Current understanding of eryptosis: mechanisms, physiological functions, role in disease, pharmacological applications, and nomenclature recommendations
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
EHA Ukraine Bridge Funding
European Hematology Association (EHA)
PubMed
40592821
PubMed Central
PMC12216432
DOI
10.1038/s41419-025-07784-w
PII: 10.1038/s41419-025-07784-w
Knihovny.cz E-zdroje
- MeSH
- apoptóza MeSH
- eryptóza * účinky léků fyziologie MeSH
- erytrocyty * metabolismus účinky léků cytologie MeSH
- lidé MeSH
- terminologie jako téma MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- vápník MeSH
Early studies have shown that erythrocytes have caspase-3 and caspase-8 and are capable of dying through an apoptotic-like cell death triggered by Ca2+ ionophores. This cell death is associated with apoptosis-like morphological signs, including cell shrinkage, membrane blebbing, and phosphatidylserine externalization. To emphasize that mature erythrocytes don't have the apoptotic mitochondrial machinery and distinguish this unique cell death modality from apoptosis, it was named "eryptosis". Over recent decades, our knowledge of eryptosis has been significantly expanded, providing more insights into the uniqueness of cell death pathways in erythrocytes. In this review, we aim to summarize our current understanding of eryptosis, formulate the nomenclature and guidelines to interpret results of eryptosis studies, provide a synopsis of morphological and biochemical features of eryptosis, and highlight the role of eryptosis in health and disease, including its druggability.
BIOCEV 1st Faculty of Medicine Charles University Vestec Czech Republic
Department of Biochemistry University of Agriculture Faisalabad Pakistan
Department of Nephrology Dialysis and Transplant St Bortolo Hospital Vicenza Italy
Department of Physiology University of Hohenheim Stuttgart Germany
Department of Veterinary and Animal Sciences University of Rajshahi 6205 Rajshahi Bangladesh
Institute of Physiology 1 Eberhard Karls University Tübingen Tübingen Germany
IRRIV International Renal Research Institute Vicenza Vicenza Italy
Medicine and Nutrition Faculty Universidad Juárez del Estado de Durango Durango Dgo México
Zobrazit více v PubMed
Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, et al. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther. 2022;7:286. PubMed PMC
Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 2015;22:58–73. PubMed PMC
Green DR, Llambi F. Cell death signaling. Cold Spring Harb Perspect Biol. 2015;7:a006080 PubMed PMC
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25:486–541. PubMed PMC
Song X, Zhu S, Xie Y, Liu J, Sun L, Zeng D, et al. JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice. Gastroenterology. 2018;154:1480–93. PubMed PMC
Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375:1254–61. PubMed PMC
Liu X, Nie L, Zhang Y, Yan Y, Wang C, Colic M, et al. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat Cell Biol. 2023;25:404–14. PubMed PMC
Holze C, Michaudel C, Mackowiak C, Haas DA, Benda C, Hubel P, et al. Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat Immunol. 2018;19:130–40. PubMed PMC
Malireddi RKS, Kesavardhana S, Kanneganti TD. ZBP1 and TAK1: Master regulators of NLRP3 inflammasome/pyroptosis, apoptosis, and necroptosis (PAN-optosis). Front Cell Infect Microbiol. 2019;9:406. PubMed PMC
Vitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, et al. Apoptotic cell death in disease-current understanding of the NCCD 2023. Cell Death Differ. 2023;30:1097–154. PubMed PMC
Kumar S, Cakouros D. Transcriptional control of the core cell-death machinery. Trends Biochem Sci. 2004;29:193–9. PubMed
Gao Y, Jiao Y, Gong X, Liu J, Xiao H, Zheng Q. Role of transcription factors in apoptotic cells clearance. Front Cell Dev Biol. 2023;11:1110225. PubMed PMC
Hajji N, Joseph B. Epigenetic regulation of cell life and death decisions and deregulation in cancer. Essays Biochem. 2010;48:121–46. PubMed
Chen C, Wang J, Zhang S, Zhu X, Hu J, Liu C, et al. Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis. Redox Biol. 2024;76:103321. PubMed PMC
Zhou S, Liu J, Wan A, Zhang Y, Qi X. Epigenetic regulation of diverse cell death modalities in cancer: a focus on pyroptosis, ferroptosis, cuproptosis, and disulfidptosis. J Hematol Oncol. 2024;17:22. PubMed PMC
Zamaraev AV, Kopeina GS, Prokhorova EA, Zhivotovsky B, Lavrik IN. Post-translational modification of caspases: the other side of apoptosis regulation. Trends Cell Biol. 2017;27:322–39. PubMed
Seyrek K, Ivanisenko NV, Richter M, Hillert LK, König C, Lavrik IN. Controlling cell death through post-translational modifications of DED proteins. Trends Cell Biol. 2020;30:354–69. PubMed
Meng Y, Sandow JJ, Czabotar PE, Murphy JM. The regulation of necroptosis by post-translational modifications. Cell Death Differ. 2021;28:861–83. PubMed PMC
Wu P, Zhang X, Duan D, Zhao L. Organelle-specific mechanisms in crosstalk between apoptosis and ferroptosis. Oxid Med Cell Longev. 2023;2023:3400147. PubMed PMC
