Fluorometric and Colorimetric Biosensors for the Assay of Cholinesterase Inhibitors

. 2025 Apr 23 ; 25 (9) : . [epub] 20250423

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40363113

Grantová podpora
DZRO-FVZ22-ZHN II Ministry of Defence

Cholinesterases, specifically acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), play critical roles in neurotransmission and are key targets for inhibitors with therapeutic and toxicological significance. This review focuses on the development and application of fluorometric and colorimetric biosensors for the detection of cholinesterase inhibitors. These biosensors take advantage of the unique properties of AChE and BChE to provide sensitive and selective detection methods essential for environmental monitoring, food safety, and clinical diagnostics. Recent advances in assay techniques, including the use of gold nanoparticles, pseudoperoxidase nanomaterials, and innovative enzyme-substrate interactions, are highlighted. This review also discusses challenges and future directions for optimizing these biosensors for practical applications, emphasizing their potential to enhance public health and safety.

Zobrazit více v PubMed

Petrov K.A., Proskurina S.E., Krejci E. Cholinesterases in Tripartite Neuromuscular Synapse. Front. Mol. Neurosci. 2021;14:811220. doi: 10.3389/fnmol.2021.811220. PubMed DOI PMC

Gok M., Cicek C., Bodur E. Butyrylcholinesterase in lipid metabolism: A new outlook. J. Neurochem. 2024;168:381–385. doi: 10.1111/jnc.15833. PubMed DOI

Ha Z.Y., Mathew S., Yeong K.Y. Butyrylcholinesterase: A Multifaceted Pharmacological Target and Tool. Curr. Protein Pept. Sci. 2020;21:99–109. doi: 10.2174/1389203720666191107094949. PubMed DOI

Bagrowska W., Karasewicz A., Góra A. Comprehensive analysis of acetylcholinesterase inhibitor and reactivator complexes: Implications for drug design and antidote development. Drug Discov. Today. 2024;29:104217. doi: 10.1016/j.drudis.2024.104217. PubMed DOI

Jaqua E.E., Tran M.N., Hanna M. Alzheimer Disease: Treatment of Cognitive and Functional Symptoms. Am. Fam. Physician. 2024;110:281–293. PubMed

Kaur S., Chowdhary S., Kumar D., Bhattacharyya R., Banerjee D. Organophosphorus and carbamate pesticides: Molecular toxicology and laboratory testing. Clin. Chim. Acta. 2023;551:117584. doi: 10.1016/j.cca.2023.117584. PubMed DOI

Chen Y., Yang Z., Nian B., Yu C., Maimaiti D., Chai M., Yang X., Zang X., Xu D. Mechanisms of Neurotoxicity of Organophosphate Pesticides and Their Relation to Neurological Disorders. Neuropsychiatr. Dis. Treat. 2024;20:2237–2254. doi: 10.2147/NDT.S479757. PubMed DOI PMC

Shentema M.G., Kumie A., Bråtveit M., Deressa W., Ngowi A.V., Moen B.E. Pesticide Use and Serum Acetylcholinesterase Levels among Flower Farm Workers in Ethiopia-A Cross-Sectional Study. Int. J. Environ. Res. Public Health. 2020;17:964. doi: 10.3390/ijerph17030964. PubMed DOI PMC

Voros C., Dias J., Timperley C.M., Nachon F., Brown R.C.D., Baati R. The risk associated with organophosphorus nerve agents: From their discovery to their unavoidable threat, current medical countermeasures and perspectives. Chem. Biol. Interact. 2024;395:110973. doi: 10.1016/j.cbi.2024.110973. PubMed DOI

Shimada H., Kiyozumi Y., Koga Y., Ogata Y., Katsuda Y., Kitamura Y., Iwatsuki M., Nishiyama K., Baba H., Ihara T. A novel cholinesterase assay for the evaluation of neurotoxin poisoning based on the electron-transfer promotion effect of thiocholine on an Au electrode. Sens. Actuator B-Chem. 2019;298:126893. doi: 10.1016/j.snb.2019.126893. DOI

Lokar N., Kononenko V., Drobne D., Vrtacnik D. Electrochemical acetylcholinesterase biosensor for detection of cholinesterase inhibitors: Study with eserine. Inf. Midem-J. Microelectron. Electron. Compon. Mater. 2018;48:235–240. doi: 10.33180/InfMIDEM2018.406. DOI

