s00234-016-1646-5. PubMed DOI

Li Y., Yu Z., Zhou X., Wu P., Chen J. Aberrant interhemispheric functional reciprocities of the default mode network and motor network in subcortical ischemic stroke patients with motor impairment: A longitudinal study. Front Neurol. 2022;13 doi: 10.3389/fneur.2022.996621. PubMed DOI PMC

Sharp D.J., Beckmann C.F., Greenwood R., et al. Default mode network functional and structural connectivity after traumatic brain injury. Brain. 2011;134(8):2233–2247. doi: 10.1093/brain/awr175. PubMed DOI

Jiang L., Geng W., Chen H., et al. Decreased functional connectivity within the default-mode network in acute brainstem ischemic stroke. Eur J Radiol. 2018;105:221–226. doi: 10.1016/j.ejrad.2018.06.018. PubMed DOI

Chen H., Shi M., Zhang H., et al. Different patterns of functional connectivity alterations within the default-mode network and sensorimotor network in basal ganglia and pontine stroke. Méd Sci Monit : Int Méd J Exp Clin Res. 2019;25:9585–9593. doi: 10.12659/msm.918185. PubMed DOI PMC

Fugl-Meyer A., Jääskö L., Leyman I., Olsson S., Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. J Rehabilitation Med. 1975;7(1):13–31. doi: 10.2340/1650197771331. PubMed DOI

Irimia D, Sabathiel N, Ortner R, et al. RecoveriX: A New BCI-Based Technology for Persons with Stroke1*Research supported by the SME Phase II Instrument recoveriX (No. 693928), the European Union FP7 Integrated Project VERE (No. 257695), and the Romanian Executive Agency for Higher Education, Research, Development and Innovation Funding (UEFISCDI grant PCCA 180/2012). 2016 38th Annu Int Conf IEEE Eng Med Biol Soc (EMBC). 2016;2016:1504-1507. doi:10.1109/embc.2016.7590995. PubMed

Sebastián-Romagosa M., Cho W., Ortner R., et al. Brain computer interface treatment for motor rehabilitation of upper extremity of stroke patients—a feasibility study. Front Neurosci. 2020;14 doi: 10.3389/fnins.2020.591435. PubMed DOI PMC

Weiskopf N., Suckling J., Williams G., et al. Quantitative multi-parameter mapping of R1, PD*, MT, and R2* at 3T: a multi-center validation. Front Neurosci. 2013;7:95. doi: 10.3389/fnins.2013.00095. PubMed DOI PMC

Weiskopf N., Lutti A., Helms G., Novak M., Ashburner J., Hutton C. Unified segmentation based correction of R1 brain maps for RF transmit field inhomogeneities (UNICORT) NeuroImage. 2011;54(3):2116–2124. doi: 10.1016/j.neuroimage.2010.10.023. PubMed DOI PMC

Trampel R., Bazin P.L., Pine K., Weiskopf N. In-vivo magnetic resonance imaging (MRI) of laminae in the human cortex. NeuroImage. 2019;197:707–715. doi: 10.1016/j.neuroimage.2017.09.037. PubMed DOI

Whitfield-Gabrieli S., Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2(3):125–141. doi: 10.1089/brain.2012.0073. PubMed DOI

Nieto-Castanon A., Whitfield-Gabrieli S. Hilbert Press; 2022. CONN Functional Connectivity Toolbox: RRID SCR_009550, Release 22.

Penny W.D., Friston K.J., Ashburner J.T., Kiebel S.J., Nichols T.E. Elsevier; 2011. Statistical Parametric Mapping: The Analysis of Functional Brain Images.

Handbook of functional connectivity Magnetic Resonance Imaging methods in CONN. In: Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN. Hilbert Press.; 2020:3-16. doi:10.56441/hilbertpress.2207.6598.

Andersson J.L.R., Hutton C., Ashburner J., Turner R., Friston K. Modeling Geometric Deformations in EPI Time Series. NeuroImage. 2001;13(5):903–919. doi: 10.1006/nimg.2001.0746. PubMed DOI

KarlJ F., Ashburner J., Frith C.D., Poline J.-B., Heather J.D., Frackowiak R.S.J. Spatial registration and normalization of images. Hum Brain Mapp. 1995;3(3):165–189. doi: 10.1002/hbm.460030303. DOI

Sladky R., Friston K.J., Tröstl J., Cunnington R., Moser E., Windischberger C. Slice-timing effects and their correction in functional MRI. NeuroImage. 2011;58(2):588–594. doi: 10.1016/j.neuroimage.2011.06.078. PubMed DOI PMC

Whitfield-Gabrieli S., Nieto-Castanon A., Artifact G.S. Detection Tools (ART) 2009

Ashburner J., Friston K.J. Unified segmentation. NeuroImage. 2005;26(3):839–851. doi: 10.1016/j.neuroimage.2005.02.018. PubMed DOI

Ashburner J. A fast diffeomorphic image registration algorithm. NeuroImage. 2007;38(1):95–113. doi: 10.1016/j.neuroimage.2007.07.007. PubMed DOI

Handbook of functional connectivity Magnetic Resonance Imaging methods in CONN. In: Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN. Hilbert Press.; 2020:17-25. doi:10.56441/hilbertpress.2207.6598.