Park W, Wei S, Kim B-S, Kim B, Bae S-J, Chae YC, et al. Diversity and complexity of cell death: a historical review. Exp Mol Med. 2023;55:1573–94. PubMed PMC
Zhang Y, Wu Y, Zhang M, Li Z, Liu B, Liu H, et al. Synergistic mechanism between the endoplasmic reticulum and mitochondria and their crosstalk with other organelles. Cell Death Discov. 2023;9:51. PubMed PMC
Berg CP, Engels IH, Rothbart A, Lauber K, Renz A, Schlosser SF, et al. Human mature red blood cells express caspase-3 and caspase-8, but are devoid of mitochondrial regulators of apoptosis. Cell Death Differ. 2001;8:1197–206. PubMed
Bratosin D, Estaquier J, Petit F, Arnoult D, Quatannens B, Tissier JP, et al. Programmed cell death in mature erythrocytes: a model for investigating death effector pathways operating in the absence of mitochondria. Cell Death Differ. 2001;8:1143–56. PubMed
Lang KS, Lang PA, Bauer C, Duranton C, Wieder T, Huber SM, et al. Mechanisms of suicidal erythrocyte death. Cell Physiol Biochem. 2005;15:195–202. PubMed
LaRocca TJ, Stivison EA, Hod EA, Spitalnik SL, Cowan PJ, Randis TM, et al. Human-specific bacterial pore-forming toxins induce programmed necrosis in erythrocytes. mBio. 2014;5:e01251–e01214. PubMed PMC
Dasgupta A, Nomura M, Shuck R, Yustein J. Cancer’s Achilles’ heel: apoptosis and necroptosis to the rescue. Int J Mol Sci. 2016;18:23 PubMed PMC
LaRocca TJ, Stivison EA, Mal-Sarkar T, Hooven TA, Hod EA, Spitalnik SL, et al. CD59 signaling and membrane pores drive Syk-dependent erythrocyte necroptosis. Cell Death Dis. 2015;6:e1773–e1773. PubMed PMC
Tkachenko A, Havranek O. Erythronecroptosis: an overview of necroptosis or programmed necrosis in red blood cells. Mol Cell Biochem. 2024;479:3273-3291. PubMed
Zhang X, Lin Y, Xin J, Zhang Y, Yang K, Luo Y, et al. Red blood cells in biology and translational medicine: natural vehicle inspires new biomedical applications. Theranostics. 2024;14:220–48. PubMed PMC
Dzierzak E, Philipsen S. Erythropoiesis: development and differentiation. Cold Spring Harb Perspect Med. 2013;3:a011601. PubMed PMC
Zivot A, Lipton JM, Narla A, Blanc L. Erythropoiesis: insights into pathophysiology and treatments in 2017. Mol Med. 2018;24:11. PubMed PMC
Moras M, Lefevre SD, Ostuni MA. From erythroblasts to mature red blood cells: organelle clearance in mammals. Front Physiol. 2017;8:1076. PubMed PMC
Menon V, Ghaffari S. Erythroid enucleation: a gateway into a “bloody” world. Exp Hematol. 2021;95:13–22. PubMed PMC
Chaichompoo P, Svasti S, Smith DR. The roles of mitophagy and autophagy in ineffective erythropoiesis in β-thalassemia. Int J Mol Sci. 2022;23:10811. PubMed PMC
Moras M, Hattab C, Gonzalez-Menendez P, Fader CM, Dussiot M, Larghero J, et al. Human erythroid differentiation requires VDAC1-mediated mitochondrial clearance. Haematologica. 2022;107:167–77. PubMed PMC
Liu Y, Mei Y, Han X, Korobova FV, Prado MA, Yang J, et al. Membrane skeleton modulates erythroid proteome remodeling and organelle clearance. Blood. 2021;137:398–409. PubMed PMC
Testa U. Apoptotic mechanisms in the control of erythropoiesis. Leukemia. 2004;18:1176–99. PubMed
Raducka-Jaszul O, Bogusławska DM, Jędruchniewicz N, Sikorski AF. Role of extrinsic apoptotic signaling pathway during definitive erythropoiesis in normal patients and in patients with β-thalassemia. Int J Mol Sci. 2020;21:3325. PubMed PMC
Roderick JE, Hermance N, Zelic M, Simmons MJ, Polykratis A, Pasparakis M, et al. Hematopoietic RIPK1 deficiency results in bone marrow failure caused by apoptosis and RIPK3-mediated necroptosis. Proc Natl Acad Sci USA. 2014;111:14436–41. PubMed PMC
Zheng H, Jiang L, Tsuduki T, Conrad M, Toyokuni S. Embryonal erythropoiesis and aging exploit ferroptosis. Redox Biol. 2021;48:102175. PubMed PMC
Kumar SD, Kar D, Akhtar MN, Willard B, Roy D, Hussain T, et al. Evidence for low-level translation in human erythrocytes. Mol Biol Cell. 2022;33:br21. PubMed PMC
Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (review). Int J Mol Med. 2019;44:3–15. PubMed PMC
Zhang Y, Xu Y, Zhang S, Lu Z, Li Y, Zhao B. The regulation roles of Ca(2+) in erythropoiesis: what have we learned?. Exp Hematol. 2022;106:19–30. PubMed
Ahmed MH, Ghatge MS, Safo MK. Hemoglobin: wtructure, function and allostery. Subcell Biochem. 2020;94:345–82. PubMed PMC
Chen K, Popel AS. Nitric oxide production pathways in erythrocytes and plasma. Biorheology. 2009;46:107–19. PubMed PMC
Gajecki D, Gawryś J, Szahidewicz-Krupska E, Doroszko A. Role of erythrocytes in nitric oxide metabolism and paracrine regulation of endothelial function. Antioxidants. 2022;11:943. PubMed PMC
Litvinov RI, Weisel JW. Role of red blood cells in haemostasis and thrombosis. ISBT Sci Ser. 2017;12:176–83. PubMed PMC
Tutwiler V, Mukhitov AR, Peshkova AD, Le Minh G, Khismatullin RR, Vicksman J, et al. Shape changes of erythrocytes during blood clot contraction and the structure of polyhedrocytes. Sci Rep. 2018;8:17907. PubMed PMC
Gillespie AH, Doctor A. Red blood cell contribution to hemostasis. Front Pediatr. 2021;9:629824. PubMed PMC
Weisel JW, Litvinov RI. Red blood cells: the forgotten player in hemostasis and thrombosis. J Thromb Haemost. 2019;17:271–82. PubMed PMC