Ciriello R., Lo Magro S., Guerrieri A. Assay of serum cholinesterase activity by an amperometric biosensor based on a co-crosslinked choline oxidase/overoxidized polypyrrole bilayer. Analyst. 2018;143:920–929. doi: 10.1039/C7AN01757J. PubMed DOI

Dimcheva N., Horozova E., Ivanov Y., Godjevargova T. Self-assembly of acetylcholinesterase on gold nanoparticles electrodeposited on graphite. Cent. Eur. J. Chem. 2013;11:1740–1748. doi: 10.2478/s11532-013-0307-3. DOI

Teng Y.Q., Fu Y., Xu L.L., Lin B., Wang Z.C., Xu Z.A., Jin L.T., Zhang W. Three-Dimensional Ordered Macroporous (3DOM) Composite for Electrochemical Study on Acetylcholinesterase Inhibition Induced by Endogenous Neurotoxin. J. Phys. Chem. B. 2012;116:11180–11186. doi: 10.1021/jp302792u. PubMed DOI

Li Q.L., Li J.T., Yang D.Z., Xiang C., Yang Y.L. Dual-mode colorimetric-fluorescence biosensor for endotoxin detection based on CS@Fe,Cu/CDs-MnO2 nanomaterials. Talanta. 2025;285:127330. doi: 10.1016/j.talanta.2024.127330. PubMed DOI

Lee D.H., Kim J.W., Kim T.H., Lee K.W., Lee T.S. Synthesis of NAD-functionalized organic semiconducting polymer dots for fluorometric γ-aminobutyric acid sensing. Macromol. Res. 2024:1–9. doi: 10.1007/s13233-024-00351-w. DOI

Govindaraj P., Alungal N., Kannan S. Silver conjugated nickel oxide nanoparticle dependent microfluid non-enzymatic colorimetric paper-based biosensor for uric acid detection. Biochem. Eng. J. 2025;215:109622. doi: 10.1016/j.bej.2024.109622. DOI

Liu S., Chao H.L., He D.J., Wang Y., Yang Y. Biomimetic co-immobilization of (3-glucosidase, glucose oxidase, and horseradish peroxidase to construct a multi-enzyme biosensor for determination of amygdalin. Int. J. Biol. Macromol. 2025;297:139868. doi: 10.1016/j.ijbiomac.2025.139868. PubMed DOI

Cheng S., Luo L.X., Bao M.Y., Bao T., Gao Y., Wu Z., Zhang X.H., Wang S.F., Wen W. A dual-mode colorimetric/photothermal lateral flow biosensor based on Au/Ti3C2TX for HIV-DNA detection. Analytica Chimica Acta. 2025;1338:343588. doi: 10.1016/j.aca.2024.343588. PubMed DOI

Nejadmansouri M., Majdinasab M., Nunes G.S., Marty J.L. An Overview of Optical and Electrochemical Sensors and Biosensors for Analysis of Antioxidants in Food during the Last 5 Years. Sensors. 2021;21:1176. doi: 10.3390/s21041176. PubMed DOI PMC

Oushyani Roudsari Z., Karami Y., Khoramrooz S.S., Rouhi S., Ghasem H., Khatami S.H., Alizadeh M., Ahmad Khosravi N., Mansoriyan A., Ghasemi E., et al. Electrochemical and optical biosensors for the detection of E. Coli. Clin. Chim. Acta. 2025;565:119984. doi: 10.1016/j.cca.2024.119984. PubMed DOI

Xia J., Zhong S., Hu X., Koh K., Chen H. Perspectives and trends in advanced optical and electrochemical biosensors based on engineered peptides. Mikrochim. Acta. 2023;190:327. doi: 10.1007/s00604-023-05907-8. PubMed DOI

Müller G.A., Müller T.D. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins I: Localization at Plasma Membranes and Extracellular Compartments. Biomolecules. 2023;13:855. doi: 10.3390/biom13050855. PubMed DOI PMC

Ordentlich A., Barak D., Kronman C., Flashner Y., Leitner M., Segall Y., Ariel N., Cohen S., Velan B., Shafferman A. Dissection of the human acetylcholinesterase active center determinants of substrate specificity. Identification of residues constituting the anionic site, the hydrophobic site, and the acyl pocket. J. Biol. Chem. 1993;268:17083–17095. doi: 10.1016/S0021-9258(19)85305-X. PubMed DOI