Friston K.J., Williams S., Howard R., Frackowiak R.S.J., Turner R. Movement‐Related effects in fMRI time‐series. Magn Reson Med. 1996;35(3):346–355. doi: 10.1002/mrm.1910350312. PubMed DOI

Hallquist M.N., Hwang K., Luna B. The nuisance of nuisance regression: Spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. NeuroImage. 2013;82:208–225. doi: 10.1016/j.neuroimage.2013.05.116. PubMed DOI PMC

Behzadi Y., Restom K., Liau J., Liu T.T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage. 2007;37(1):90–101. doi: 10.1016/j.neuroimage.2007.04.042. PubMed DOI PMC

Chai X.J., Castañón A.N., Öngür D., Whitfield-Gabrieli S. Anticorrelations in resting state networks without global signal regression. NeuroImage. 2012;59(2):1420–1428. doi: 10.1016/j.neuroimage.2011.08.048. PubMed DOI PMC

Handbook of functional connectivity Magnetic Resonance Imaging methods in CONN. In: Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN. Hilbert Press.; 2020:26-62. doi:10.56441/hilbertpress.2207.6598.

Handbook of functional connectivity Magnetic Resonance Imaging methods in CONN. In: Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN. Hilbert Press.; 2020:63-82. doi:10.56441/hilbertpress.2207.6598.

Worsley K.J., Marrett S., Neelin P., Vandal A.C., Friston K.J., Evans A.C. A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp. 1996;4(1):58–73. doi: 10.1002/(sici)1097-0193(1996)4:1<58::aid-hbm4>3.0.co;2-o. PubMed DOI

Worsley K.J., Friston K.J. Analysis of fMRI time-series revisited—again. NeuroImage. 1995;2(3):173–181. doi: 10.1006/nimg.1995.1023. PubMed DOI

Eklund A., Nichols T.E., Knutsson H. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci. 2016;113(28):7900–7905. doi: 10.1073/pnas.1602413113. PubMed DOI PMC

Flandin G., Friston K.J. Analysis of family‐wise error rates in statistical parametric mapping using random field theory. Hum Brain Mapp. 2019;40(7):2052–2054. doi: 10.1002/hbm.23839. PubMed DOI PMC

Jafri M.J., Pearlson G.D., Stevens M., Calhoun V.D. A method for functional network connectivity among spatially independent resting-state components in schizophrenia. NeuroImage. 2008;39(4):1666–1681. doi: 10.1016/j.neuroimage.2007.11.001. PubMed DOI PMC

Sørensen T. Munksgaard; 1945. A Method of Establishing Groups of Equal Amplitude in Plant Sociology Based on Similarity of Species Content and Its Application to Analyses of the Vegetation on Danish Commons. https://books.google.de/books?id=rpS8GAAACAAJ.

Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc: Ser B (methodol). 1995;57(1):289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI

Abraham A., Pedregosa F., Eickenberg M., et al. Machine learning for neuroimaging with scikit-learn. Front Neuroinformatics. 2014;8:14. doi: 10.3389/fninf.2014.00014. PubMed DOI PMC

Habes M, Lancaster JL, Martinez MJ. Multi-Image Analysis GUI (Mango, Version 4.1).; 2019. https://mangoviewer.com/index.html.

Andrews-Hanna J.R., Smallwood J., Spreng R.N. The default network and self‐generated thought: component processes, dynamic control, and clinical relevance. Ann N York Acad Sci. 2014;1316(1):29–52. doi: 10.1111/nyas.12360. PubMed DOI PMC

Picard N., Strick P.L. Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex. 1996;6(3):342–353. doi: 10.1093/cercor/6.3.342. PubMed DOI

Rosazza C., Minati L. Resting-state brain networks: literature review and clinical applications. Neurol Sci. 2011;32(5):773–785. doi: 10.1007/s10072-011-0636-y. PubMed DOI

Cramer S.C. Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann Neurol. 2008;63(3):272–287. doi: 10.1002/ana.21393. PubMed DOI

Grefkes C., Fink G.R. Connectivity-based approaches in stroke and recovery of function. Lancet Neurol. 2014;13(2):206–216. doi: 10.1016/s1474-4422(13)70264-3. PubMed DOI

Rehme A.K., Grefkes C. Cerebral network disorders after stroke: evidence from imaging‐based connectivity analyses of active and resting brain states in humans. J Physiol. 2013;591(1):17–31. doi: 10.1113/jphysiol.2012.243469. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...