• This record comes from PubMed

Meta-analysis of uveal melanoma genome-wide association studies identifies novel risk loci and population effect size heterogeneity

. 2025 Jul 10 ; 6 (3) : 100465. [epub] 20250609

Language English Country United States Media print-electronic

Document type Journal Article, Meta-Analysis

Links

PubMed 40495383
PubMed Central PMC12226357
DOI 10.1016/j.xhgg.2025.100465
PII: S2666-2477(25)00068-5
Knihovny.cz E-resources

Uveal melanoma (UM) is a rare but frequently metastasizing cancer. Genome-wide association studies have identified three common genome-wide significant germline risk loci. Here, we perform a genome-wide association study on 401 new cases and conduct a meta-analysis with three independent previously published cohorts for a total sample size of 2,426 cases. We confirm the three previously identified risk loci and identify four additional genome-wide significant loci. We find that eye pigmentation-decreasing variants are systematically associated with increased UM risk and that selection for lighter pigmentation in the past 5,000 years explains about 73% of the difference in UM incidence between Northern and Southern Europe. We find evidence of effect size heterogeneity at significant loci across cohorts, in particular, a weaker association between eye pigmentation and UM in a Finnish cohort. Finally, we confirm differential effect sizes between uveal melanoma cases with and without loss of chromosome 3, the major determinant of metastatic risk. Our study identifies novel germline risk factors for UM and highlights genetic and environmental heterogeneity in its etiology.

See more in PubMed

Shields C.L., Kaliki S., Shah S.U., Luo W., Furuta M., Shields J.A. Iris melanoma: features and prognosis in 317 children and adults. J AAPOS. 2012;16:10–16. doi: 10.1016/j.jaapos.2011.10.012. PubMed DOI

Wu M., Yavuzyiğitoğlu S., Brosens E., Ramdas W.D., Kiliç E., Rotterdam Ocular Melanoma Study Group ROMS Worldwide Incidence of Ocular Melanoma and Correlation With Pigmentation-Related Risk Factors. Investig. Ophthalmol. Vis. Sci. 2023;64:45. doi: 10.1167/iovs.64.13.45. PubMed DOI PMC

Damato E.M., Damato B.E. Detection and time to treatment of uveal melanoma in the United Kingdom: an evaluation of 2,384 patients. Ophthalmology. 2012;119:1582–1589. doi: 10.1016/j.ophtha.2012.01.048. PubMed DOI

Kujala E., Mäkitie T., Kivelä T. Very long-term prognosis of patients with malignant uveal melanoma. Investig. Ophthalmol. Vis. Sci. 2003;44:4651–4659. doi: 10.1167/iovs.03-0538. PubMed DOI

Royer-Bertrand B., Torsello M., Rimoldi D., El Zaoui I., Cisarova K., Pescini-Gobert R., Raynaud F., Zografos L., Schalenbourg A., Speiser D., et al. Comprehensive Genetic Landscape of Uveal Melanoma by Whole-Genome Sequencing. Am. J. Hum. Genet. 2016;99:1190–1198. doi: 10.1016/j.ajhg.2016.09.008. PubMed DOI PMC

Walpole S., Pritchard A.L., Cebulla C.M., Pilarski R., Stautberg M., Davidorf F.H., de la Fouchardière A., Cabaret O., Golmard L., Stoppa-Lyonnet D., et al. Comprehensive Study of the Clinical Phenotype of Germline BAP1 Variant-Carrying Families Worldwide. J. Natl. Cancer Inst. 2018;110:1328–1341. doi: 10.1093/jnci/djy171. PubMed DOI PMC

Mobuchon L., Derrien A.C., Houy A., Verrier T., Pierron G., Cassoux N., Milder M., Deleuze J.F., Boland A., Scelo G., et al. Different Pigmentation Risk Loci for High-Risk Monosomy 3 and Low-Risk Disomy 3 Uveal Melanomas. J. Natl. Cancer Inst. 2022;114:302–309. doi: 10.1093/jnci/djab167. PubMed DOI PMC

Donnelly M.P., Paschou P., Grigorenko E., Gurwitz D., Barta C., Lu R.B., Zhukova O.V., Kim J.J., Siniscalco M., New M., et al. A global view of the OCA2-HERC2 region and pigmentation. Hum. Genet. 2012;131:683–696. doi: 10.1007/s00439-011-1110-x. PubMed DOI PMC

