Newly emerging metronidazole-resistant Clostridioides difficile PCR ribotype 955 identified in Poland, 2021 to 2023 but not in Czechia, 2012 to 2023 and Slovakia, 2015 to 2023
Jazyk angličtina Země Švédsko Médium print
Typ dokumentu časopisecké články
PubMed
40444372
PubMed Central
PMC12124108
DOI
10.2807/1560-7917.es.2025.30.21.2400675
Knihovny.cz E-zdroje
- Klíčová slova
- Leu155Ile, Surveillance, Tyr130Ser, aac(6')-aph(2”), ermB, fluoroquinolones, heme-dependent, nimB,
- MeSH
- antibakteriální látky * farmakologie MeSH
- bakteriální léková rezistence * genetika MeSH
- Clostridioides difficile * genetika účinky léků izolace a purifikace klasifikace MeSH
- epidemický výskyt choroby MeSH
- klostridiové infekce * epidemiologie mikrobiologie farmakoterapie MeSH
- lidé MeSH
- metronidazol * farmakologie MeSH
- mikrobiální testy citlivosti MeSH
- multilokusová sekvenční typizace MeSH
- polymerázová řetězová reakce MeSH
- ribotypizace * MeSH
- sekvenování celého genomu MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Polsko epidemiologie MeSH
- Slovenská republika epidemiologie MeSH
- Názvy látek
- antibakteriální látky * MeSH
- metronidazol * MeSH
BackgroundOn 29 January 2024, the European Centre for Disease Prevention and Control distributed an alert about a metronidazole-resistant Clostridioides difficile outbreak of PCR ribotype (RT) 955 in England.AimWe aimed to investigate the presence of RT955 in Czech, Slovak and Polish C. difficile isolates and evaluate different culture media for detecting its metronidazole resistance.MethodsIsolates with binary toxin genes identified as 'unknown' by the WEBRIBO PCR ribotyping database up to 2023 were re-analysed after adding the RT955 profile to the database. The RT955 isolates were characterised by whole genome sequencing and tested for susceptibility to 15 antimicrobials.ResultsWe did not find RT955 in Czech (n = 6,661, 2012-2023) and Slovak (n = 776, 2015-2023) isolates, but identified 13 RT955 cases (n = 303, 2021-2023) in three hospitals in Poland. By whole genome multilocus sequence typing, 10 isolates clustered into one clonal complex including a sequence of United Kingdom strain ERR12670107, and shared similar antimicrobial resistance genes/mutations. All 13 isolates were resistant to ciprofloxacin/moxifloxacin, erythromycin/clindamycin and ceftazidime. All isolates had a mutation in the nimB gene promoter and in NimB (Tyr130Ser and Leu155Ile). The metronidazole resistance was detected in all isolates using brain-heart-infusion agar supplemented with haemin and Chocolate agar. Results were discrepant with the European Committee on Antimicrobial Susceptibility Testing-recommended Fastidious anaerobe agar and Brucella blood agar.ConclusionThe identification of clonally related haem-dependent metronidazole-resistant C. difficile RT955 in multiple hospitals indicates a need for prospective surveillance to estimate its prevalence in Europe.
Department of Medical Microbiology Medical University of Warsaw Warsaw Poland
Division of Molecular Bacteriology Medical University of Gdańsk Gdańsk Poland
European Society for Clinical Microbiology and Infectious Diseases Basel Switzerland
Intercollegiate Faculty of Biotechnology University of Gdańsk Gdańsk Poland
Zobrazit více v PubMed
He M, Miyajima F, Roberts P, Ellison L, Pickard DJ, Martin MJ, et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet. 2013;45(1):109-13. 10.1038/ng.2478 PubMed DOI PMC
Krutova M, Kinross P, Barbut F, Hajdu A, Wilcox MH, Kuijper EJ, et al. How to: Surveillance of Clostridium difficile infections. Clin Microbiol Infect. 2018;24(5):469-75. 10.1016/j.cmi.2017.12.008 PubMed DOI
Pituch H, Obuch-Woszczatyński P, Lachowicz D, Wultańska D, Karpiński P, Młynarczyk G, et al. Hospital-based Clostridium difficile infection surveillance reveals high proportions of PCR ribotypes 027 and 176 in different areas of Poland, 2011 to 2013. Euro Surveill. 2015;20(38). 10.2807/1560-7917.ES.2015.20.38.30025 PubMed DOI
Plankaova A, Brajerova M, Capek V, Balikova Novotna G, Kinross P, Skalova J, et al. Clostridioides difficile infections were predominantly driven by fluoroquinolone-resistant Clostridioides difficile ribotypes 176 and 001 in Slovakia in 2018-2019. Int J Antimicrob Agents. 2023;62(1):106824. 10.1016/j.ijantimicag.2023.106824 PubMed DOI
