Functional Analysis of Direct In Vitro Effect of Phosphorylated Tau on Mitochondrial Respiration and Hydrogen Peroxide Production
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MH CZ-DRO VFN64165
Ministry of Health, Czech Republic
NU23-04-00032
Ministry of Health, Czech Republic
PubMed
40305222
PubMed Central
PMC12025104
DOI
10.3390/biom15040495
PII: biom15040495
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, hydrogen peroxide, isolated mitochondria, mitochondrial dysfunction, phosphorylated tau, respiratory state,
- MeSH
- buněčné dýchání MeSH
- fosforylace MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- mitochondrie * metabolismus MeSH
- mozek metabolismus MeSH
- peroxid vodíku * metabolismus MeSH
- proteiny tau * metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- spotřeba kyslíku MeSH
- transport elektronů MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- peroxid vodíku * MeSH
- proteiny tau * MeSH
- reaktivní formy kyslíku MeSH
The neurotoxicity of phosphorylated tau protein (P-tau) and mitochondrial dysfunction play a significant role in the pathophysiology of Alzheimer's disease (AD). In vitro studies of the effects of P-tau oligomers on mitochondrial bioenergetics and reactive oxygen species production will allow us to evaluate the direct influence of P-tau on mitochondrial function. We measured the in vitro effect of P-tau oligomers on oxygen consumption and hydrogen peroxide production in isolated brain mitochondria. An appropriate combination of specific substrates and inhibitors of the phosphorylation pathway enabled the measurement and functional analysis of the effect of P-tau on mitochondrial respiration in defined coupling control states achieved in complex I-, II-, and I&II-linked electron transfer pathways. At submicromolar P-tau concentrations, we found no significant effect of P-tau on either mitochondrial respiration or hydrogen peroxide production in different respiratory states. The titration of P-tau showed a nonsignificant dose-dependent decrease in hydrogen peroxide production for complex I- and I&II-linked pathways. An insignificant in vitro effect of P-tau oligomers on both mitochondrial respiration and hydrogen peroxide production indicates that P-tau-induced mitochondrial dysfunction in AD is not due to direct effects of P-tau on the efficiency of the electron transport chain and on the production of reactive oxygen species.
Zobrazit více v PubMed
Zia A., Pourbagher-Shahri A.M., Farkhondeh T., Samarghandian S. Molecular and cellular pathways contributing to brain aging. Behav. Brain Funct. 2021;17:6. doi: 10.1186/s12993-021-00179-9. PubMed DOI PMC
Grimm A., Eckert A. Brain aging and neurodegeneration: From a mitochondrial point of view. J. Neurochem. 2017;143:418–431. doi: 10.1111/jnc.14037. PubMed DOI PMC
Fišar Z., Hroudová J., Zvěřová M., Jirák R., Raboch J., Kitzlerová E. Age-dependent alterations in platelet mitochondrial respiration. Biomedicines. 2023;11:1564. doi: 10.3390/biomedicines11061564. PubMed DOI PMC
