Fluorometric and Colorimetric Biosensors for the Assay of Cholinesterase Inhibitors
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
DZRO-FVZ22-ZHN II
Ministry of Defence
PubMed
40363113
PubMed Central
PMC12074314
DOI
10.3390/s25092674
PII: s25092674
Knihovny.cz E-zdroje
- Klíčová slova
- acetylcholinesterase, assay, butyrylcholinesterase, enzyme, gold nanoparticles, nerve agents, neurotoxin, peroxidase, photogrammetry,
- MeSH
- acetylcholinesterasa chemie metabolismus MeSH
- biosenzitivní techniky * metody MeSH
- butyrylcholinesterasa chemie metabolismus MeSH
- cholinesterasové inhibitory * analýza MeSH
- fluorometrie * metody MeSH
- kolorimetrie * metody MeSH
- kovové nanočástice chemie MeSH
- lidé MeSH
- zlato chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory * MeSH
- zlato MeSH
Cholinesterases, specifically acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), play critical roles in neurotransmission and are key targets for inhibitors with therapeutic and toxicological significance. This review focuses on the development and application of fluorometric and colorimetric biosensors for the detection of cholinesterase inhibitors. These biosensors take advantage of the unique properties of AChE and BChE to provide sensitive and selective detection methods essential for environmental monitoring, food safety, and clinical diagnostics. Recent advances in assay techniques, including the use of gold nanoparticles, pseudoperoxidase nanomaterials, and innovative enzyme-substrate interactions, are highlighted. This review also discusses challenges and future directions for optimizing these biosensors for practical applications, emphasizing their potential to enhance public health and safety.
Zobrazit více v PubMed
Petrov K.A., Proskurina S.E., Krejci E. Cholinesterases in Tripartite Neuromuscular Synapse. Front. Mol. Neurosci. 2021;14:811220. doi: 10.3389/fnmol.2021.811220. PubMed DOI PMC
Gok M., Cicek C., Bodur E. Butyrylcholinesterase in lipid metabolism: A new outlook. J. Neurochem. 2024;168:381–385. doi: 10.1111/jnc.15833. PubMed DOI
Ha Z.Y., Mathew S., Yeong K.Y. Butyrylcholinesterase: A Multifaceted Pharmacological Target and Tool. Curr. Protein Pept. Sci. 2020;21:99–109. doi: 10.2174/1389203720666191107094949. PubMed DOI
Bagrowska W., Karasewicz A., Góra A. Comprehensive analysis of acetylcholinesterase inhibitor and reactivator complexes: Implications for drug design and antidote development. Drug Discov. Today. 2024;29:104217. doi: 10.1016/j.drudis.2024.104217. PubMed DOI
Jaqua E.E., Tran M.N., Hanna M. Alzheimer Disease: Treatment of Cognitive and Functional Symptoms. Am. Fam. Physician. 2024;110:281–293. PubMed
Kaur S., Chowdhary S., Kumar D., Bhattacharyya R., Banerjee D. Organophosphorus and carbamate pesticides: Molecular toxicology and laboratory testing. Clin. Chim. Acta. 2023;551:117584. doi: 10.1016/j.cca.2023.117584. PubMed DOI
Chen Y., Yang Z., Nian B., Yu C., Maimaiti D., Chai M., Yang X., Zang X., Xu D. Mechanisms of Neurotoxicity of Organophosphate Pesticides and Their Relation to Neurological Disorders. Neuropsychiatr. Dis. Treat. 2024;20:2237–2254. doi: 10.2147/NDT.S479757. PubMed DOI PMC