Visser M., Kayser M., Palstra R.J. HERC2 rs12913832 modulates human pigmentation by attenuating chromatin-loop formation between a long-range enhancer and the OCA2 promoter. Genome Res. 2012;22:446–455. doi: 10.1101/gr.128652.111. PubMed DOI PMC

Praetorius C., Grill C., Stacey S.N., Metcalf A.M., Gorkin D.U., Robinson K.C., Van Otterloo E., Kim R.S.Q., Bergsteinsdottir K., Ogmundsdottir M.H., et al. A polymorphism in IRF4 affects human pigmentation through a tyrosinase-dependent MITF/TFAP2A pathway. Cell. 2013;155:1022–1033. doi: 10.1016/j.cell.2013.10.022. PubMed DOI PMC

Zhang M., Song F., Liang L., Nan H., Zhang J., Liu H., Wang L.E., Wei Q., Lee J.E., Amos C.I., et al. Genome-wide association studies identify several new loci associated with pigmentation traits and skin cancer risk in European Americans. Hum. Mol. Genet. 2013;22:2948–2959. doi: 10.1093/hmg/ddt142. PubMed DOI PMC

James M.A., Vikis H.G., Tate E., Rymaszewski A.L., You M. CRR9/CLPTM1L Regulates Cell Survival Signaling and is Required for Ras Transformation and Lung Tumorigenesis. Cancer Res. 2014;74:1116–1127. doi: 10.1158/0008-5472.CAN-13-1617. PubMed DOI PMC

Weis E., Shah C.P., Lajous M., Shields J.A., Shields C.L. The Association Between Host Susceptibility Factors and Uveal Melanoma: A Meta-analysis. Arch. Ophthalmol. 2006;124:54–60. doi: 10.1001/archopht.124.1.54. PubMed DOI

Schmidt-Pokrzywniak A., Jöckel K.H., Bornfeld N., Sauerwein W., Stang A. Positive Interaction Between Light Iris Color and Ultraviolet Radiation in Relation to the Risk of Uveal Melanoma: A Case-Control Study. Ophthalmology. 2009;116:340–348. doi: 10.1016/j.ophtha.2008.09.040. PubMed DOI

Li W., Judge H., Gragoudas E.S., Seddon J.M., Egan K.M. Patterns of tumor initiation in choroidal melanoma. Cancer Res. 2000;60:3757–3760. PubMed

Robertson A.G., Shih J., Yau C., Gibb E.A., Oba J., Mungall K.L., Hess J.M., Uzunangelov V., Walter V., Danilova L., et al. Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. Cancer Cell. 2017;32:204–220.e15. doi: 10.1016/j.ccell.2017.07.003. PubMed DOI PMC

Ewens K.G., Kanetsky P.A., Richards-Yutz J., Purrazzella J., Shields C.L., Ganguly T., Ganguly A. Chromosome 3 status combined with BAP1 and EIF1AX mutation profiles are associated with metastasis in uveal melanoma. Investig. Ophthalmol. Vis. Sci. 2014;55:5160–5167. doi: 10.1167/iovs.14-14550. PubMed DOI

Verma A., Damrauer S.M., Naseer N., Weaver J., Kripke C.M., Guare L., Sirugo G., Kember R.L., Drivas T.G., Dudek S.M., et al. The Penn Medicine BioBank: Towards a Genomics-Enabled Learning Healthcare System to Accelerate Precision Medicine in a Diverse Population. J. Pers. Med. 2022;12:1974. doi: 10.3390/jpm12121974. PubMed DOI PMC

Auton A., Abecasis G.R., Altshuler D.M., Garrison E.P., Kang H.M., Korbel J.O., Marchini J.L., McCarthy S., McVean G.A., Abecasis G.R., et al. A global reference for human genetic variation. Nature. 2015;526:68–74. doi: 10.1038/nature15393. PubMed DOI PMC

Chang C.C., Chow C.C., Tellier L.C., Vattikuti S., Purcell S.M., Lee J.J. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience. 2015;4:7. doi: 10.1186/s13742-015-0047-8. PubMed DOI PMC