Pereira C.F., Santos A.E., Moreira P.I., Pereira A.C., Sousa F.J., Cardoso S.M., Cruz M.T. Is Alzheimer’s disease an inflammasomopathy? Ageing Res. Rev. 2019;56:100966. doi: 10.1016/j.arr.2019.100966. PubMed DOI
2024 Alzheimer’s disease facts and figures. Alzheimers Dement. 2024;20:3708–3821. doi: 10.1002/alz.13809. PubMed DOI PMC
Ma C., Hong F., Yang S. Amyloidosis in Alzheimer’s disease: Pathogeny, etiology, and related therapeutic directions. Molecules. 2022;27:1210. doi: 10.3390/molecules27041210. PubMed DOI PMC
Devi G. The tauopathies. Handb. Clin. Neurol. 2023;196:251–265. doi: 10.1016/B978-0-323-98817-9.00015-6. PubMed DOI
Blömeke L., Rehn F., Kraemer-Schulien V., Kutzsche J., Pils M., Bujnicki T., Lewczuk P., Kornhuber J., Freiesleben S.D., Schneider L.S., et al. Aβ oligomers peak in early stages of Alzheimer’s disease preceding tau pathology. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2024;16:e12589. doi: 10.1002/dad2.12589. PubMed DOI PMC
Wang C., Zong S., Cui X., Wang X., Wu S., Wang L., Liu Y., Lu Z. The effects of microglia-associated neuroinflammation on Alzheimer’s disease. Front. Immunol. 2023;14:1117172. doi: 10.3389/fimmu.2023.1117172. PubMed DOI PMC
Liu Z., Zhou T., Ziegler A.C., Dimitrion P., Zuo L. Oxidative stress in neurodegenerative diseases: From molecular mechanisms to clinical applications. Oxid. Med. Cell Longev. 2017;2017:2525967. doi: 10.1155/2017/2525967. PubMed DOI PMC
Bhatia V., Sharma S. Role of mitochondrial dysfunction, oxidative stress and autophagy in progression of Alzheimer’s disease. J. Neurol. Sci. 2021;421:117253. doi: 10.1016/j.jns.2020.117253. PubMed DOI
Liu Z., Li T., Li P., Wei N., Zhao Z., Liang H., Ji X., Chen W., Xue M., Wei J. The ambiguous relationship of oxidative stress, tau hyperphosphorylation, and autophagy dysfunction in Alzheimer’s disease. Oxid. Med. Cell Longev. 2015;2015:352723. doi: 10.1155/2015/352723. PubMed DOI PMC
Leuzy A., Chiotis K., Lemoine L., Gillberg P.G., Almkvist O., Rodriguez-Vieitez E., Nordberg A. Tau PET imaging in neurodegenerative tauopathies-still a challenge. Mol. Psychiatry. 2019;24:1112–1134. doi: 10.1038/s41380-018-0342-8. PubMed DOI PMC
Medina M., Hernandez F., Avila J. New features about tau function and dysfunction. Biomolecules. 2016;6:21. doi: 10.3390/biom6020021. PubMed DOI PMC
Torres A.K., Jara C., Park-Kang H.S., Polanco C.M., Tapia D., Alarcon F., de la Pena A., Llanquinao J., Vargas-Mardones G., Indo J.A., et al. Synaptic mitochondria: An early target of amyloid-beta and tau in Alzheimer’s disease. J. Alzheimers Dis. 2021;84:1391–1414. doi: 10.3233/JAD-215139. PubMed DOI
Cheng Y., Bai F. The association of tau with mitochondrial dysfunction in Alzheimer’s disease. Front. Neurosci. 2018;12:163. doi: 10.3389/fnins.2018.00163. PubMed DOI PMC
Manczak M., Reddy P.H. Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer’s disease neurons: Implications for mitochondrial dysfunction and neuronal damage. Hum. Mol. Genet. 2012;21:2538–2547. doi: 10.1093/hmg/dds072. PubMed DOI PMC
Supnet C., Bezprozvanny I. The dysregulation of intracellular calcium in Alzheimer disease. Cell Calcium. 2010;47:183–189. doi: 10.1016/j.ceca.2009.12.014. PubMed DOI PMC