Van Der Meijden PE, Van Schilfgaarde M, Van Oerle R, Renné T, ten Cate H, Spronk HM. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J Thromb Haemost. 2012;10:1355–62. PubMed
Franchini M, Lippi G. Relative risks of thrombosis and bleeding in different ABO blood groups. Semin Thromb Hemost. 2016;42:112–7. PubMed
Orrico F, Laurance S, Lopez AC, Lefevre SD, Thomson L, Möller MN, et al. Oxidative stress in healthy and pathological red blood cells. Biomolecules. 2023;13:1262. PubMed PMC
Tkachenko A, Havránek O. Redox status of erythrocytes as an important factor in eryptosis and erythronecroptosis. Folia Biol. 2023;69:116–26. PubMed
Lam LKM, Murphy S, Kokkinaki D, Venosa A, Sherrill-Mix S, Casu C, et al. DNA binding to TLR9 expressed by red blood cells promotes innate immune activation and anemia. Sci Transl Med. 2021;13:eabj1008. PubMed PMC
Minton K. Red blood cells join the ranks as immune sentinels. Nat Rev Immunol. 2021;21:760–1. PubMed PMC
Ren Y, Yan C, Yang H. Erythrocytes: member of the immune system that should not be ignored. Crit Rev Oncol/Hematol. 2023;187:104039. PubMed
Anderson HL, Brodsky IE, Mangalmurti NS. The evolving erythrocyte: red blood cells as modulators of innate immunity. J Immunol. 2018;201:1343–51. PubMed PMC
Drvenica IT, Stančić AZ, Maslovarić IS, Trivanović DI, Ilić VL. Extracellular hemoglobin: modulation of cellular functions and pathophysiological effects. Biomolecules. 2022;12:1708. PubMed PMC
Zhang G, Wang J, Zhao Z, Xin T, Fan X, Shen Q, et al. Regulated necrosis, a proinflammatory cell death, potentially counteracts pathogenic infections. Cell Death Dis. 2022;13:637. PubMed PMC
Płuciennik K, Sicińska P, Misztal W, Bukowska B. Important factors affecting induction of cell death, oxidative stress and DNA damage by nano- and microplastic particles in vitro. Cells. 2024;13:768. PubMed PMC
Mendonça R, Silveira AA, Conran N. Red cell DAMPs and inflammation. Inflamm Res. 2016;65:665–78. PubMed
Jeney V. Pro-inflammatory actions of red blood cell-derived DAMPs. Exp Suppl. 2018;108:211–33. PubMed
Daugas E, Candé C, Kroemer G. Erythrocytes: death of a mummy. Cell Death Differ. 2001;8:1131–3. PubMed
Canli Ö, Alankuş YB, Grootjans S, Vegi N, Hültner L, Hoppe PS, et al. Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors. Blood. 2016;127:139–48. PubMed PMC
Waugh RE, Narla M, Jackson CW, Mueller TJ, Suzuki T, Dale GL. Rheologic properties of senescent erythrocytes: loss of surface area and volume with red blood cell age. Blood. 1992;79:1351–8. PubMed
Badior KE, Casey JR. Molecular mechanism for the red blood cell senescence clock. IUBMB Life. 2018;70:32–40. PubMed
Barshtein G, Gural A, Arbell D, Barkan R, Livshits L, Pajic-Lijakovic I, et al. Red blood cell deformability is expressed by a set of interrelated membrane proteins. Int J Mol Sci. 2023;24:12755. PubMed PMC
Lutz HU, Bogdanova A. Mechanisms tagging senescent red blood cells for clearance in healthy humans. Front Physiol. 2013;4:387. PubMed PMC
Klei TRL, Dalimot JJ, Beuger BM, Veldthuis M, Ichou FA, Verkuijlen P, et al. The Gardos effect drives erythrocyte senescence and leads to Lu/BCAM and CD44 adhesion molecule activation. Blood Adv. 2020;4:6218–29. PubMed PMC
Mohanty J, Nagababu E, Rifkind JM. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front Physiol. 2014;5:84. PubMed PMC
Ghashghaeinia M, Cluitmans JC, Akel A, Dreischer P, Toulany M, Köberle M, et al. The impact of erythrocyte age on eryptosis. Br J Haematol. 2012;157:606–14. PubMed
van Bruggen R. CD47 functions as a removal marker on aged erythrocytes. ISBT Sci Ser. 2013;8:153–6.
Bogdanova A, Makhro A, Wang J, Lipp P, Kaestner L. Calcium in red blood cells—a perilous balance. Int J Mol Sci. 2013;14:9848–72. PubMed PMC
Badior KE, Casey JR. Large conformational dynamics in band 3 protein: Significance for erythrocyte senescence signalling. Biochim Biophys Acta Biomembr. 2021;1863:183678. PubMed
Seki M, Arashiki N, Takakuwa Y, Nitta K, Nakamura F. Reduction in flippase activity contributes to surface presentation of phosphatidylserine in human senescent erythrocytes. J Cell Mol Med. 2020;24:13991–4000. PubMed PMC
Lang PA, Kasinathan RS, Brand VB, Duranton C, Lang C, Koka S, et al. Accelerated clearance of Plasmodium-infected erythrocytes in sickle cell trait and annexin-A7 deficiency. Cell Physiol Biochem. 2009;24:415–28. PubMed
Dreischer P, Duszenko M, Stein J, Wieder T. Eryptosis: programmed death of nucleus-free, iron-filled blood cells. Cells. 2022;11:503. PubMed PMC
Lang KS, Duranton C, Poehlmann H, Myssina S, Bauer C, Lang F, et al. Cation channels trigger apoptotic death of erythrocytes. Cell Death Differ. 2003;10:249–56. PubMed
Lang KS, Roll B, Myssina S, Schittenhelm M, Scheel-Walter HG, Kanz L, et al. Enhanced erythrocyte apoptosis in sickle cell anemia, thalassemia and glucose-6-phosphate dehydrogenase deficiency. Cell Physiol Biochem. 2002;12:365–72. PubMed
LaRocca TJ, Sosunov SA, Shakerley NL, Ten VS, Ratner AJ. Hyperglycemic conditions prime cells for RIP1-dependent necroptosis. J Biol Chem. 2016;291:13753–61. PubMed PMC