Shafferman A., Kronman C., Flashner Y., Leitner M., Grosfeld H., Ordentlich A., Gozes Y., Cohen S., Ariel N., Barak D., et al. Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding. J. Biol. Chem. 1992;267:17640–17648. doi: 10.1016/S0021-9258(19)37091-7. PubMed DOI

Johnson G., Moore S.W. The peripheral anionic site of acetylcholinesterase: Structure, functions and potential role in rational drug design. Curr. Pharm. Des. 2006;12:217–225. doi: 10.2174/138161206775193127. PubMed DOI

Koellner G., Kryger G., Millard C.B., Silman I., Sussman J.L., Steiner T. Active-site gorge and buried water molecules in crystal structures of acetylcholinesterase from Torpedo californica. J. Mol. Biol. 2000;296:713–735. doi: 10.1006/jmbi.1999.3468. PubMed DOI

Saxena A., Redman A.M.G., Jiang X.L., Lockridge O., Doctor B.P. Differences in active-site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Chem.-Biol. Interact. 1999;119:61–69. doi: 10.1016/S0009-2797(99)00014-9. PubMed DOI

Chiou S.Y., Huang C.F., Hwang M.T., Lin G. Comparison of Active Sites of Butyrylcholinesterase and Acetylcholinesterase Based on Inhibition by Geometric Isomers of Benzene-di-N-Substituted Carbamates. J. Biochem. Mol. Toxicol. 2009;23:303–308. doi: 10.1002/jbt.20286. PubMed DOI

Macdonald I.R., Martin E., Rosenberry T.L., Darvesh S. Probing the peripheral site of human butyrylcholinesterase. Biochemistry. 2012;51:7046–7053. doi: 10.1021/bi300955k. PubMed DOI PMC

Osawa S., Kariyone K., Ichihara F., Arai K., Takagasa N., Ito H. Development and application of serum cholinesterase activity measurement using benzoylthiocholine iodide. Clinica Chimica Acta. 2005;351:65–72. doi: 10.1016/j.cccn.2004.04.017. PubMed DOI

Sine H., El Grafel K., Alkhammal S., Achbani A., Filali K. Serum cholinesterase biomarker study in farmers—Souss Massa region-, Morocco: Case-control study. Biomarkers. 2019;24:771–775. doi: 10.1080/1354750X.2019.1684564. PubMed DOI

Naik R.S., Liu W.Y., Saxena A. Development and validation of a simple assay for the determination of cholinesterase activity in whole blood of laboratory animals. J. Appl. Toxicol. 2013;33:290–300. doi: 10.1002/jat.2730. PubMed DOI

Zhan C.G., Zheng F., Landry D.W. Fundamental reaction mechanism for cocaine hydrolysis in human butyrylcholinesterase. J. Am. Chem. Soc. 2003;125:2462–2474. doi: 10.1021/ja020850+. PubMed DOI PMC

Gao D.Q., Zhan C.G. Modeling evolution of hydrogen bonding and stabilization of transition states in the process of cocaine hydrolysis catalyzed by human butyrylcholinesterase. Proteins. 2006;62:99–110. doi: 10.1002/prot.20713. PubMed DOI PMC

Zheng F., Hou S.R., Xue L., Yang W.C., Zhan C.G. Human Butyrylcholinesterase Mutants for (-)-Cocaine Hydrolysis: A Correlation Relationship between Catalytic Efficiency and Total Hydrogen Bonding Energy with an Oxyanion Hole. J. Phys. Chem. B. 2023;127:10723–10729. doi: 10.1021/acs.jpcb.3c06392. PubMed DOI

Aman S., Paul S., Chowdhury F.R. Management of Organophosphorus Poisoning: Standard Treatment and Beyond. Crit. Care Clin. 2021;37:673–686. doi: 10.1016/j.ccc.2021.03.011. PubMed DOI

Zoofaghari S., Maghami-Mehr A., Abdolrazaghnejad A. Organophosphate Poisoning: Review of Prognosis and Management. Adv. Biomed. Res. 2024;13:82. doi: 10.4103/abr.abr_393_22. PubMed DOI PMC

Vale A., Lotti M. Organophosphorus and carbamate insecticide poisoning. Handb. Clin. Neurol. 2015;131:149–168. PubMed

Moralev S.N., Tikhonov D.B. Investigation of structure-activity relationships in organophosphates-cholinesterase interaction using docking analysis. Chem.-Biol. Interact. 2010;187:153–156. doi: 10.1016/j.cbi.2010.03.039. PubMed DOI