Shentema M.G., Kumie A., Bråtveit M., Deressa W., Ngowi A.V., Moen B.E. Pesticide Use and Serum Acetylcholinesterase Levels among Flower Farm Workers in Ethiopia-A Cross-Sectional Study. Int. J. Environ. Res. Public Health. 2020;17:964. doi: 10.3390/ijerph17030964. PubMed DOI PMC
Voros C., Dias J., Timperley C.M., Nachon F., Brown R.C.D., Baati R. The risk associated with organophosphorus nerve agents: From their discovery to their unavoidable threat, current medical countermeasures and perspectives. Chem. Biol. Interact. 2024;395:110973. doi: 10.1016/j.cbi.2024.110973. PubMed DOI
Shimada H., Kiyozumi Y., Koga Y., Ogata Y., Katsuda Y., Kitamura Y., Iwatsuki M., Nishiyama K., Baba H., Ihara T. A novel cholinesterase assay for the evaluation of neurotoxin poisoning based on the electron-transfer promotion effect of thiocholine on an Au electrode. Sens. Actuator B-Chem. 2019;298:126893. doi: 10.1016/j.snb.2019.126893. DOI
Lokar N., Kononenko V., Drobne D., Vrtacnik D. Electrochemical acetylcholinesterase biosensor for detection of cholinesterase inhibitors: Study with eserine. Inf. Midem-J. Microelectron. Electron. Compon. Mater. 2018;48:235–240. doi: 10.33180/InfMIDEM2018.406. DOI
Ciriello R., Lo Magro S., Guerrieri A. Assay of serum cholinesterase activity by an amperometric biosensor based on a co-crosslinked choline oxidase/overoxidized polypyrrole bilayer. Analyst. 2018;143:920–929. doi: 10.1039/C7AN01757J. PubMed DOI
Dimcheva N., Horozova E., Ivanov Y., Godjevargova T. Self-assembly of acetylcholinesterase on gold nanoparticles electrodeposited on graphite. Cent. Eur. J. Chem. 2013;11:1740–1748. doi: 10.2478/s11532-013-0307-3. DOI
Teng Y.Q., Fu Y., Xu L.L., Lin B., Wang Z.C., Xu Z.A., Jin L.T., Zhang W. Three-Dimensional Ordered Macroporous (3DOM) Composite for Electrochemical Study on Acetylcholinesterase Inhibition Induced by Endogenous Neurotoxin. J. Phys. Chem. B. 2012;116:11180–11186. doi: 10.1021/jp302792u. PubMed DOI
Li Q.L., Li J.T., Yang D.Z., Xiang C., Yang Y.L. Dual-mode colorimetric-fluorescence biosensor for endotoxin detection based on CS@Fe,Cu/CDs-MnO2 nanomaterials. Talanta. 2025;285:127330. doi: 10.1016/j.talanta.2024.127330. PubMed DOI
Lee D.H., Kim J.W., Kim T.H., Lee K.W., Lee T.S. Synthesis of NAD-functionalized organic semiconducting polymer dots for fluorometric γ-aminobutyric acid sensing. Macromol. Res. 2024:1–9. doi: 10.1007/s13233-024-00351-w. DOI
Govindaraj P., Alungal N., Kannan S. Silver conjugated nickel oxide nanoparticle dependent microfluid non-enzymatic colorimetric paper-based biosensor for uric acid detection. Biochem. Eng. J. 2025;215:109622. doi: 10.1016/j.bej.2024.109622. DOI
Liu S., Chao H.L., He D.J., Wang Y., Yang Y. Biomimetic co-immobilization of (3-glucosidase, glucose oxidase, and horseradish peroxidase to construct a multi-enzyme biosensor for determination of amygdalin. Int. J. Biol. Macromol. 2025;297:139868. doi: 10.1016/j.ijbiomac.2025.139868. PubMed DOI
Cheng S., Luo L.X., Bao M.Y., Bao T., Gao Y., Wu Z., Zhang X.H., Wang S.F., Wen W. A dual-mode colorimetric/photothermal lateral flow biosensor based on Au/Ti3C2TX for HIV-DNA detection. Analytica Chimica Acta. 2025;1338:343588. doi: 10.1016/j.aca.2024.343588. PubMed DOI