Das S., Forer L., Schönherr S., Sidore C., Locke A.E., Kwong A., Vrieze S.I., Chew E.Y., Levy S., McGue M., et al. Next-generation genotype imputation service and methods. Nat. Genet. 2016;48:1284–1287. doi: 10.1038/ng.3656. PubMed DOI PMC

Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–2993. doi: 10.1093/bioinformatics/btr509. PubMed DOI PMC

Jiang L., Zheng Z., Fang H., Yang J. A generalized linear mixed model association tool for biobank-scale data. Nat. Genet. 2021;53:1616–1621. doi: 10.1038/s41588-021-00954-4. PubMed DOI

Palmer D.S., Zhou W., Abbott L., Wigdor E.M., Baya N., Churchhouse C., Seed C., Poterba T., King D., Kanai M., et al. Analysis of genetic dominance in the UK Biobank. Science. 2023;379:1341–1348. doi: 10.1126/science.abn8455. PubMed DOI PMC

Willer C.J., Li Y., Abecasis G.R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–2191. doi: 10.1093/bioinformatics/btq340. PubMed DOI PMC

Thomsen H., Chattopadhyay S., Hoffmann P., Nöthen M.M., Kalirai H., Coupland S.E., Jonas J.B., Hemminki K., Försti A. Genome-wide study on uveal melanoma patients finds association to DNA repair gene TDP1. Melanoma Res. 2020;30:166–172. doi: 10.1097/CMR.0000000000000641. PubMed DOI

Kurki M.I., Karjalainen J., Palta P., Sipilä T.P., Kristiansson K., Donner K.M., Reeve M.P., Laivuori H., Aavikko M., Kaunisto M.A., et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613:508–518. doi: 10.1038/s41586-022-05473-8. PubMed DOI PMC

Hinrichs A.S., Karolchik D., Baertsch R., Barber G.P., Bejerano G., Clawson H., Diekhans M., Furey T.S., Harte R.A., Hsu F., et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 2006;34:D590–D598. PubMed PMC

Pruim R.J., Welch R.P., Sanna S., Teslovich T.M., Chines P.S., Gliedt T.P., Boehnke M., Abecasis G.R., Willer C.J. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26:2336–2337. doi: 10.1093/bioinformatics/btq419. PubMed DOI PMC

Simcoe M., Valdes A., Liu F., Furlotte N.A., Evans D.M., Hemani G., Ring S.M., Smith G.D., Duffy D.L., Zhu G., et al. Genome-wide association study in almost 195,000 individuals identifies 50 previously unidentified genetic loci for eye color. Sci. Adv. 2021;7 doi: 10.1126/sciadv.abd1239. PubMed DOI PMC

Landi M.T., Bishop D.T., MacGregor S., Machiela M.J., Stratigos A.J., Ghiorzo P., Brossard M., Calista D., Choi J., Fargnoli M.C., et al. Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility. Nat. Genet. 2020;52:494–504. doi: 10.1038/s41588-020-0611-8. PubMed DOI PMC

MendelianRandomization v0.9.0: updates to ... | Wellcome Open Research. https://wellcomeopenresearch.org/articles/8-449 PubMed PMC

Martiniano R., Caffell A., Holst M., Hunter-Mann K., Montgomery J., Müldner G., McLaughlin R.L., Teasdale M.D., van Rheenen W., Veldink J.H., et al. Genomic signals of migration and continuity in Britain before the Anglo-Saxons. Nat. Commun. 2016;7 doi: 10.1038/ncomms10326. PubMed DOI PMC

Schiffels S., Haak W., Paajanen P., Llamas B., Popescu E., Loe L., Clarke R., Lyons A., Mortimer R., Sayer D., et al. Iron Age and Anglo-Saxon genomes from East England reveal British migration history. Nat. Commun. 2016;7 doi: 10.1038/ncomms10408. PubMed DOI PMC

Brace S., Diekmann Y., Booth T.J., van Dorp L., Faltyskova Z., Rohland N., Mallick S., Olalde I., Ferry M., Michel M., et al. Ancient Genomes Indicate Population Replacement in Early Neolithic Britain. Nat. Ecol. Evol. 2019;3:765–771. doi: 10.1038/s41559-019-0871-9. PubMed DOI PMC