Perra M.T., Serra A., Sirigu P., Turno F. Histochemical demonstration of acetylcholinesterase activity in human Meibomian glands. Eur. J. Histochem. 1996;40:39–44. PubMed

Darvesh S., Darvesh K.V., McDonald R.S., Mataija D., Walsh R., Mothana S., Lockridge O., Martin E. Carbamates with differential mechanism of inhibition toward acetylcholinesterase and butyrylcholinesterase. J. Med. Chem. 2008;51:4200–4212. doi: 10.1021/jm8002075. PubMed DOI

Liu Y.Y., Ma C., Li Y.B., Li M.Z., Cui T., Zhao X.Q., Li Z.L., Jia H.W., Wang H.X., Xiu X.M., et al. Design, synthesis and biological evaluation of carbamate derivatives incorporating multifunctional carrier scaffolds as pseudo-irreversible cholinesterase inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2024;265:116071. doi: 10.1016/j.ejmech.2023.116071. PubMed DOI

Meden A., Knez D., Brazzolotto X., Nachon F., Dias J., Svete J., Stojan J., Groselj U., Gobec S. From tryptophan-based amides to tertiary amines: Optimization of a butyrylcholinesterase inhibitor series. Eur. J. Med. Chem. 2022;234:114248. doi: 10.1016/j.ejmech.2022.114248. PubMed DOI

Wilkinson D.G. The pharmacology of donepezil: A new treatment of Alzheimer’s disease. Expert. Opin. Pharmacother. 1999;1:121–135. doi: 10.1517/14656566.1.1.121. PubMed DOI

Pohanka M., Dobes P. Caffeine inhibits acetylcholinesterase, but not butyrylcholinesterase. Int. J. Mol. Sci. 2013;14:9873–9882. doi: 10.3390/ijms14059873. PubMed DOI PMC

Fu Q., Tang J., Cui M., Zheng Z., Liu Z., Liu S. Development of ESI-MS-based continuous enzymatic assay for real-time monitoring of enzymatic reactions of acetylcholinesterase. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015;990:169–173. doi: 10.1016/j.jchromb.2015.03.022. PubMed DOI

Xu Z., Yao S., Wei Y., Zhou J., Zhang L., Wang C., Guo Y. Monitoring enzyme reaction and screening of inhibitors of acetylcholinesterase by quantitative matrix-assisted laser desorption/ionization Fourier transform mass spectrometry. J. Am. Soc. Mass. Spectrom. 2008;19:1849–1855. doi: 10.1016/j.jasms.2008.07.025. PubMed DOI

Lilienfeld S. Galantamine—A novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer’s disease. CNS Drug. Rev. 2002;8:159–176. doi: 10.1111/j.1527-3458.2002.tb00221.x. PubMed DOI PMC

Loy C., Schneider L. Galantamine for Alzheimer’s disease. Cochrane Database Syst. Rev. 2004;4:Cd001747. doi: 10.1002/14651858.CD001747.pub2. PubMed DOI

Bucur M.P., Bucur B., Radu G.L. Critical evaluation of acetylcholine iodide and acetylthiocholine chloride as substrates for amperometric biosensors based on acetylcholinesterase. Sensors. 2013;13:1603–1613. doi: 10.3390/s130201603. PubMed DOI PMC

Rachmawati A., Sanjaya A.R., Putri Y., Gunlazuardi J., Ivandini T.A. An acetylcholinesterase-based biosensor for isoprocarb using a gold nanoparticles-polyaniline modified graphite pencil electrode. Anal. Sci. 2023;39:911–923. doi: 10.1007/s44211-023-00296-7. PubMed DOI

Akdag A., Isik M., Göktas H. Conducting polymer-based electrochemical biosensor for the detection of acetylthiocholine and pesticide via acetylcholinesterase. Biotechnol. Appl. Biochem. 2021;68:1113–1119. doi: 10.1002/bab.2030. PubMed DOI

Li Y.P., Bai Y.F., Han G.Y., Li M.Y. Porous-reduced graphene oxide for fabricating an amperometric acetylcholinesterase biosensor. Sens. Actuator B-Chem. 2013;185:706–712. doi: 10.1016/j.snb.2013.05.061. DOI