Musiek E.S., Holtzman D.M. Three dimensions of the amyloid hypothesis: Time, space and ‘wingmen’. Nat. Neurosci. 2015;18:800–806. doi: 10.1038/nn.4018. PubMed DOI PMC
Swerdlow R.H. The mitochondrial hypothesis: Dysfunction, bioenergetic defects, and the metabolic link to Alzheimer’s disease. Int. Rev. Neurobiol. 2020;154:207–233. doi: 10.1016/bs.irn.2020.01.008. PubMed DOI PMC
Karran E., De Strooper B. The amyloid cascade hypothesis: Are we poised for success or failure? J. Neurochem. 2016;139((Suppl. S2)):237–252. doi: 10.1111/jnc.13632. PubMed DOI
Liu P.P., Xie Y., Meng X.Y., Kang J.S. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct. Target. Ther. 2019;4:29. doi: 10.1038/s41392-019-0063-8. PubMed DOI PMC
Swerdlow R.H. Mitochondria and mitochondrial cascades in Alzheimer’s disease. J. Alzheimers Dis. 2018;62:1403–1416. doi: 10.3233/JAD-170585. PubMed DOI PMC
Fišar Z. Linking the amyloid, tau, and mitochondrial hypotheses of Alzheimer’s disease and identifying promising drug targets. Biomolecules. 2022;12:1676. doi: 10.3390/biom12111676. PubMed DOI PMC
Bonda D.J., Wang X., Lee H.G., Smith M.A., Perry G., Zhu X. Neuronal failure in Alzheimer’s disease: A view through the oxidative stress looking-glass. Neurosci. Bull. 2014;30:243–252. doi: 10.1007/s12264-013-1424-x. PubMed DOI PMC
Tapia-Rojas C., Cabezas-Opazo F., Deaton C.A., Vergara E.H., Johnson G.V.W., Quintanilla R.A. It’s all about tau. Prog. Neurobiol. 2019;175:54–76. doi: 10.1016/j.pneurobio.2018.12.005. PubMed DOI PMC
Liu F., Grundke-Iqbal I., Iqbal K., Gong C.X. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur. J. Neurosci. 2005;22:1942–1950. doi: 10.1111/j.1460-9568.2005.04391.x. PubMed DOI
Leroy K., Yilmaz Z., Brion J.P. Increased level of active GSK-3beta in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol. Appl. Neurobiol. 2007;33:43–55. doi: 10.1111/j.1365-2990.2006.00795.x. PubMed DOI
Hooper C., Killick R., Lovestone S. The GSK3 hypothesis of Alzheimer’s disease. J. Neurochem. 2008;104:1433–1439. doi: 10.1111/j.1471-4159.2007.05194.x. PubMed DOI PMC
Kosik K.S., Joachim C.L., Selkoe D.J. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl. Acad. Sci. USA. 1986;83:4044–4048. doi: 10.1073/pnas.83.11.4044. PubMed DOI PMC
Arnsten A.F.T., Datta D., Del Tredici K., Braak H. Hypothesis: Tau pathology is an initiating factor in sporadic Alzheimer’s disease. Alzheimers Dement. 2021;17:115–124. doi: 10.1002/alz.12192. PubMed DOI PMC
Kametani F., Hasegawa M. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s disease. Front. Neurosci. 2018;12:25. doi: 10.3389/fnins.2018.00025. PubMed DOI PMC
Martin L., Latypova X., Terro F. Post-translational modifications of tau protein: Implications for Alzheimer’s disease. Neurochem. Int. 2011;58:458–471. doi: 10.1016/j.neuint.2010.12.023. PubMed DOI
Takashima A. Tauopathies and tau oligomers. J. Alzheimers Dis. 2013;37:565–568. doi: 10.3233/JAD-130653. PubMed DOI
Ward S.M., Himmelstein D.S., Lancia J.K., Binder L.I. Tau oligomers and tau toxicity in neurodegenerative disease. Biochem. Soc. Trans. 2012;40:667–671. doi: 10.1042/BST20120134. PubMed DOI PMC