Nejadmansouri M., Majdinasab M., Nunes G.S., Marty J.L. An Overview of Optical and Electrochemical Sensors and Biosensors for Analysis of Antioxidants in Food during the Last 5 Years. Sensors. 2021;21:1176. doi: 10.3390/s21041176. PubMed DOI PMC
Oushyani Roudsari Z., Karami Y., Khoramrooz S.S., Rouhi S., Ghasem H., Khatami S.H., Alizadeh M., Ahmad Khosravi N., Mansoriyan A., Ghasemi E., et al. Electrochemical and optical biosensors for the detection of E. Coli. Clin. Chim. Acta. 2025;565:119984. doi: 10.1016/j.cca.2024.119984. PubMed DOI
Xia J., Zhong S., Hu X., Koh K., Chen H. Perspectives and trends in advanced optical and electrochemical biosensors based on engineered peptides. Mikrochim. Acta. 2023;190:327. doi: 10.1007/s00604-023-05907-8. PubMed DOI
Müller G.A., Müller T.D. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins I: Localization at Plasma Membranes and Extracellular Compartments. Biomolecules. 2023;13:855. doi: 10.3390/biom13050855. PubMed DOI PMC
Ordentlich A., Barak D., Kronman C., Flashner Y., Leitner M., Segall Y., Ariel N., Cohen S., Velan B., Shafferman A. Dissection of the human acetylcholinesterase active center determinants of substrate specificity. Identification of residues constituting the anionic site, the hydrophobic site, and the acyl pocket. J. Biol. Chem. 1993;268:17083–17095. doi: 10.1016/S0021-9258(19)85305-X. PubMed DOI
Shafferman A., Kronman C., Flashner Y., Leitner M., Grosfeld H., Ordentlich A., Gozes Y., Cohen S., Ariel N., Barak D., et al. Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding. J. Biol. Chem. 1992;267:17640–17648. doi: 10.1016/S0021-9258(19)37091-7. PubMed DOI
Johnson G., Moore S.W. The peripheral anionic site of acetylcholinesterase: Structure, functions and potential role in rational drug design. Curr. Pharm. Des. 2006;12:217–225. doi: 10.2174/138161206775193127. PubMed DOI
Koellner G., Kryger G., Millard C.B., Silman I., Sussman J.L., Steiner T. Active-site gorge and buried water molecules in crystal structures of acetylcholinesterase from Torpedo californica. J. Mol. Biol. 2000;296:713–735. doi: 10.1006/jmbi.1999.3468. PubMed DOI
Saxena A., Redman A.M.G., Jiang X.L., Lockridge O., Doctor B.P. Differences in active-site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Chem.-Biol. Interact. 1999;119:61–69. doi: 10.1016/S0009-2797(99)00014-9. PubMed DOI
Chiou S.Y., Huang C.F., Hwang M.T., Lin G. Comparison of Active Sites of Butyrylcholinesterase and Acetylcholinesterase Based on Inhibition by Geometric Isomers of Benzene-di-N-Substituted Carbamates. J. Biochem. Mol. Toxicol. 2009;23:303–308. doi: 10.1002/jbt.20286. PubMed DOI
Macdonald I.R., Martin E., Rosenberry T.L., Darvesh S. Probing the peripheral site of human butyrylcholinesterase. Biochemistry. 2012;51:7046–7053. doi: 10.1021/bi300955k. PubMed DOI PMC
Osawa S., Kariyone K., Ichihara F., Arai K., Takagasa N., Ito H. Development and application of serum cholinesterase activity measurement using benzoylthiocholine iodide. Clinica Chimica Acta. 2005;351:65–72. doi: 10.1016/j.cccn.2004.04.017. PubMed DOI
Sine H., El Grafel K., Alkhammal S., Achbani A., Filali K. Serum cholinesterase biomarker study in farmers—Souss Massa region-, Morocco: Case-control study. Biomarkers. 2019;24:771–775. doi: 10.1080/1354750X.2019.1684564. PubMed DOI