McCaig WD, Hodges AL, Deragon MA, Haluska RJ Jr., Bandyopadhyay S, Ratner AJ, et al. Storage primes erythrocytes for necroptosis and clearance. Cell Physiol Biochem. 2019;53:496–507. PubMed PMC
du Plooy JN, Bester J, Pretorius E. Eryptosis in haemochromatosis: implications for rheology. Clin Hemorheol Microcirc. 2018;69:457–69. PubMed
Tkachenko A. Apoptosis and eryptosis: similarities and differences. Apoptosis. 2024;29:482–502. PubMed
Jacob SS, Prasad K, Rao P, Kamath A, Hegde RB, Baby PM, et al. Computerized morphometric analysis of eryptosis. Front Physiol. 2019;10:1230. PubMed PMC
Scovino AM, Totino PRR, Morrot A. Eryptosis as a new insight in malaria pathogenesis. Front Immunol. 2022;13:855795. PubMed PMC
Lang F, Gulbins E, Lerche H, Huber SM, Kempe DS, Foller M. Eryptosis, a window to systemic disease. Cell Physiol Biochem. 2008;22:373–80. PubMed
Repsold L, Joubert AM. Eryptosis: an erythrocyte’s suicidal type of cell death. Biomed Res Int. 2018;2018:9405617. PubMed PMC
Alghareeb SA, Alfhili MA, Fatima S. Molecular mechanisms and pathophysiological significance of eryptosis. Int J Mol Sci. 2023;24:5079. PubMed PMC
Föller M, Lang F. Ion transport in eryptosis, the suicidal death of erythrocytes. Front Cell Dev Biol. 2020;8:597. PubMed PMC
Lang F, Lang KS, Lang PA, Huber SM, Wieder T. Mechanisms and significance of eryptosis. Antioxid Redox Signal. 2006;8:1183–92. PubMed
Reithmeier RAF, Casey JR, Kalli AC, Sansom MSP, Alguel Y, Iwata S. Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. Biochim Biophys Acta. 2016;1858:1507–32. PubMed
Mandal D, Baudin-Creuza V, Bhattacharyya A, Pathak S, Delaunay J, Kundu M, et al. Caspase 3-mediated proteolysis of the N-terminal cytoplasmic domain of the human erythroid anion exchanger 1 (band 3)*. J Biol Chem. 2003;278:52551–8. PubMed
Rinalducci S, Ferru E, Blasi B, Turrini F, Zolla L. Oxidative stress and caspase-mediated fragmentation of cytoplasmic domain of erythrocyte band 3 during blood storage. Blood Transfus. 2012;10 Suppl. 2:s55–62. PubMed PMC
Schwarz-Ben Meir N, Glaser T, Kosower NS. Band 3 protein degradation by calpain is enhanced in erythrocytes of old people. Biochem J. 1991;275:47–52. Pt 1. PubMed PMC
Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 2008;27:6407–18. PubMed PMC
Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol. 2003;4:552–65. PubMed
Duranton C, Huber SM, Lang F. Oxidation induces a Cl(-)-dependent cation conductance in human red blood cells. J Physiol. 2002;539:847–55. PubMed PMC
Hirschler-Laszkiewicz I, Tong Q, Waybill K, Conrad K, Keefer K, Zhang W, et al. The transient receptor potential (TRP) channel TRPC3 TRP domain and AMP-activated protein kinase binding site are required for TRPC3 activation by erythropoietin. J Biol Chem. 2011;286:30636–46. PubMed PMC
Foller M, Kasinathan RS, Koka S, Lang C, Shumilina E, Birnbaumer L, et al. TRPC6 contributes to the Ca(2+) leak of human erythrocytes. Cell Physiol Biochem. 2008;21:183–92. PubMed
Danielczok J, Hertz L, Ruppenthal S, Kaiser E, Petkova-Kirova P, Bogdanova A, et al. Does erythropoietin regulate TRPC channels in red blood cells?. Cell Physiol Biochem. 2017;41:1219–28. PubMed
Makhro A, Hänggi P, Goede JS, Wang J, Brüggemann A, Gassmann M, et al. N-methyl-D-aspartate receptors in human erythroid precursor cells and in circulating red blood cells contribute to the intracellular calcium regulation. Am J Physiol Cell Physiol. 2013;305:C1123–38. PubMed
Kaestner L, Bogdanova A, Egee S. Calcium channels and calcium-regulated channels in human red blood cells. Adv Exp Med Biol. 2020;1131:625–48. PubMed
Föller M, Mahmud H, Gu S, Kucherenko Y, Gehring EM, Shumilina E, et al. Modulation of suicidal erythrocyte cation channels by an AMPA antagonist. J Cell Mol Med. 2009;13:3680–6. PubMed PMC
Cahalan SM, Lukacs V, Ranade SS, Chien S, Bandell M, Patapoutian A. Piezo1 links mechanical forces to red blood cell volume. eLife. 2015;4:e07370. PubMed PMC
Andrews DA, Yang L, Low PS. Phorbol ester stimulates a protein kinase C-mediated agatoxin-TK-sensitive calcium permeability pathway in human red blood cells. Blood. 2002;100:3392–9. PubMed
Rapetti-Mauss R, Picard V, Guitton C, Ghazal K, Proulle V, Badens C, et al. Red blood cell Gardos channel (KCNN4): the essential determinant of erythrocyte dehydration in hereditary xerocytosis. Haematologica. 2017;102:e415–e418. PubMed PMC
Pretorius E, du Plooy JN, Bester J. A comprehensive review on eryptosis. Cell Physiol Biochem. 2016;39:1977–2000. PubMed
Weiss E, Cytlak UM, Rees DC, Osei A, Gibson JS. Deoxygenation-induced and Ca(2+) dependent phosphatidylserine externalisation in red blood cells from normal individuals and sickle cell patients. Cell Calcium. 2012;51:51–6. PubMed
Wieschhaus A, Khan A, Zaidi A, Rogalin H, Hanada T, Liu F, et al. Calpain-1 knockout reveals broad effects on erythrocyte deformability and physiology. Biochem J. 2012;448:141–52. PubMed PMC
Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47. PubMed