Cardenas-Aguayo Mdel C., Gomez-Virgilio L., DeRosa S., Meraz-Rios M.A. The role of tau oligomers in the onset of Alzheimer’s disease neuropathology. ACS Chem. Neurosci. 2014;5:1178–1191. doi: 10.1021/cn500148z. PubMed DOI
Cowan C.M., Mudher A. Are tau aggregates toxic or protective in tauopathies? Front. Neurol. 2013;4:114. doi: 10.3389/fneur.2013.00114. PubMed DOI PMC
Szabo L., Eckert A., Grimm A. Insights into disease-associated tau impact on mitochondria. Int. J. Mol. Sci. 2020;21:6344. doi: 10.3390/ijms21176344. PubMed DOI PMC
Lasagna-Reeves C.A., Sengupta U., Castillo-Carranza D., Gerson J.E., Guerrero-Munoz M., Troncoso J.C., Jackson G.R., Kayed R. The formation of tau pore-like structures is prevalent and cell specific: Possible implications for the disease phenotypes. Acta Neuropathol. Commun. 2014;2:56. doi: 10.1186/2051-5960-2-56. PubMed DOI PMC
Clavaguera F., Akatsu H., Fraser G., Crowther R.A., Frank S., Hench J., Probst A., Winkler D.T., Reichwald J., Staufenbiel M., et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc. Natl. Acad. Sci. USA. 2013;110:9535–9540. doi: 10.1073/pnas.1301175110. PubMed DOI PMC
Lewis J., Dickson D.W. Propagation of tau pathology: Hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathol. 2016;131:27–48. doi: 10.1007/s00401-015-1507-z. PubMed DOI
Bloom G.S. Amyloid-beta and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014;71:505–508. doi: 10.1001/jamaneurol.2013.5847. PubMed DOI
Karikari T.K., Nagel D.A., Grainger A., Clarke-Bland C., Hill E.J., Moffat K.G. Preparation of stable tau oligomers for cellular and biochemical studies. Anal. Biochem. 2019;566:67–74. doi: 10.1016/j.ab.2018.10.013. PubMed DOI PMC
Cieri D., Vicario M., Vallese F., D’Orsi B., Berto P., Grinzato A., Catoni C., De Stefani D., Rizzuto R., Brini M., et al. Tau localises within mitochondrial sub-compartments and its caspase cleavage affects ER-mitochondria interactions and cellular Ca(2+) handling. Biochim. Biophys. Acta Mol. Basis Dis. 2018;1864:3247–3256. doi: 10.1016/j.bbadis.2018.07.011. PubMed DOI
Shafiei S.S., Guerrero-Munoz M.J., Castillo-Carranza D.L. Tau oligomers: Cytotoxicity, propagation, and mitochondrial damage. Front. Aging Neurosci. 2017;9:83. doi: 10.3389/fnagi.2017.00083. PubMed DOI PMC
Paradies G., Paradies V., De Benedictis V., Ruggiero F.M., Petrosillo G. Functional role of cardiolipin in mitochondrial bioenergetics. Biochim. Biophys. Acta. 2014;1837:408–417. doi: 10.1016/j.bbabio.2013.10.006. PubMed DOI
Camilleri A., Ghio S., Caruana M., Weckbecker D., Schmidt F., Kamp F., Leonov A., Ryazanov S., Griesinger C., Giese A., et al. Tau-induced mitochondrial membrane perturbation is dependent upon cardiolipin. Biochim. Biophys. Acta Biomembr. 2020;1862:183064. doi: 10.1016/j.bbamem.2019.183064. PubMed DOI
Lasagna-Reeves C.A., Castillo-Carranza D.L., Sengupta U., Clos A.L., Jackson G.R., Kayed R. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Mol. Neurodegener. 2011;6:39. doi: 10.1186/1750-1326-6-39. PubMed DOI PMC
Britti E., Ros J., Esteras N., Abramov A.Y. Tau inhibits mitochondrial calcium efflux and makes neurons vulnerable to calcium-induced cell death. Cell Calcium. 2020;86:102150. doi: 10.1016/j.ceca.2019.102150. PubMed DOI