Naik R.S., Liu W.Y., Saxena A. Development and validation of a simple assay for the determination of cholinesterase activity in whole blood of laboratory animals. J. Appl. Toxicol. 2013;33:290–300. doi: 10.1002/jat.2730. PubMed DOI
Zhan C.G., Zheng F., Landry D.W. Fundamental reaction mechanism for cocaine hydrolysis in human butyrylcholinesterase. J. Am. Chem. Soc. 2003;125:2462–2474. doi: 10.1021/ja020850+. PubMed DOI PMC
Gao D.Q., Zhan C.G. Modeling evolution of hydrogen bonding and stabilization of transition states in the process of cocaine hydrolysis catalyzed by human butyrylcholinesterase. Proteins. 2006;62:99–110. doi: 10.1002/prot.20713. PubMed DOI PMC
Zheng F., Hou S.R., Xue L., Yang W.C., Zhan C.G. Human Butyrylcholinesterase Mutants for (-)-Cocaine Hydrolysis: A Correlation Relationship between Catalytic Efficiency and Total Hydrogen Bonding Energy with an Oxyanion Hole. J. Phys. Chem. B. 2023;127:10723–10729. doi: 10.1021/acs.jpcb.3c06392. PubMed DOI
Aman S., Paul S., Chowdhury F.R. Management of Organophosphorus Poisoning: Standard Treatment and Beyond. Crit. Care Clin. 2021;37:673–686. doi: 10.1016/j.ccc.2021.03.011. PubMed DOI
Zoofaghari S., Maghami-Mehr A., Abdolrazaghnejad A. Organophosphate Poisoning: Review of Prognosis and Management. Adv. Biomed. Res. 2024;13:82. doi: 10.4103/abr.abr_393_22. PubMed DOI PMC
Vale A., Lotti M. Organophosphorus and carbamate insecticide poisoning. Handb. Clin. Neurol. 2015;131:149–168. PubMed
Moralev S.N., Tikhonov D.B. Investigation of structure-activity relationships in organophosphates-cholinesterase interaction using docking analysis. Chem.-Biol. Interact. 2010;187:153–156. doi: 10.1016/j.cbi.2010.03.039. PubMed DOI
Perra M.T., Serra A., Sirigu P., Turno F. Histochemical demonstration of acetylcholinesterase activity in human Meibomian glands. Eur. J. Histochem. 1996;40:39–44. PubMed
Darvesh S., Darvesh K.V., McDonald R.S., Mataija D., Walsh R., Mothana S., Lockridge O., Martin E. Carbamates with differential mechanism of inhibition toward acetylcholinesterase and butyrylcholinesterase. J. Med. Chem. 2008;51:4200–4212. doi: 10.1021/jm8002075. PubMed DOI
Liu Y.Y., Ma C., Li Y.B., Li M.Z., Cui T., Zhao X.Q., Li Z.L., Jia H.W., Wang H.X., Xiu X.M., et al. Design, synthesis and biological evaluation of carbamate derivatives incorporating multifunctional carrier scaffolds as pseudo-irreversible cholinesterase inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2024;265:116071. doi: 10.1016/j.ejmech.2023.116071. PubMed DOI
Meden A., Knez D., Brazzolotto X., Nachon F., Dias J., Svete J., Stojan J., Groselj U., Gobec S. From tryptophan-based amides to tertiary amines: Optimization of a butyrylcholinesterase inhibitor series. Eur. J. Med. Chem. 2022;234:114248. doi: 10.1016/j.ejmech.2022.114248. PubMed DOI
Wilkinson D.G. The pharmacology of donepezil: A new treatment of Alzheimer’s disease. Expert. Opin. Pharmacother. 1999;1:121–135. doi: 10.1517/14656566.1.1.121. PubMed DOI
Pohanka M., Dobes P. Caffeine inhibits acetylcholinesterase, but not butyrylcholinesterase. Int. J. Mol. Sci. 2013;14:9873–9882. doi: 10.3390/ijms14059873. PubMed DOI PMC