Meng J, Lv Z, Zhang Y, Wang Y, Qiao X, Sun C, et al. Precision redox: the key for antioxidant pharmacology. Antioxid Redox Signal. 2021;34:1069–82. PubMed PMC
Ghashghaeinia M, Giustarini D, Koralkova P, Köberle M, Alzoubi K, Bissinger R, et al. Pharmacological targeting of glucose-6-phosphate dehydrogenase in human erythrocytes by Bay 11–7082, parthenolide and dimethyl fumarate. Sci Rep. 2016;6:28754. PubMed PMC
Sun Y, Liu G, Jiang Y, Wang H, Xiao H, Guan G. Erythropoietin protects erythrocytes against oxidative stress-induced eryptosis in vitro. Clin Lab. 2018;64:365–9. PubMed
Tkachenko AS, Kot YG, Kapustnik VA, Myasoedov VV, Makieieva NI, Chumachenko TO, et al. Semi-refined carrageenan promotes generation of reactive oxygen species in leukocytes of rats upon oral exposure but not in vitro. Wien Med Wochenschr. 2021;171:68–78. PubMed
Pan X, Giustarini D, Lang F, Rossi R, Wieder T, Köberle M, et al. Desipramine induces eryptosis in human erythrocytes, an effect blunted by nitric oxide donor sodium nitroprusside and N-acetyl-L-cysteine but enhanced by Calcium depletion. Cell Cycle. 2023;22:1827–53. PubMed PMC
Onishchenko A, Myasoedov V, Yefimova S, Nakonechna O, Prokopyuk V, Butov D, et al. UV light-activated GdYVO(4):Eu(3+) nanoparticles induce reactive oxygen species generation in leukocytes without affecting erythrocytes in Vitro. Biol Trace Elem Res. 2022;200:2777–92. PubMed
Maruyama T, Hieda M, Mawatari S, Fujino T. Rheological abnormalities in human erythrocytes subjected to oxidative inflammation. Front Physiol. 2022;13:837926. PubMed PMC
Geilen CC, Wieder T, Orfanos CE. Ceramide signalling: regulatory role in cell proliferation, differentiation and apoptosis in human epidermis. Arch Dermatol Res. 1997;289:559–66. PubMed
Canals D, Hannun YA. Biological function, topology, and quantification of plasma membrane Ceramide. Adv Biol Regul. 2024;91:101009. PubMed PMC
Green CD, Maceyka M, Cowart LA, Spiegel S. Sphingolipids in metabolic disease: the good, the bad, and the unknown. Cell Metab. 2021;33:1293–306. PubMed PMC
Lang KS, Myssina S, Brand V, Sandu C, Lang PA, Berchtold S, et al. Involvement of ceramide in hyperosmotic shock-induced death of erythrocytes. Cell Death Differ. 2004;11:231–43. PubMed
Qadri SM, Bauer J, Zelenak C, Mahmud H, Kucherenko Y, Lee SH, et al. Sphingosine but not sphingosine-1-phosphate stimulates suicidal erythrocyte death. Cell Physiol Biochem. 2011;28:339–46. PubMed
Yang L, Yatomi Y, Miura Y, Satoh K, Ozaki Y. Metabolism and functional effects of sphingolipids in blood cells. Br J Haematol. 1999;107:282–93. PubMed
Dinkla S, Wessels K, Verdurmen WP, Tomelleri C, Cluitmans JC, Fransen J, et al. Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure. Cell Death Dis. 2012;3:e410. PubMed PMC
Kempe DS, Akel A, Lang PA, Hermle T, Biswas R, Muresanu J, et al. Suicidal erythrocyte death in sepsis. J Mol Med. 2007;85:273–81. PubMed
Abusukhun M, Winkler MS, Pöhlmann S, Moerer O, Meissner K, Tampe B, et al. Activation of sphingomyelinase-ceramide-pathway in COVID-19 purposes its inhibition for therapeutic strategies. Front Immunol. 2021;12:784989. PubMed PMC
Geng Z, Huang J, Kang L, Gao S, Yuan Y, Li Y, et al. Clostridium perfringens epsilon toxin binds to erythrocyte MAL receptors and triggers phosphatidylserine exposure. J Cell Mol Med. 2020;24:7341–52. PubMed PMC
Lang PA, Kempe DS, Tanneur V, Eisele K, Klarl BA, Myssina S, et al. Stimulation of erythrocyte ceramide formation by platelet-activating factor. J Cell Sci. 2005;118:1233–43. PubMed
Restivo I, Attanzio A, Giardina IC, Di Gaudio F, Tesoriere L, Allegra M. Cigarette smoke extract induces p38 MAPK-initiated, Fas-mediated eryptosis. Int J Mol Sci. 2022;23:14730. PubMed PMC
Lang PA, Schenck M, Nicolay JP, Becker JU, Kempe DS, Lupescu A, et al. Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide. Nat Med. 2007;13:164–70. PubMed
Julien O, Wells JA. Caspases and their substrates. Cell Death Differ. 2017;24:1380–9. PubMed PMC
Van Opdenbosch N, Lamkanfi M. Caspases in cell death, inflammation, and disease. Immunity. 2019;50:1352–64. PubMed PMC
Lang E, Lang F. Triggers, inhibitors, mechanisms, and significance of eryptosis: the suicidal erythrocyte death. Biomed Res Int. 2015;2015:513518. PubMed PMC
Mandal D, Moitra PK, Saha S, Basu J. Caspase 3 regulates phosphatidylserine externalization and phagocytosis of oxidatively stressed erythrocytes. FEBS Lett. 2002;513:184–8. PubMed
Mandal D, Mazumder A, Das P, Kundu M, Basu J. Fas-, Caspase 8-, and caspase 3-dependent signaling regulates the activity of the aminophospholipid translocase and phosphatidylserine externalization in human erythrocytes*. J Biol Chem. 2005;280:39460–7. PubMed
Kroemer G. Mitochondrial implication in apoptosis. Towards an endosymbiont hypothesis of apoptosis evolution. Cell Death Differ. 1997;4:443–56. PubMed
Kaushal V, Klim J, Skoneczna A, Kurlandzka A, Enkhbaatar T, Kaczanowski S, et al. Apoptotic factors are evolutionarily conserved since mitochondrial domestication. Genome Biol Evol. 2023;15:evad154. PubMed PMC
McGrath C. Highlight: unlocking the ancient origins of cell death. Genome Biol Evol. 2023;15:evad172.