Arduini F., Forchielli M., Amine A., Neagu D., Cacciotti I., Nanni F., Moscone D., Palleschi G. Screen-printed biosensor modified with carbon black nanoparticles for the determination of paraoxon based on the inhibition of butyrylcholinesterase. Microchim. Acta. 2015;182:643–651. doi: 10.1007/s00604-014-1370-y. DOI

Kok F.N., Hasirci V. Determination of binary pesticide mixtures by an acetylcholinesterase-choline oxidase biosensor. Biosens. Bioelectron. 2004;19:661–665. doi: 10.1016/j.bios.2003.07.002. PubMed DOI

Sousa S.C.A., Rebelo M.J.F. Acetylcholinesterase–Choline Oxidase Biosensor for Pirimicarb Determination. Port. Electrochim. Acta. 2008;26:65–75. doi: 10.4152/pea.200801065. DOI

Fennouh S., Casimiri V., Burstein C. Increased paraoxon detection with solvents using acetylcholinesterase inactivation measured with a choline oxidase biosensor. Biosens. Bioelectron. 1997;12:97–104. doi: 10.1016/S0956-5663(97)87055-8. DOI

Kok F.N., Bozoglu F., Hasirci V. Construction of an acetylcholinesterase-choline oxidase biosensor for aldicarb determination. Biosens. Bioelectron. 2002;17:531–539. doi: 10.1016/S0956-5663(02)00009-X. PubMed DOI

Saito H., Suzuki Y., Gessei T., Miyajima K., Arakawa T., Mitsubayashi K. Bioelectronic Sniffer (Biosniffer) Based on Enzyme Inhibition of Butyrylcholinesterase for Toluene Detection. Sens. Mater. 2014;26:121–129.

Pohanka M. Diagnoses of Pathological States Based on Acetylcholinesterase and Butyrylcholinesterase. Curr. Med. Chem. 2020;27:2994–3011. doi: 10.2174/0929867326666190130161202. PubMed DOI

Ellman G.L., Courtney K.D., Andres V., Jr., Feather-Stone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI

Rathish D., Senavirathna I., Jayasumana C., Agampodi S. Red blood cell acetylcholinesterase activity among healthy dwellers of an agrarian region in Sri Lanka: A descriptive cross-sectional study. Environ. Health Prev. Med. 2018;23:25. doi: 10.1186/s12199-018-0717-0. PubMed DOI PMC

Sanz P., Rodriguez-Vicente M.C., Diaz D., Repetto J., Repetto M. Red blood cell and total blood acetylcholinesterase and plasma pseudocholinesterase in humans: Observed variances. J. Toxicol. Clin. Toxicol. 1991;29:81–90. doi: 10.3109/15563659109038600. PubMed DOI

Kolf-Clauw M., Jez S., Ponsart C., Delamanche I.S. Acetyl- and pseudo-cholinesterase activities of plasma, erythrocytes, and whole blood in male beagle dogs using Ellman’s assay. Vet. Hum. Toxicol. 2000;42:216–219. PubMed

Thiphom S., Prapamontol T., Chantara S., Mangklabruks A., Suphavilai C. A method for measuring cholinesterase activity in human saliva and its application to farmers and consumers. Anal. Methods. 2013;5:4687–4693. doi: 10.1039/c3ay40269j. DOI

Haigh J.R., Lefkowitz L.J., Capacio B.R., Doctor B.P., Gordon R.K. Advantages of the WRAIR whole blood cholinesterase assay: Comparative analysis to the micro-Ellman, Test-mate ChE™ and Michel (ΔpH) assays. Chem.-Biol. Interact. 2008;175:417–420. doi: 10.1016/j.cbi.2008.04.032. PubMed DOI

Yu Q.Y., Guo Q., Zhou J.R., Yuan X., Huang K., Chen P.P. Filter-assisted smartphone colorimetry/ICP-MS dual-mode biosensor of butyrylcholinesterase in clinical samples. Sens. Actuator B-Chem. 2022;370:132472. doi: 10.1016/j.snb.2022.132472. DOI

Matejovsky L., Pitschmann V. A Strip Biosensor with Guinea Green B and Fuchsin Basic Color Indicators on a Glass Nanofiber Carrier for the Cholinesterase Detection of Nerve Agents. ACS Omega. 2019;4:20978–20986. doi: 10.1021/acsomega.9b02153. PubMed DOI PMC

Matejovsky L., Pitschmann V. New Carrier Made from Glass Nanofibres for the Colorimetric Biosensor of Cholinesterase Inhibitors. Biosensors. 2018;8:51. doi: 10.3390/bios8020051. PubMed DOI PMC