Fu Q., Tang J., Cui M., Zheng Z., Liu Z., Liu S. Development of ESI-MS-based continuous enzymatic assay for real-time monitoring of enzymatic reactions of acetylcholinesterase. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015;990:169–173. doi: 10.1016/j.jchromb.2015.03.022. PubMed DOI
Xu Z., Yao S., Wei Y., Zhou J., Zhang L., Wang C., Guo Y. Monitoring enzyme reaction and screening of inhibitors of acetylcholinesterase by quantitative matrix-assisted laser desorption/ionization Fourier transform mass spectrometry. J. Am. Soc. Mass. Spectrom. 2008;19:1849–1855. doi: 10.1016/j.jasms.2008.07.025. PubMed DOI
Lilienfeld S. Galantamine—A novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer’s disease. CNS Drug. Rev. 2002;8:159–176. doi: 10.1111/j.1527-3458.2002.tb00221.x. PubMed DOI PMC
Loy C., Schneider L. Galantamine for Alzheimer’s disease. Cochrane Database Syst. Rev. 2004;4:Cd001747. doi: 10.1002/14651858.CD001747.pub2. PubMed DOI
Bucur M.P., Bucur B., Radu G.L. Critical evaluation of acetylcholine iodide and acetylthiocholine chloride as substrates for amperometric biosensors based on acetylcholinesterase. Sensors. 2013;13:1603–1613. doi: 10.3390/s130201603. PubMed DOI PMC
Rachmawati A., Sanjaya A.R., Putri Y., Gunlazuardi J., Ivandini T.A. An acetylcholinesterase-based biosensor for isoprocarb using a gold nanoparticles-polyaniline modified graphite pencil electrode. Anal. Sci. 2023;39:911–923. doi: 10.1007/s44211-023-00296-7. PubMed DOI
Akdag A., Isik M., Göktas H. Conducting polymer-based electrochemical biosensor for the detection of acetylthiocholine and pesticide via acetylcholinesterase. Biotechnol. Appl. Biochem. 2021;68:1113–1119. doi: 10.1002/bab.2030. PubMed DOI
Li Y.P., Bai Y.F., Han G.Y., Li M.Y. Porous-reduced graphene oxide for fabricating an amperometric acetylcholinesterase biosensor. Sens. Actuator B-Chem. 2013;185:706–712. doi: 10.1016/j.snb.2013.05.061. DOI
Arduini F., Forchielli M., Amine A., Neagu D., Cacciotti I., Nanni F., Moscone D., Palleschi G. Screen-printed biosensor modified with carbon black nanoparticles for the determination of paraoxon based on the inhibition of butyrylcholinesterase. Microchim. Acta. 2015;182:643–651. doi: 10.1007/s00604-014-1370-y. DOI
Kok F.N., Hasirci V. Determination of binary pesticide mixtures by an acetylcholinesterase-choline oxidase biosensor. Biosens. Bioelectron. 2004;19:661–665. doi: 10.1016/j.bios.2003.07.002. PubMed DOI
Sousa S.C.A., Rebelo M.J.F. Acetylcholinesterase–Choline Oxidase Biosensor for Pirimicarb Determination. Port. Electrochim. Acta. 2008;26:65–75. doi: 10.4152/pea.200801065. DOI
Fennouh S., Casimiri V., Burstein C. Increased paraoxon detection with solvents using acetylcholinesterase inactivation measured with a choline oxidase biosensor. Biosens. Bioelectron. 1997;12:97–104. doi: 10.1016/S0956-5663(97)87055-8. DOI
Kok F.N., Bozoglu F., Hasirci V. Construction of an acetylcholinesterase-choline oxidase biosensor for aldicarb determination. Biosens. Bioelectron. 2002;17:531–539. doi: 10.1016/S0956-5663(02)00009-X. PubMed DOI
Saito H., Suzuki Y., Gessei T., Miyajima K., Arakawa T., Mitsubayashi K. Bioelectronic Sniffer (Biosniffer) Based on Enzyme Inhibition of Butyrylcholinesterase for Toluene Detection. Sens. Mater. 2014;26:121–129.