Zermati Y, Garrido C, Amsellem S, Fishelson S, Bouscary D, Valensi F, et al. Caspase activation is required for terminal erythroid differentiation. J Exp Med. 2001;193:247–54. PubMed PMC
Carlile GW, Smith DH, Wiedmann M. Caspase-3 has a nonapoptotic function in erythroid maturation. Blood. 2004;103:4310–6. PubMed
Lemasters JJ. Dying a thousand deaths: redundant pathways from different organelles to apoptosis and necrosis. Gastroenterology. 2005;129:351–60. PubMed
Vandenabeele P, Melino G. The flick of a switch: which death program to choose?. Cell Death Differ. 2012;19:1093–5. PubMed PMC
Tummers B, Green DR. Caspase-8: regulating life and death. Immunol Rev. 2017;277:76–89. PubMed PMC
Fritsch M, Günther SD, Schwarzer R, Albert M-C, Schorn F, Werthenbach JP, et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature. 2019;575:683–7. PubMed
Newton K, Wickliffe KE, Maltzman A, Dugger DL, Reja R, Zhang Y, et al. Activity of caspase-8 determines plasticity between cell death pathways. Nature. 2019;575:679–82. PubMed
Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. 2021;18:1106–21. PubMed PMC
Restivo I, Attanzio A, Tesoriere L, Allegra M, Garcia-Llatas G, Cilla A. A Mixture of dietary plant sterols at nutritional relevant serum concentration inhibits extrinsic pathway of eryptosis induced by cigarette smoke extract. Int J Mol Sci. 2023;24:1264. PubMed PMC
Föller M, Sopjani M, Koka S, Gu S, Mahmud H, Wang K, et al. Regulation of erythrocyte survival by AMP-activated protein kinase. FASEB J. 2009;23:1072–80. PubMed
Zelenak C, Föller M, Velic A, Krug K, Qadri SM, Viollet B, et al. Proteome analysis of erythrocytes lacking AMP-activated protein kinase reveals a role of PAK2 kinase in eryptosis. J Proteome Res. 2011;10:1690–7. PubMed
Bhavsar SK, Gu S, Bobbala D, Lang F. Janus kinase 3 is expressed in erythrocytes, phosphorylated upon energy depletion and involved in the regulation of suicidal erythrocyte death. Cell Physiol Biochem. 2011;27:547–56. PubMed
Lang E, Bissinger R, Fajol A, Salker MS, Singh Y, Zelenak C, et al. Accelerated apoptotic death and in vivo turnover of erythrocytes in mice lacking functional mitogen- and stress-activated kinase MSK1/2. Sci Rep. 2015;5:17316. PubMed PMC
Föller M, Mahmud H, Koka S, Lang F. Reduced Ca2+ entry and suicidal death of erythrocytes in PDK1 hypomorphic mice. Pflug Arch. 2008;455:939–49. PubMed
de Jong K, Rettig MP, Low PS, Kuypers FA. Protein kinase C activation induces phosphatidylserine exposure on red blood cells. Biochemistry. 2002;41:12562–7. PubMed
Klarl BA, Lang PA, Kempe DS, Niemoeller OM, Akel A, Sobiesiak M, et al. Protein kinase C mediates erythrocyte “programmed cell death” following glucose depletion. Am J Physiol Cell Physiol. 2006;290:C244–53. PubMed
Zelenak C, Eberhard M, Jilani K, Qadri SM, Macek B, Lang F. Protein kinase CK1α regulates erythrocyte survival. Cell Physiol Biochem. 2012;29:171–80. PubMed
Gatidis S, Zelenak C, Fajol A, Lang E, Jilani K, Michael D, et al. p38 MAPK activation and function following osmotic shock of erythrocytes. Cell Physiol Biochem. 2011;28:1279–86. PubMed
Lang E, Zelenak C, Eberhard M, Bissinger R, Rotte A, Ghashghaeinia M, et al. Impact of cyclin-dependent kinase CDK4 inhibition on eryptosis. Cell Physiol Biochem. 2015;37:1178–86. PubMed
Bell RAV, Megeney LA. Evolution of caspase-mediated cell death and differentiation: twins separated at birth. Cell Death Differ. 2017;24:1359–68. PubMed PMC
Parrish AB, Freel CD, Kornbluth S. Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol. 2013;5:a008672. PubMed PMC
Silva M, Grillot D, Benito A, Richard C, Nuñez G. Fernández-Luna JL. Erythropoietin can promote erythroid progenitor survival by repressing apoptosis through Bcl-XL and Bcl-2. Blood. 1996;88:1576–82. PubMed
Gregoli PA, Bondurant MC. The roles of Bcl-X(L) and apopain in the control of erythropoiesis by erythropoietin. Blood. 1997;90:630–40. PubMed
Gregoli PA, Bondurant MC. Function of caspases in regulating apoptosis caused by erythropoietin deprivation in erythroid progenitors. J Cell Physiol. 1999;178:133–43. PubMed
Siegmund D, Mauri D, Peters N, Juo P, Thome M, Reichwein M, et al. Fas-associated death domain protein (FADD) and caspase-8 mediate up-regulation of c-Fos by Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) via a FLICE inhibitory protein (FLIP)-regulated pathway. J Biol Chem. 2001;276:32585–90. PubMed
Gajate C, Mollinedo F. The antitumor ether lipid ET-18-OCH(3) induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells. Blood. 2001;98:3860–3. PubMed
Brown DA, London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem. 2000;275:17221–4. PubMed