Eckert A., Nisbet R., Grimm A., Gotz J. March separate, strike together—Role of phosphorylated TAU in mitochondrial dysfunction in Alzheimer’s disease. Biochim. Biophys. Acta. 2014;1842:1258–1266. doi: 10.1016/j.bbadis.2013.08.013. PubMed DOI
Rhein V., Song X., Wiesner A., Ittner L.M., Baysang G., Meier F., Ozmen L., Bluethmann H., Drose S., Brandt U., et al. Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc. Natl. Acad. Sci. USA. 2009;106:20057–20062. doi: 10.1073/pnas.0905529106. PubMed DOI PMC
David D.C., Hauptmann S., Scherping I., Schuessel K., Keil U., Rizzu P., Ravid R., Drose S., Brandt U., Muller W.E., et al. Proteomic and functional analyses reveal a mitochondrial dysfunction in P301L tau transgenic mice. J. Biol. Chem. 2005;280:23802–23814. doi: 10.1074/jbc.M500356200. PubMed DOI
Schulz K.L., Eckert A., Rhein V., Mai S., Haase W., Reichert A.S., Jendrach M., Muller W.E., Leuner K. A new link to mitochondrial impairment in tauopathies. Mol. Neurobiol. 2012;46:205–216. doi: 10.1007/s12035-012-8308-3. PubMed DOI
Grimm A., Biliouris E.E., Lang U.E., Gotz J., Mensah-Nyagan A.G., Eckert A. Sex hormone-related neurosteroids differentially rescue bioenergetic deficits induced by amyloid-beta or hyperphosphorylated tau protein. Cell Mol. Life Sci. 2016;73:201–215. doi: 10.1007/s00018-015-1988-x. PubMed DOI PMC
Grimm A., Lejri I., Halle F., Schmitt M., Gotz J., Bihel F., Eckert A. Mitochondria modulatory effects of new TSPO ligands in a cellular model of tauopathies. J. Neuroendocr. 2020;32:e12796. doi: 10.1111/jne.12796. PubMed DOI PMC
Eckert A., Schmitt K., Gotz J. Mitochondrial dysfunction—The beginning of the end in Alzheimer’s disease? Separate and synergistic modes of tau and amyloid-beta toxicity. Alzheimers Res. Ther. 2011;3:15. doi: 10.1186/alzrt74. PubMed DOI PMC
Perez M.J., Jara C., Quintanilla R.A. Contribution of tau pathology to mitochondrial impairment in neurodegeneration. Front. Neurosci. 2018;12:441. doi: 10.3389/fnins.2018.00441. PubMed DOI PMC
Plascencia-Villa G., Perry G. Roles of oxidative stress in synaptic dysfunction and neuronal cell death in Alzheimer’s disease. Antioxidants. 2023;12:1628. doi: 10.3390/antiox12081628. PubMed DOI PMC
Li X.C., Hu Y., Wang Z.H., Luo Y., Zhang Y., Liu X.P., Feng Q., Wang Q., Ye K., Liu G.P., et al. Human wild-type full-length tau accumulation disrupts mitochondrial dynamics and the functions via increasing mitofusins. Sci. Rep. 2016;6:24756. doi: 10.1038/srep24756. PubMed DOI PMC
Atlante A., Amadoro G., Bobba A., de Bari L., Corsetti V., Pappalardo G., Marra E., Calissano P., Passarella S. A peptide containing residues 26-44 of tau protein impairs mitochondrial oxidative phosphorylation acting at the level of the adenine nucleotide translocator. Biochim. Biophys. Acta. 2008;1777:1289–1300. doi: 10.1016/j.bbabio.2008.07.004. PubMed DOI
Pesta D., Gnaiger E. High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol. Biol. 2012;810:25–58. doi: 10.1007/978-1-61779-382-0_3. PubMed DOI