Pohanka M. Diagnoses of Pathological States Based on Acetylcholinesterase and Butyrylcholinesterase. Curr. Med. Chem. 2020;27:2994–3011. doi: 10.2174/0929867326666190130161202. PubMed DOI
Ellman G.L., Courtney K.D., Andres V., Jr., Feather-Stone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Rathish D., Senavirathna I., Jayasumana C., Agampodi S. Red blood cell acetylcholinesterase activity among healthy dwellers of an agrarian region in Sri Lanka: A descriptive cross-sectional study. Environ. Health Prev. Med. 2018;23:25. doi: 10.1186/s12199-018-0717-0. PubMed DOI PMC
Sanz P., Rodriguez-Vicente M.C., Diaz D., Repetto J., Repetto M. Red blood cell and total blood acetylcholinesterase and plasma pseudocholinesterase in humans: Observed variances. J. Toxicol. Clin. Toxicol. 1991;29:81–90. doi: 10.3109/15563659109038600. PubMed DOI
Kolf-Clauw M., Jez S., Ponsart C., Delamanche I.S. Acetyl- and pseudo-cholinesterase activities of plasma, erythrocytes, and whole blood in male beagle dogs using Ellman’s assay. Vet. Hum. Toxicol. 2000;42:216–219. PubMed
Thiphom S., Prapamontol T., Chantara S., Mangklabruks A., Suphavilai C. A method for measuring cholinesterase activity in human saliva and its application to farmers and consumers. Anal. Methods. 2013;5:4687–4693. doi: 10.1039/c3ay40269j. DOI
Haigh J.R., Lefkowitz L.J., Capacio B.R., Doctor B.P., Gordon R.K. Advantages of the WRAIR whole blood cholinesterase assay: Comparative analysis to the micro-Ellman, Test-mate ChE™ and Michel (ΔpH) assays. Chem.-Biol. Interact. 2008;175:417–420. doi: 10.1016/j.cbi.2008.04.032. PubMed DOI
Yu Q.Y., Guo Q., Zhou J.R., Yuan X., Huang K., Chen P.P. Filter-assisted smartphone colorimetry/ICP-MS dual-mode biosensor of butyrylcholinesterase in clinical samples. Sens. Actuator B-Chem. 2022;370:132472. doi: 10.1016/j.snb.2022.132472. DOI
Matejovsky L., Pitschmann V. A Strip Biosensor with Guinea Green B and Fuchsin Basic Color Indicators on a Glass Nanofiber Carrier for the Cholinesterase Detection of Nerve Agents. ACS Omega. 2019;4:20978–20986. doi: 10.1021/acsomega.9b02153. PubMed DOI PMC
Matejovsky L., Pitschmann V. New Carrier Made from Glass Nanofibres for the Colorimetric Biosensor of Cholinesterase Inhibitors. Biosensors. 2018;8:51. doi: 10.3390/bios8020051. PubMed DOI PMC
Cavalcante S.F.A., Kitagawa D.A.S., Rodrigues R.B., Silva T.C., Bernardo L.B., Correa A.B.A., Simas A.B.C. One-Pot Synthesis of NEMP, a VX Surrogate, and Reactivation of NEMP-Inhibited Electrophorus Eel Acetylcholinesterase by Current Antidotes. J. Braz. Chem. Soc. 2019;30:1095–1102. doi: 10.21577/0103-5053.20180246. DOI
Villatte F., Bachman T.T., Hussein A.S., Schmid R.D. Acetylcholinesterase assay for rapid expression screening in liquid and solid media. Biotechniques. 2001;30:81–86. doi: 10.2144/01301st04. PubMed DOI
Ramallo I.A., García P., Furlan R.L.E. A reversed-phase compatible thin-layer chromatography autography for the detection of acetylcholinesterase inhibitors. J. Sep. Sci. 2015;38:3788–3794. doi: 10.1002/jssc.201500662. PubMed DOI