Varshney P, Yadav V, Saini N. Lipid rafts in immune signalling: current progress and future perspective. Immunology. 2016;149:13–24. PubMed PMC
Biswas D, Sen G, Sarkar A, Biswas T. Atorvastatin acts synergistically with N-acetyl cysteine to provide therapeutic advantage against Fas-activated erythrocyte apoptosis during chronic arsenic exposure in rats. Toxicol Appl Pharmacol. 2011;250:39–53. PubMed
Mandal S, Mukherjee S, Chowdhury KD, Sarkar A, Basu K, Paul S, et al. S-allyl cysteine in combination with clotrimazole downregulates Fas induced apoptotic events in erythrocytes of mice exposed to lead. Biochim Biophys Acta. 2012;1820:9–23. PubMed
Nicolay JP, Liebig G, Niemoeller OM, Koka S, Ghashghaeinia M, Wieder T, et al. Inhibition of suicidal erythrocyte death by nitric oxide. Pflug Arch. 2008;456:293–305. PubMed
Kleinbongard P, Schulz R, Rassaf T, Lauer T, Dejam A, Jax T, et al. Red blood cells express a functional endothelial nitric oxide synthase. Blood. 2006;107:2943–51. PubMed
Chen LY, Mehta JL. Evidence for the presence of L-arginine-nitric oxide pathway in human red blood cells: relevance in the effects of red blood cells on platelet function. J Cardiovasc Pharmacol. 1998;32:57–61. PubMed
Kahn MJ, Maley JH, Lasker GF, Kadowitz PJ. Updated role of nitric oxide in disorders of erythrocyte function. Cardiovasc Hematol Disord Drug Targets. 2013;13:83–7. PubMed PMC
Montfort WR, Wales JA, Weichsel A. Structure and activation of soluble guanylyl cyclase, the nitric oxide sensor. Antioxid Redox Signal. 2017;26:107–21. PubMed PMC
Föller M, Feil S, Ghoreschi K, Koka S, Gerling A, Thunemann M, et al. Anemia and splenomegaly in cGKI-deficient mice. Proc Natl Acad Sci USA. 2008;105:6771–6. PubMed PMC
Mulloy JC, Cancelas JA, Filippi MD, Kalfa TA, Guo F, Zheng Y. Rho GTPases in hematopoiesis and hemopathies. Blood. 2010;115:936–47. PubMed PMC
Patel S, Tang J, Overstreet JM, Anorga S, Lian F, Arnouk A, et al. Rac-GTPase promotes fibrotic TGF-β1 signaling and chronic kidney disease via EGFR, p53, and Hippo/YAP/TAZ pathways. FASEB J. 2019;33:9797–810. PubMed PMC
George A, Pushkaran S, Li L, An X, Zheng Y, Mohandas N, et al. Altered phosphorylation of cytoskeleton proteins in sickle red blood cells: the role of protein kinase C, Rac GTPases, and reactive oxygen species. Blood Cells Mol Dis. 2010;45:41–5. PubMed PMC
George A, Pushkaran S, Konstantinidis DG, Koochaki S, Malik P, Mohandas N, et al. Erythrocyte NADPH oxidase activity modulated by Rac GTPases, PKC, and plasma cytokines contributes to oxidative stress in sickle cell disease. Blood. 2013;121:2099–107. PubMed PMC
Attanzio A, Frazzitta A, Cilla A, Livrea MA, Tesoriere L, Allegra M. 7-Keto-cholesterol and cholestan-3beta, 5alpha, 6beta-triol induce eryptosis through distinct pathways leading to NADPH oxidase and nitric oxide synthase activation. Cell Physiol Biochem. 2019;53:933–47. PubMed
Paone S, D’Alessandro S, Parapini S, Celani F, Tirelli V, Pourshaban M, et al. Characterization of the erythrocyte GTPase Rac1 in relation to Plasmodium falciparum invasion. Sci Rep. 2020;10:22054. PubMed PMC
Chatzinikolaou PN, Margaritelis NV, Paschalis V, Theodorou AA, Vrabas IS, Kyparos A, et al. Erythrocyte metabolism. Acta Physiol. 2024;240:e14081. PubMed
Guizouarn H, Allegrini B. Erythroid glucose transport in health and disease. Pflug Arch. 2020;472:1371–83. PubMed
Zhang R, Xiang Y, Ran Q, Deng X, Xiao Y, Xiang L, et al. Involvement of calcium, reactive oxygen species, and ATP in hexavalent chromium-induced damage in red blood cells. Cell Physiol Biochem. 2014;34:1780–91. PubMed
Biswas D, Banerjee M, Sen G, Das JK, Banerjee A, Sau TJ, et al. Mechanism of erythrocyte death in human population exposed to arsenic through drinking water. Toxicol Appl Pharmacol. 2008;230:57–66. PubMed
Qadri SM, Chen D, Schubert P, Perruzza DL, Bhakta V, Devine DV, et al. Pathogen inactivation by riboflavin and ultraviolet light illumination accelerates the red blood cell storage lesion and promotes eryptosis. Transfusion. 2017;57:661–73. PubMed
Tortora F, Notariale R, Lang F, Manna C. Hydroxytyrosol decreases phosphatidylserine exposure and inhibits suicidal death induced by lysophosphatidic acid in human erythrocytes. Cell Physiol Biochem. 2019;53:921–32. PubMed
Zhang Z, Tai Y, Liu Z, Pu Y, An L, Li X, et al. Effects of d-ribose on human erythrocytes: Non-enzymatic glycation of hemoglobin, eryptosis, oxidative stress and energy metabolism. Blood Cells Mol Dis. 2023;99:102725. PubMed
Holcik M. Do mature red blood cells die by apoptosis. Trends Genet. 2002;18:121.