Patterson N., Isakov M., Booth T., Büster L., Fischer C.E., Olalde I., Ringbauer H., Akbari A., Cheronet O., Bleasdale M., et al. Large-scale migration into Britain during the Middle to Late Bronze Age. Nature. 2022;601:588–594. doi: 10.1038/s41586-021-04287-4. PubMed DOI PMC

Margaryan A., Lawson D.J., Sikora M., Racimo F., Rasmussen S., Moltke I., Cassidy L.M., Jørsboe E., Ingason A., Pedersen M.W., et al. Population genomics of the Viking world. Nature. 2020;585:390–396. doi: 10.1038/s41586-020-2688-8. PubMed DOI

Olalde I., Brace S., Allentoft M.E., Armit I., Kristiansen K., Booth T., Rohland N., Mallick S., Szécsényi-Nagy A., Mittnik A., et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature. 2018;555:190–196. doi: 10.1038/nature25738. PubMed DOI PMC

Poyraz L., Colbran L.L., Mathieson I. Predicting Functional Consequences of Recent Natural Selection in Britain. Mol. Biol. Evol. 2024;41 doi: 10.1093/molbev/msae053. PubMed DOI PMC

Visser M., Palstra R.J., Kayser M. Allele-specific transcriptional regulation of IRF4 in melanocytes is mediated by chromatin looping of the intronic rs12203592 enhancer to the IRF4 promoter. Hum. Mol. Genet. 2015;24:2649–2661. doi: 10.1093/hmg/ddv029. PubMed DOI

Amanda S., Tan T.K., Ong J.Z.L., Theardy M.S., Wong R.W.J., Huang X.Z., Ali M.Z., Li Y., Gong Z., Inagaki H., et al. IRF4 drives clonal evolution and lineage choice in a zebrafish model of T-cell lymphoma. Nat. Commun. 2022;13:2420. doi: 10.1038/s41467-022-30053-9. PubMed DOI PMC

Meyer O.S., Lunn M.M.B., Garcia S.L., Kjærbye A.B., Morling N., Børsting C., Andersen J.D. Association between brown eye colour in rs12913832:GG individuals and SNPs in TYR, TYRP1, and SLC24A4. PLoS One. 2020;15 doi: 10.1371/journal.pone.0239131. PubMed DOI PMC

Eiberg H., Troelsen J., Nielsen M., Mikkelsen A., Mengel-From J., Kjaer K.W., Hansen L. Blue eye color in humans may be caused by a perfectly associated founder mutation in a regulatory element located within the HERC2 gene inhibiting OCA2 expression. Hum. Genet. 2008;123:177–187. doi: 10.1007/s00439-007-0460-x. PubMed DOI

Izawa N., Wu W., Sato K., Nishikawa H., Kato A., Boku N., Itoh F., Ohta T. HERC2 Interacts with Claspin and Regulates DNA Origin Firing and Replication Fork Progression. Cancer Res. 2011;71:5621–5625. doi: 10.1158/0008-5472.CAN-11-0385. PubMed DOI

Budden T., Davey R.J., Vilain R.E., Ashton K.A., Braye S.G., Beveridge N.J., Bowden N.A. Repair of UVB-induced DNA damage is reduced in melanoma due to low XPC and global genome repair. Oncotarget. 2016;7:60940–60953. doi: 10.18632/oncotarget.10902. PubMed DOI PMC

Oliveira C., Rinck-Junior J.A., Lourenço G.J., Moraes A.M., Lima C.S.P. Assessment of the XPC (A2920C), XPF (T30028C), TP53 (Arg72Pro) and GSTP1 (Ile105Val) polymorphisms in the risk of cutaneous melanoma. J. Cancer Res. Clin. Oncol. 2013;139:1199–1206. doi: 10.1007/s00432-013-1430-4. PubMed DOI PMC

Preising M.N., Görg B., Friedburg C., Qvartskhava N., Budde B.S., Bonus M., Toliat M.R., Pfleger C., Altmüller J., Herebian D., et al. Biallelic mutation of human SLC6A6 encoding the taurine transporter TAUT is linked to early retinal degeneration. FASEB J. 2019;33:11507–11527. doi: 10.1096/fj.201900914RR. PubMed DOI

Neale B.M., Fagerness J., Reynolds R., Sobrin L., Parker M., Raychaudhuri S., Tan P.L., Oh E.C., Merriam J.E., Souied E., et al. Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC) Proc. Natl. Acad. Sci. USA. 2010;107:7395–7400. doi: 10.1073/pnas.0912019107. PubMed DOI PMC