Du T.F., Zhou S.G., Tang M.S. A new micro-detection tube for cholinesterase inhibitors in water. Environ. Pollut. 1989;57:217–222. doi: 10.1016/0269-7491(89)90013-4. PubMed DOI
Li S.Z., Huang R.L., Solomon S., Liu Y.T., Zhao B., Santillo M.F., Xia M.H. Identification of acetylcholinesterase inhibitors using homogenous cell-based assays in quantitative high-throughput screening platforms. Biotechnol. J. 2017;12:1600715. doi: 10.1002/biot.201600715. PubMed DOI
Santillo M.F., Liu Y.T. A fluorescence assay for measuring acetylcholinesterase activity in rat blood and a human neuroblastoma cell line (SH-SY5Y) J. Pharmacol. Toxicol. Methods. 2015;76:15–22. doi: 10.1016/j.vascn.2015.07.002. PubMed DOI
Cui K., Chen Z.L., Wang Z., Zhang G.X., Zhang D.Q. A naked-eye visible and fluorescence “turn-on” probe for acetyl-cholinesterase assay and thiols as well as imaging of living cells. Analyst. 2011;136:191–195. doi: 10.1039/C0AN00456A. PubMed DOI
Dhull V., Gahlaut A., Hooda V. Nanomaterials based biosensors for the detection of organophosphate compounds: A review. Int. J. Environ. Anal. Chem. 2023;103:4200–4224. doi: 10.1080/03067319.2021.1924162. DOI
Stepánková S., Vorcáková K. Cholinesterase-based biosensors. J. Enzym. Inhib. Med. Chem. 2016;31:180–193. doi: 10.1080/14756366.2016.1204609. PubMed DOI
Sabullah M.K., Khalidi S.A.M., Abdullah R., Sani S.A., Gansau J.A., Ahmad S.A., Shukor M.Y. Cholinesterase-based biosensor for preliminary detection of toxic heavy metals in the environment and agricultural-based products. Int. Food Res. J. 2020;27:597–609.
Xu Y.L., Li F.Y., Ndikuryayo F., Yang W.C., Wang H.M. Cholinesterases and Engineered Mutants for the Detection of Organophosphorus Pesticide Residues. Sensors. 2018;18:4281. doi: 10.3390/s18124281. PubMed DOI PMC
Pundir C.S., Malik A., Preety Bio-sensing of organophosphorus pesticides: A review. Biosens. Bioelectron. 2019;140:5–17. doi: 10.1016/j.bios.2019.111348. PubMed DOI
Brízová A., Pitschmann V. Simple Chemical and Cholinesterase Methods for the Detection of Nerve Agents Using Optical Evaluation. Biosensors. 2023;13:995. doi: 10.3390/bios13120995. PubMed DOI PMC
Karadurmus L., Kaya S.I., Ozkan S.A. Recent advances of enzyme biosensors for pesticide detection in foods. J. Food Meas. Charact. 2021;15:4582–4595. doi: 10.1007/s11694-021-01032-3. DOI
Ivanov A., Shamagsumova R., Larina M., Evtugyn G. Electrochemical Acetylcholinesterase Sensors for Anti-Alzheimer’s Disease Drug Determination. Biosensors. 2024;14:93. doi: 10.3390/bios14020093. PubMed DOI PMC
Bucur B., Munteanu F.D., Marty J.L., Vasilescu A. Advances in Enzyme-Based Biosensors for Pesticide Detection. Biosensors. 2018;8:27. doi: 10.3390/bios8020027. PubMed DOI PMC
Soldatkin O.O., Pyeshkova V.M., Kucherenko I.S., Velychko T.P., Bakhmat V.A., Arkhypova V.M., Soldatkin A.P., Dzyadevych S.V. Application of butyrylcholinesterase-based biosensor for simultaneous determination of different toxicants using inhibition and reactivation steps. Electroanalysis. 2024;36:e202300400. doi: 10.1002/elan.202300400. DOI