Kuznetsov A.V., Brandacher G., Steurer W., Margreiter R., Gnaiger E. Isolated rat heart mitochondria and whole rat heart as models for mitochondrial cold ischemia-reperfusion injury. Transpl. Proc. 2000;32:45. doi: 10.1016/S0041-1345(99)00869-6. PubMed DOI
Hroudová J., Fišar Z. Assessment of the effects of drugs on mitochondrial respiration. Methods Mol. Biol. 2021;2277:133–142. doi: 10.1007/978-1-0716-1270-5_9. PubMed DOI
Fišar Z., Hroudová J. Pig brain mitochondria as a biological model for study of mitochondrial respiration. Folia Biol. 2016;62:15–25. doi: 10.14712/fb2016062010015. PubMed DOI
Krumschnabel G., Fontana-Ayoub M., Sumbalova Z., Heidler J., Gauper K., Fasching M., Gnaiger E. Simultaneous high-resolution measurement of mitochondrial respiration and hydrogen peroxide production. Methods Mol. Biol. 2015;1264:245–261. doi: 10.1007/978-1-4939-2257-4_22. PubMed DOI
Fišar Z., Hroudová J., Singh N., Kopřivová A., Macečková D. Effect of simvastatin, coenzyme Q10, resveratrol, acetylcysteine and acetylcarnitine on mitochondrial respiration. Folia Biol. 2016;62:53–66. doi: 10.14712/fb2016062020053. PubMed DOI
Fišar Z., Singh N., Hroudová J. Cannabinoid-induced changes in respiration of brain mitochondria. Toxicol. Lett. 2014;231:62–71. doi: 10.1016/j.toxlet.2014.09.002. PubMed DOI
Hroudová J., Fišar Z. In vitro inhibition of mitochondrial respiratory rate by antidepressants. Toxicol. Lett. 2012;213:345–352. doi: 10.1016/j.toxlet.2012.07.017. PubMed DOI
Singh N., Hroudová J., Fišar Z. In vitro effects of cognitives and nootropics on mitochondrial respiration and monoamine oxidase activity. Mol. Neurobiol. 2017;54:5894–5904. doi: 10.1007/s12035-016-0121-y. PubMed DOI
Rawat P., Sehar U., Bisht J., Selman A., Culberson J., Reddy P.H. Phosphorylated tau in Alzheimer’s disease and other tauopathies. Int. J. Mol. Sci. 2022;23:12841. doi: 10.3390/ijms232112841. PubMed DOI PMC
Pickett E.K., Rose J., McCrory C., McKenzie C.A., King D., Smith C., Gillingwater T.H., Henstridge C.M., Spires-Jones T.L. Region-specific depletion of synaptic mitochondria in the brains of patients with Alzheimer’s disease. Acta Neuropathol. 2018;136:747–757. doi: 10.1007/s00401-018-1903-2. PubMed DOI PMC
Manczak M., Reddy P.H. Abnormal interaction of VDAC1 with amyloid beta and phosphorylated tau causes mitochondrial dysfunction in Alzheimer’s disease. Hum. Mol. Genet. 2012;21:5131–5146. doi: 10.1093/hmg/dds360. PubMed DOI PMC
Di J., Cohen L.S., Corbo C.P., Phillips G.R., El Idrissi A., Alonso A.D. Abnormal tau induces cognitive impairment through two different mechanisms: Synaptic dysfunction and neuronal loss. Sci. Rep. 2016;6:20833. doi: 10.1038/srep20833. PubMed DOI PMC
Jack C.R., Jr., Bennett D.A., Blennow K., Carrillo M.C., Dunn B., Haeberlein S.B., Holtzman D.M., Jagust W., Jessen F., Karlawish J., et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018;14:535–562. doi: 10.1016/j.jalz.2018.02.018. PubMed DOI PMC
McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R., Jr., Kawas C.H., Klunk W.E., Koroshetz W.J., Manly J.J., Mayeux R., et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–269. doi: 10.1016/j.jalz.2011.03.005. PubMed DOI PMC