Mahajan A., Wessel J., Willems S.M., Zhao W., Robertson N.R., Chu A.Y., Gan W., Kitajima H., Taliun D., Rayner N.W., et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nat. Genet. 2018;50:559–571. doi: 10.1038/s41588-018-0084-1. PubMed DOI PMC

Deng Y.N., Xia Z., Zhang P., Ejaz S., Liang S. Transcription Factor RREB1: from Target Genes towards Biological Functions. Int. J. Biol. Sci. 2020;16:1463–1473. doi: 10.7150/ijbs.40834. PubMed DOI PMC

Avitabile M., Succoio M., Testori A., Cardinale A., Vaksman Z., Lasorsa V.A., Cantalupo S., Esposito M., Cimmino F., Montella A., et al. Neural crest-derived tumor neuroblastoma and melanoma share 1p13.2 as susceptibility locus that shows a long-range interaction with the SLC16A1 gene. Carcinogenesis. 2020;41:284–295. doi: 10.1093/carcin/bgz153. PubMed DOI PMC

Liang X.T., Pan K., Chen M.S., Li J.J., Wang H., Zhao J.J., Sun J.C., Chen Y.B., Ma H.Q., Wang Q.J., Xia J.C. Decreased expression of XPO4 is associated with poor prognosis in hepatocellular carcinoma. J. Gastroenterol. Hepatol. 2011;26:544–549. doi: 10.1111/j.1440-1746.2010.06434.x. PubMed DOI

Minini M., Senni A., Unfer V., Bizzarri M. The Key Role of IP6K: A Novel Target for Anticancer Treatments? Molecules. 2020;25:4401. doi: 10.3390/molecules25194401. PubMed DOI PMC

Elpidorou M., Best S., Poulter J.A., Hartill V., Hobson E., Sheridan E., Johnson C.A. Novel loss-of-function mutation in HERC2 is associated with severe developmental delay and paediatric lethality. J. Med. Genet. 2021;58:334–341. doi: 10.1136/jmedgenet-2020-106873. PubMed DOI PMC

Ju D., Mathieson I. The evolution of skin pigmentation-associated variation in West Eurasia. Proc. Natl. Acad. Sci. USA. 2021;118 doi: 10.1073/pnas.2009227118. PubMed DOI PMC

Jablonski N.G., Chaplin G. Human skin pigmentation as an adaptation to UV radiation. Proc. Natl. Acad. Sci. USA. 2010;107:8962–8968. doi: 10.1073/pnas.0914628107. PubMed DOI PMC

Virgili G., Gatta G., Ciccolallo L., Capocaccia R., Biggeri A., Crocetti E., Lutz J.M., Paci E., EUROCARE Working Group Incidence of Uveal Melanoma in Europe. Ophthalmology. 2007;114:2309–2315. doi: 10.1016/j.ophtha.2007.01.032. PubMed DOI

Nissen K., Kiilgaard J.F., Fili M., Seregard S., Navaratnam J., Krohn J., Pedersen Bærland T., Eid Robsahm T., Eide N., Stålhammar G. Increasing Incidence of Posterior Uveal Melanoma in Scandinavia 1960-2022: A Tri-National Study. Am. J. Ophthalmol. 2025;274:131–141. doi: 10.1016/j.ajo.2025.03.002. PubMed DOI

Smidt-Nielsen I., Bagger M., Heegaard S., Andersen K.K., Kiilgaard J.F. Posterior uveal melanoma incidence and survival by AJCC tumour size in a 70-year nationwide cohort. Acta Ophthalmol. 2021;99:e1474–e1482. doi: 10.1111/aos.14847. PubMed DOI PMC

Wierenga A.P.A., Brouwer N.J., Gelmi M.C., Verdijk R.M., Stern M.H., Bas Z., Malkani K., van Duinen S.G., Ganguly A., Kroes W.G.M., et al. Chromosome 3 and 8q Aberrations in Uveal Melanoma Show Greater Impact on Survival in Patients with Light Iris versus Dark Iris Color. Ophthalmology. 2022;129:421–430. doi: 10.1016/j.ophtha.2021.11.011. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...