Mouawad L., Istamboulie G., Catanante G., Noguer T. Enhancing Biocide Safety of Milk Using Biosensors Based on Cholinesterase Inhibition. Biosensors. 2025;15:26. doi: 10.3390/bios15010026. PubMed DOI PMC
Wongta A., Anand P., Aning N.A.A., Sawarng N., Hongsibsong S. Advancing micro-electrometric techniques for the detection of organophosphate and carbamate residues using cricket cholinesterase. PLoS ONE. 2024;19:e0308112. doi: 10.1371/journal.pone.0308112. PubMed DOI PMC
Peng L., Zhu J., Yang B., Hao H., Lou S. A green photocatalytic-biosensor for colorimetric detection of pesticide (carbaryl) based on inhibition of acetylcholinesterase. Talanta. 2022;246:123525. doi: 10.1016/j.talanta.2022.123525. PubMed DOI
Zheng M.E., Liu M.X., Song Z.C., Ma F., Zhu H.D., Guo H.L., Sun H.M. High-precision colorimetric-fluorescent dual-mode biosensor for detecting acetylcholinesterase based on a trimetallic nanozyme for efficient peroxidase-mimicking. J. Mater. Sci. Technol. 2024;191:168–180. doi: 10.1016/j.jmst.2024.01.013. DOI
Hermanto D., Ismillayli N., Hamdiani S., Kamali S.R., Wirawan R., Muliasari H., Sanjaya R.K. Inhibitive determination of organophosphate pesticides using acetylcholinesterase and silver nanoparticle as colorimetric. Environ. Eng. Res. 2024;29:230503. doi: 10.4491/eer.2023.503. DOI
Shah M.M., Ren W., Irudayaraj J., Sajini A.A., Ali M.I., Ahmad B. Colorimetric Detection of Organophosphate Pesticides Based on Acetylcholinesterase and Cysteamine Capped Gold Nanoparticles as Nanozyme. Sensors. 2021;21:8050. doi: 10.3390/s21238050. PubMed DOI PMC
Lu L.L., Hu X.H., Zeng R.J., Lin Q.Y., Huang X., Li M.J., Tang D.P. Dual-mode colorimetric-photothermal sensing platform of acetylcholinesterase activity based on the peroxidase-like activity of Fe-N-C nanozyme. Anal. Chim. Acta. 2022;1229:340383. doi: 10.1016/j.aca.2022.340383. PubMed DOI
Guan J.P., Wang M., Ma R.Z., Liu Q., Sun X.T., Xiong Y., Chen X.Q. Single-atom Rh nanozyme: An efficient catalyst for highly sensitive colorimetric detection of acetylcholinesterase activity and adrenaline. Sens. Actuator B-Chem. 2023;375:375. doi: 10.1016/j.snb.2022.132972. DOI
Li D., Li J.Y., Wu C., Liu H.Q., Zhao M.X., Shi H.Y., Zhang Y., Wang T. Smartphone-assisted colorimetric biosensor for the determination of organophosphorus pesticides on the peel of fruits. Food Chem. 2024;443:138459. doi: 10.1016/j.foodchem.2024.138459. PubMed DOI
Wu P.X., Xia H., Wu Y.Y., Wang M.H., Li N., Liu F., Gong H.Y., Yang Q.L., Tan X.F. Breaking the pH limitation and boosting peroxidase-like activity of Au aerogels via amalgam strategy for sensitive colorimetric bioassay. Microchem. J. 2025;208:112550. doi: 10.1016/j.microc.2024.112550. DOI
Cha B.S., Lee E.S., Kim S., Kim J.M., Hwang S.H., Oh S.S., Park K.S. Simple colorimetric detection of organophosphorus pesticides using naturally occurring extracellular vesicles. Microchem. J. 2020;158:105130. doi: 10.1016/j.microc.2020.105130. DOI