Cavalcante S.F.A., Kitagawa D.A.S., Rodrigues R.B., Silva T.C., Bernardo L.B., Correa A.B.A., Simas A.B.C. One-Pot Synthesis of NEMP, a VX Surrogate, and Reactivation of NEMP-Inhibited Electrophorus Eel Acetylcholinesterase by Current Antidotes. J. Braz. Chem. Soc. 2019;30:1095–1102. doi: 10.21577/0103-5053.20180246. DOI

Villatte F., Bachman T.T., Hussein A.S., Schmid R.D. Acetylcholinesterase assay for rapid expression screening in liquid and solid media. Biotechniques. 2001;30:81–86. doi: 10.2144/01301st04. PubMed DOI

Ramallo I.A., García P., Furlan R.L.E. A reversed-phase compatible thin-layer chromatography autography for the detection of acetylcholinesterase inhibitors. J. Sep. Sci. 2015;38:3788–3794. doi: 10.1002/jssc.201500662. PubMed DOI

Du T.F., Zhou S.G., Tang M.S. A new micro-detection tube for cholinesterase inhibitors in water. Environ. Pollut. 1989;57:217–222. doi: 10.1016/0269-7491(89)90013-4. PubMed DOI

Li S.Z., Huang R.L., Solomon S., Liu Y.T., Zhao B., Santillo M.F., Xia M.H. Identification of acetylcholinesterase inhibitors using homogenous cell-based assays in quantitative high-throughput screening platforms. Biotechnol. J. 2017;12:1600715. doi: 10.1002/biot.201600715. PubMed DOI

Santillo M.F., Liu Y.T. A fluorescence assay for measuring acetylcholinesterase activity in rat blood and a human neuroblastoma cell line (SH-SY5Y) J. Pharmacol. Toxicol. Methods. 2015;76:15–22. doi: 10.1016/j.vascn.2015.07.002. PubMed DOI

Cui K., Chen Z.L., Wang Z., Zhang G.X., Zhang D.Q. A naked-eye visible and fluorescence “turn-on” probe for acetyl-cholinesterase assay and thiols as well as imaging of living cells. Analyst. 2011;136:191–195. doi: 10.1039/C0AN00456A. PubMed DOI

Dhull V., Gahlaut A., Hooda V. Nanomaterials based biosensors for the detection of organophosphate compounds: A review. Int. J. Environ. Anal. Chem. 2023;103:4200–4224. doi: 10.1080/03067319.2021.1924162. DOI

Stepánková S., Vorcáková K. Cholinesterase-based biosensors. J. Enzym. Inhib. Med. Chem. 2016;31:180–193. doi: 10.1080/14756366.2016.1204609. PubMed DOI

Sabullah M.K., Khalidi S.A.M., Abdullah R., Sani S.A., Gansau J.A., Ahmad S.A., Shukor M.Y. Cholinesterase-based biosensor for preliminary detection of toxic heavy metals in the environment and agricultural-based products. Int. Food Res. J. 2020;27:597–609.

Xu Y.L., Li F.Y., Ndikuryayo F., Yang W.C., Wang H.M. Cholinesterases and Engineered Mutants for the Detection of Organophosphorus Pesticide Residues. Sensors. 2018;18:4281. doi: 10.3390/s18124281. PubMed DOI PMC

Pundir C.S., Malik A., Preety Bio-sensing of organophosphorus pesticides: A review. Biosens. Bioelectron. 2019;140:5–17. doi: 10.1016/j.bios.2019.111348. PubMed DOI

Brízová A., Pitschmann V. Simple Chemical and Cholinesterase Methods for the Detection of Nerve Agents Using Optical Evaluation. Biosensors. 2023;13:995. doi: 10.3390/bios13120995. PubMed DOI PMC

Karadurmus L., Kaya S.I., Ozkan S.A. Recent advances of enzyme biosensors for pesticide detection in foods. J. Food Meas. Charact. 2021;15:4582–4595. doi: 10.1007/s11694-021-01032-3. DOI

Ivanov A., Shamagsumova R., Larina M., Evtugyn G. Electrochemical Acetylcholinesterase Sensors for Anti-Alzheimer’s Disease Drug Determination. Biosensors. 2024;14:93. doi: 10.3390/bios14020093. PubMed DOI PMC