Krutova M, Matejkova J, Drevinek P, Kuijper EJ, Nyc O, study group . Increasing incidence of Clostridium difficile ribotype 001 associated with severe course of the infection and previous fluoroquinolone use in the Czech Republic, 2015. Eur J Clin Microbiol Infect Dis. 2017;36(11):2251-8. 10.1007/s10096-017-3055-z PubMed DOI
Rupnik M, Tambic Andrasevic A, Trajkovska Dokic E, Matas I, Jovanovic M, Pasic S, et al. Distribution of Clostridium difficile PCR ribotypes and high proportion of 027 and 176 in some hospitals in four South Eastern European countries. Anaerobe. 2016;42:142-4. 10.1016/j.anaerobe.2016.10.005 PubMed DOI
Viprey VF, Davis GL, Benson AD, Ewin D, Spittal W, Vernon JJ, et al. A point-prevalence study on community and inpatient Clostridioides difficile infections (CDI): results from Combatting Bacterial Resistance in Europe CDI (COMBACTE-CDI), July to November 2018. Euro Surveill. 2022;27(26):2100704. 10.2807/1560-7917.ES.2022.27.26.2100704 PubMed DOI PMC
Kachrimanidou M, Baktash A, Metallidis S, Tsachouridou Ο, Netsika F, Dimoglou D, et al. An outbreak of Clostridioides difficile infections due to a 027-like PCR ribotype 181 in a rehabilitation centre: Epidemiological and microbiological characteristics. Anaerobe. 2020;65:102252. 10.1016/j.anaerobe.2020.102252 PubMed DOI
Krutova M, Nyc O, Matejkova J, Kuijper EJ, Jalava J, Mentula S. The recognition and characterisation of Finnish Clostridium difficile isolates resembling PCR-ribotype 027. J Microbiol Immunol Infect. 2018;51(3):344-51. 10.1016/j.jmii.2017.02.002 PubMed DOI
European Centre for Disease Prevention and Control (ECDC). EpiPulse: 2024-ARH-00002-Item created by United Kingdom -Clostridioides difficile outbreak. New ribotype (955), England. Stockholm: ECDC; 2024.
Puleston R, Roulston K, Morgan K, Hopkins S, Wilcox MH, Fawley W, et al. Emergence of new concerning ribotype of Clostridioides difficile (955). ESCMID Global Congress; 27-30 Apr 2024, Barcelona, Spain. Abstract O0430.
Persson S, Torpdahl M, Olsen KE. New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin Microbiol Infect. 2008;14(11):1057-64. 10.1111/j.1469-0691.2008.02092.x PubMed DOI
Fawley WN, Knetsch CW, MacCannell DR, Harmanus C, Du T, Mulvey MR, et al. Development and validation of an internationally-standardized, high-resolution capillary gel-based electrophoresis PCR-ribotyping protocol for Clostridium difficile. PLoS One. 2015;10(2):e0118150. 10.1371/journal.pone.0118150 PubMed DOI PMC
Bidet P, Barbut F, Lalande V, Burghoffer B, Petit JC. Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing. FEMS Microbiol Lett. 1999;175(2):261-6. 10.1111/j.1574-6968.1999.tb13629.x PubMed DOI
Stubbs SL, Brazier JS, O’Neill GL, Duerden BI. PCR targeted to the 16S-23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol. 1999;37(2):461-3. 10.1128/JCM.37.2.461-463.1999 PubMed DOI PMC
European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical breakpoints. Version 14.0. Växjö; EUCAST; 2024. Available from: http://www.eucast.org/clinical_breakpoints
Olaitan AO, Dureja C, Youngblom MA, Topf MA, Shen WJ, Gonzales-Luna AJ, et al. Decoding a cryptic mechanism of metronidazole resistance among globally disseminated fluoroquinolone-resistant Clostridioides difficile. Nat Commun. 2023;14(1):4130. 10.1038/s41467-023-39429-x PubMed DOI PMC
Cizek A, Masarikova M, Mares J, Brajerova M, Krutova M. Detection of plasmid-mediated resistance to metronidazole in Clostridioides difficile from river water. Microbiol Spectr. 2022;10(4):e0080622. 10.1128/spectrum.00806-22 PubMed DOI PMC
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81. 10.1111/j.1469-0691.2011.03570.x PubMed DOI
Frentrup M, Zhou Z, Steglich M, Meier-Kolthoff JP, Göker M, Riedel T, et al. A publicly accessible database for Clostridioides difficile genome sequences supports tracing of transmission chains and epidemics. Microb Genom. 2020;6(8):mgen000410. 10.1099/mgen.0.000410 PubMed DOI PMC
Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, et al. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol. 2012;50(4):1355-61. 10.1128/JCM.06094-11 PubMed DOI PMC
Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75(12):3491-500. 10.1093/jac/dkaa345 PubMed DOI PMC
Dridi L, Tankovic J, Burghoffer B, Barbut F, Petit JC. gyrA and gyrB mutations are implicated in cross-resistance to Ciprofloxacin and moxifloxacin in Clostridium difficile. Antimicrob Agents Chemother. 2002;46(11):3418-21. 10.1128/AAC.46.11.3418-3421.2002 PubMed DOI PMC
O’Connor JR, Galang MA, Sambol SP, Hecht DW, Vedantam G, Gerding DN, et al. Rifampin and rifaximin resistance in clinical isolates of Clostridium difficile. Antimicrob Agents Chemother. 2008;52(8):2813-7. 10.1128/AAC.00342-08 PubMed DOI PMC
Dingle KE, Freeman J, Didelot X, Quan TP, Eyre DW, Swann J, et al. Penicillin binding protein substitutions cooccur with fluoroquinolone resistance in epidemic lineages of multidrug-resistant Clostridioides difficile. MBio. 2023;14(2):e0024323. 10.1128/mbio.00243-23 PubMed DOI PMC
Boekhoud IM, Sidorov I, Nooij S, Harmanus C, Bos-Sanders IMJG, Viprey V, et al. Haem is crucial for medium-dependent metronidazole resistance in clinical isolates of Clostridioides difficile. J Antimicrob Chemother. 2021;76(7):1731-40. 10.1093/jac/dkab097 PubMed DOI PMC
Boekhoud IM, Hornung BVH, Sevilla E, Harmanus C, Bos-Sanders IMJG, Terveer EM, et al. Plasmid-mediated metronidazole resistance in Clostridioides difficile. Nat Commun. 2020;11(1):598. 10.1038/s41467-020-14382-1 PubMed DOI PMC
Khanafer N, Daneman N, Greene T, Simor A, Vanhems P, Samore M, et al. Susceptibilities of clinical Clostridium difficile isolates to antimicrobials: a systematic review and meta-analysis of studies since 1970. Clin Microbiol Infect. 2018;24(2):110-7. 10.1016/j.cmi.2017.07.012 PubMed DOI
Baktash A, Corver J, Harmanus C, Smits WK, Fawley W, Wilcox MH, et al. Comparison of Whole-Genome Sequence-Based Methods and PCR Ribotyping for Subtyping of Clostridioides difficile. J Clin Microbiol. 2022;60(2):e0173721. 10.1128/jcm.01737-21 PubMed DOI PMC
Wu X, Shen WJ, Deshpande A, Olaitan AO, Palmer KL, Garey KW, et al. The integrity of heme is essential for reproducible detection of metronidazole-resistant Clostridioides difficile by agar dilution susceptibility tests. J Clin Microbiol. 2021;59(9):e0058521. 10.1128/JCM.00585-21 PubMed DOI PMC
Zhao H, Nickle DC, Zeng Z, Law PYT, Wilcox MH, Chen L, et al. Global landscape of Clostridioides difficile phylogeography, antibiotic susceptibility, and toxin polymorphisms by post-hoc whole-genome sequencing from the MODIFY I/II studies. Infect Dis Ther. 2021;10(2):853-70. 10.1007/s40121-021-00426-6 PubMed DOI PMC
Endres BT, Begum K, Sun H, Walk ST, Memariani A, Lancaster C, et al. Epidemic Clostridioides difficile ribotype 027 lineages: comparisons of Texas versus worldwide strains. Open Forum Infect Dis. 2019;6(2):ofz013. 10.1093/ofid/ofz013 PubMed DOI PMC
Krutova M, Matejkova J, Tkadlec J, Nyc O. Antibiotic profiling of Clostridium difficile ribotype 176--A multidrug resistant relative to C. difficile ribotype 027. Anaerobe. 2015;36:88-90. 10.1016/j.anaerobe.2015.07.009 PubMed DOI
Lachowicz D, Pituch H, Wultańska D, Kuijper E, Obuch-Woszczatyński P. Surveillance of antimicrobial susceptibilities reveals high proportions of multidrug resistance in toxigenic Clostridium difficile strains in different areas of Poland. Anaerobe. 2020;62:102167. 10.1016/j.anaerobe.2020.102167 PubMed DOI
Kolte B, Nübel U. Genetic determinants of resistance to antimicrobial therapeutics are rare in publicly available Clostridioides difficile genome sequences. J Antimicrob Chemother. 2024;79(6):1320-8. 10.1093/jac/dkae101 PubMed DOI PMC
European Centre for Disease Prevention and Control (ECDC). European Surveillance of Clostridioides (Clostridium) difficile infections. Surveillance protocol version 2.4. Stockholm: ECDC; 2019. Available from: https://www.ecdc.europa.eu/en/publications-data/european-surveillance-clostridium-difficile-infections-surveillance-protocol-2
van Dorp SM, Kinross P, Gastmeier P, Behnke M, Kola A, Delmée M, et al. Standardised surveillance of Clostridium difficile infection in European acute care hospitals: a pilot study, 2013. Euro Surveill. 2016;21(29). 10.2807/1560-7917.ES.2016.21.29.30293 PubMed DOI
Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 30th ed. M100. Wayne: CLSI; 2020.