Cummings J., Zhou Y., Lee G., Zhong K., Fonseca J., Cheng F. Alzheimer’s disease drug development pipeline: 2023. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2023;9:e12385. doi: 10.1002/trc2.12385. PubMed DOI PMC
Reddy A.P., Reddy P.H. Mitochondria-targeted molecules as potential drugs to treat patients with Alzheimer’s disease. Prog. Mol. Biol. Transl. Sci. 2017;146:173–201. doi: 10.1016/bs.pmbts.2016.12.010. PubMed DOI
Mashal Y., Abdelhady H., Iyer A.K. Comparison of tau and amyloid-β targeted immunotherapy nanoparticles for Alzheimer’s disease. Biomolecules. 2022;12:1001. doi: 10.3390/biom12071001. PubMed DOI PMC
Tolar M., Hey J., Power A., Abushakra S. Neurotoxic soluble amyloid oligomers drive Alzheimer’s pathogenesis and represent a clinically validated target for slowing disease progression. Int. J. Mol. Sci. 2021;22:6355. doi: 10.3390/ijms22126355. PubMed DOI PMC
Aillaud I., Funke S.A. Tau aggregation inhibiting peptides as potential therapeutics for Alzheimer disease. Cell Mol. Neurobiol. 2023;43:951–961. doi: 10.1007/s10571-022-01230-7. PubMed DOI PMC
Fišar Z., Hroudová J. CoQ10 and mitochondrial dysfunction in Alzheimer’s disease. Antioxidants. 2024;13:191. doi: 10.3390/antiox13020191. PubMed DOI PMC
Wang L., Bharti, Kumar R., Pavlov P.F., Winblad B. Small molecule therapeutics for tauopathy in Alzheimer’s disease: Walking on the path of most resistance. Eur. J. Med. Chem. 2021;209:112915. doi: 10.1016/j.ejmech.2020.112915. PubMed DOI
Ghazanfari D., Noori M.S., Bergmeier S.C., Hines J.V., McCall K.D., Goetz D.J. A novel GSK-3 inhibitor binds to GSK-3β via a reversible, time and Cys-199-dependent mechanism. Bioorg Med. Chem. 2021;40:116179. doi: 10.1016/j.bmc.2021.116179. PubMed DOI PMC
Medina M. An Overview on the clinical development of tau-based therapeutics. Int. J. Mol. Sci. 2018;19:1160. doi: 10.3390/ijms19041160. PubMed DOI PMC
Soeda Y., Takashima A. New insights into drug discovery targeting tau protein. Front. Mol. Neurosci. 2020;13:590896. doi: 10.3389/fnmol.2020.590896. PubMed DOI PMC
Tolar M., Abushakra S., Sabbagh M. The path forward in Alzheimer’s disease therapeutics: Reevaluating the amyloid cascade hypothesis. Alzheimers Dement. 2020;16:1553–1560. doi: 10.1016/j.jalz.2019.09.075. PubMed DOI
Mamsa S.S.A., Meloni B.P. Arginine and arginine-rich peptides as modulators of protein aggregation and cytotoxicity associated with Alzheimer’s disease. Front. Mol. Neurosci. 2021;14:759729. doi: 10.3389/fnmol.2021.759729. PubMed DOI PMC
Andreux P.A., Houtkooper R.H., Auwerx J. Pharmacological approaches to restore mitochondrial function. Nat. Rev. Drug Discov. 2013;12:465–483. doi: 10.1038/nrd4023. PubMed DOI PMC
Hroudová J., Singh N., Fišar Z., Ghosh K.K. Progress in drug development for Alzheimer’s disease: An overview in relation to mitochondrial energy metabolism. Eur. J. Med. Chem. 2016;121:774–784. doi: 10.1016/j.ejmech.2016.03.084. PubMed DOI
Weissig V. Drug development for the therapy of mitochondrial diseases. Trends Mol. Med. 2020;26:40–57. doi: 10.1016/j.molmed.2019.09.002. PubMed DOI