Bucur B., Munteanu F.D., Marty J.L., Vasilescu A. Advances in Enzyme-Based Biosensors for Pesticide Detection. Biosensors. 2018;8:27. doi: 10.3390/bios8020027. PubMed DOI PMC

Soldatkin O.O., Pyeshkova V.M., Kucherenko I.S., Velychko T.P., Bakhmat V.A., Arkhypova V.M., Soldatkin A.P., Dzyadevych S.V. Application of butyrylcholinesterase-based biosensor for simultaneous determination of different toxicants using inhibition and reactivation steps. Electroanalysis. 2024;36:e202300400. doi: 10.1002/elan.202300400. DOI

Mouawad L., Istamboulie G., Catanante G., Noguer T. Enhancing Biocide Safety of Milk Using Biosensors Based on Cholinesterase Inhibition. Biosensors. 2025;15:26. doi: 10.3390/bios15010026. PubMed DOI PMC

Wongta A., Anand P., Aning N.A.A., Sawarng N., Hongsibsong S. Advancing micro-electrometric techniques for the detection of organophosphate and carbamate residues using cricket cholinesterase. PLoS ONE. 2024;19:e0308112. doi: 10.1371/journal.pone.0308112. PubMed DOI PMC

Peng L., Zhu J., Yang B., Hao H., Lou S. A green photocatalytic-biosensor for colorimetric detection of pesticide (carbaryl) based on inhibition of acetylcholinesterase. Talanta. 2022;246:123525. doi: 10.1016/j.talanta.2022.123525. PubMed DOI

Zheng M.E., Liu M.X., Song Z.C., Ma F., Zhu H.D., Guo H.L., Sun H.M. High-precision colorimetric-fluorescent dual-mode biosensor for detecting acetylcholinesterase based on a trimetallic nanozyme for efficient peroxidase-mimicking. J. Mater. Sci. Technol. 2024;191:168–180. doi: 10.1016/j.jmst.2024.01.013. DOI

Hermanto D., Ismillayli N., Hamdiani S., Kamali S.R., Wirawan R., Muliasari H., Sanjaya R.K. Inhibitive determination of organophosphate pesticides using acetylcholinesterase and silver nanoparticle as colorimetric. Environ. Eng. Res. 2024;29:230503. doi: 10.4491/eer.2023.503. DOI

Shah M.M., Ren W., Irudayaraj J., Sajini A.A., Ali M.I., Ahmad B. Colorimetric Detection of Organophosphate Pesticides Based on Acetylcholinesterase and Cysteamine Capped Gold Nanoparticles as Nanozyme. Sensors. 2021;21:8050. doi: 10.3390/s21238050. PubMed DOI PMC

Lu L.L., Hu X.H., Zeng R.J., Lin Q.Y., Huang X., Li M.J., Tang D.P. Dual-mode colorimetric-photothermal sensing platform of acetylcholinesterase activity based on the peroxidase-like activity of Fe-N-C nanozyme. Anal. Chim. Acta. 2022;1229:340383. doi: 10.1016/j.aca.2022.340383. PubMed DOI

Guan J.P., Wang M., Ma R.Z., Liu Q., Sun X.T., Xiong Y., Chen X.Q. Single-atom Rh nanozyme: An efficient catalyst for highly sensitive colorimetric detection of acetylcholinesterase activity and adrenaline. Sens. Actuator B-Chem. 2023;375:375. doi: 10.1016/j.snb.2022.132972. DOI

Li D., Li J.Y., Wu C., Liu H.Q., Zhao M.X., Shi H.Y., Zhang Y., Wang T. Smartphone-assisted colorimetric biosensor for the determination of organophosphorus pesticides on the peel of fruits. Food Chem. 2024;443:138459. doi: 10.1016/j.foodchem.2024.138459. PubMed DOI

Wu P.X., Xia H., Wu Y.Y., Wang M.H., Li N., Liu F., Gong H.Y., Yang Q.L., Tan X.F. Breaking the pH limitation and boosting peroxidase-like activity of Au aerogels via amalgam strategy for sensitive colorimetric bioassay. Microchem. J. 2025;208:112550. doi: 10.1016/j.microc.2024.112550. DOI

Cha B.S., Lee E.S., Kim S., Kim J.M., Hwang S.H., Oh S.S., Park K.S. Simple colorimetric detection of organophosphorus pesticides using naturally occurring extracellular vesicles. Microchem. J. 2020;158:105130. doi: 10.1016/j.microc.2020.105130. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...