Green DR. The death receptor pathway of apoptosis. Cold Spring Harb Perspect Biol. 2022;14:a041053. PubMed PMC
Bigdelou P, Farnoud AM. Induction of eryptosis in red blood cells using a calcium ionophore. J Vis Exp. 2020;155:10.3791/60659. PubMed PMC
Dhaouadi N, Vitto VAM, Pinton P, Galluzzi L, Marchi S. Ca2+ signaling and cell death. Cell Calcium. 2023;113:102759. PubMed
Cai X, Wang X, Patel S, Clapham DE. Insights into the early evolution of animal calcium signaling machinery: a unicellular point of view. Cell Calcium. 2015;57:166–73. PubMed PMC
Plattner H, Verkhratsky A. The ancient roots of calcium signalling evolutionary tree. Cell Calcium. 2015;57:123–32. PubMed
Marchadier E, Oates ME, Fang H, Donoghue PCJ, Hetherington AM, Gough J. Evolution of the calcium-based intracellular signaling system. Genome Biol Evol. 2016;8:2118–32. PubMed PMC
Kerkelä E, Lahtela J, Larjo A, Impola U, Mäenpää L, Mattila P. Exploring transcriptomic landscapes in red blood cells, in their extracellular vesicles and on a single-cell level. Int J Mol Sci. 2022;23:12897. PubMed PMC
Liang N, Jiao Z, Zhang C, Wu Y, Wang T, Li S, et al. Mature red blood cells contain long DNA fragments and could acquire DNA from lung cancer tissue. Adv Sci. 2023;10:e2206361. PubMed PMC
Clemens MJ. Translational regulation in cell stress and apoptosis. Roles of the eIF4E binding proteins. J Cell Mol Med. 2001;5:221–39. PubMed PMC
Yao Z, Szabadkai G. Transcriptional profiling of apoptosis: cell death classification moves toward the systems era. Cell Cycle. 2012;11:3721–2. PubMed PMC
Chakraborty, Nandi S, Mishra P, Niharika J, Roy A, Manna S, et al. Molecular mechanisms in regulation of autophagy and apoptosis in view of epigenetic regulation of genes and involvement of liquid-liquid phase separation. Cancer Lett. 2024;587:216779. PubMed
An X, Yu W, Liu J, Tang D, Yang L, Chen X. Oxidative cell death in cancer: mechanisms and therapeutic opportunities. Cell Death Dis. 2024;15:556. PubMed PMC
Bissinger R, Bhuyan AAM, Qadri SM, Lang F. Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J. 2019;286:826–54. PubMed
Pyrshev KA, Klymchenko AS, Csúcs G, Demchenko AP. Apoptosis and eryptosis: Striking differences on biomembrane level. Biochim Biophys. 2018;1860:1362–71. PubMed
Alfhili MA, Aljuraiban GS. Lauric acid, a dietary saturated medium-chain fatty acid, elicits calcium-dependent eryptosis. Cells. 2021;10:3388. PubMed PMC
Alsughayyir J, Alshaiddi W, Alsubki R, Alshammary A, Basudan AM, Alfhili MA. Geraniin inhibits whole blood IFN-γ and IL-6 and promotes IL-1β and IL-8, and stimulates calcium-dependent and sucrose-sensitive erythrocyte death. Toxicol Appl Pharmacol. 2022;436:115881. PubMed
Kim-Shapiro DB, Gladwin MT. Mechanisms &of nitrite bioactivation. Nitric Oxide. 2014;38:58–68. PubMed PMC
Ren G, Roberts AI, Shi Y. Adhesion molecules: key players in mesenchymal stem cell-mediated immunosuppression. Cell Adh Migr. 2011;5:20–2. PubMed PMC
Lang F, Lang E, Föller M. Physiology and pathophysiology of eryptosis. Transfus Med Hemother. 2012;39:308–14. PubMed PMC
Sattar T, Jilani K, Parveen K, Mushataq Z, Nawaz H, Khan MAB. Induction of erythrocyte membrane blebbing by methotrexate-induced oxidative stress. Dose Response. 2022;20:15593258221093853. PubMed PMC
Boulet C, Doerig CD, Carvalho TG. Manipulating eryptosis of human red blood cells: a novel antimalarial strategy?. Front Cell Infect Microbiol. 2018;8:419. PubMed PMC
Lang F, Jilani K, Lang E. Therapeutic potential of manipulating suicidal erythrocyte death. Expert Opin Ther Targets. 2015;19:1219–27. PubMed
Föller M, Huber SM, Lang F. Erythrocyte programmed cell death. IUBMB Life. 2008;60:661–8. PubMed
Neri S, Swinkels DW, Matlung HL, van Bruggen R. Novel concepts in red blood cell clearance. Curr Opin Hematol. 2021;28:438–44. PubMed
Borges MD, Sesti-Costa R. Macrophages: key players in erythrocyte turnover. Hematol Transfus Cell Ther. 2022;44:574–81. PubMed PMC
Dini L, Autuori F, Lentini A, Oliverio S, Piacentini M. The clearance of apoptotic cells in the liver is mediated by the asialoglycoprotein receptor. FEBS Lett. 1992;296:174–8. PubMed
Qadri SM, Donkor DA, Nazy I, Branch DR, Sheffield WP. Bacterial neuraminidase-mediated erythrocyte desialylation provokes cell surface aminophospholipid exposure. Eur J Haematol. 2018;100:502–10. PubMed
Lang E, Lang PA, Shumilina E, Qadri SM, Kucherenko Y, Kempe DS, et al. Enhanced eryptosis of erythrocytes from gene-targeted mice lacking annexin A7. Pflug Arch. 2010;460:667–76. PubMed
Thiagarajan P, Parker CJ, Prchal JT. How do red blood cells die?. Front Physiol. 2021;12:655393. PubMed PMC
Lutz HU. Naturally occurring autoantibodies in mediating clearance of senescent red blood cells. Adv Exp Med Biol. 2012;750:76–90. PubMed
Giger U, Sticher B, Naef R, Burger R, Lutz H. Naturally occurring human anti-band 3 autoantibodies accelerate clearance of erythrocytes in guinea pigs. Blood. 1995;85:1920–8. PubMed
Kordbacheh F, O’Meara CH, Coupland LA, Lelliott PM, Parish CR. Extracellular histones induce erythrocyte fragility and anemia. Blood. 2017;130:2884–8. PubMed PMC
Takeda T, Azumi J, Masaki M, Nagasawa T, Shimada Y, Aso H, et al. Organogermanium, Ge-132, promotes the clearance of senescent red blood cells via macrophage-mediated phagocyte activation. Heliyon. 2024;10:e23296. PubMed PMC
Smith A, McCulloh RJ. Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders. Front Physiol. 2015;6:187. PubMed PMC
Bozza MT, Jeney V. Pro-inflammatory actions of heme and other hemoglobin-derived DAMPs. Front Immunol. 2020;11:1323. PubMed PMC
Fortes GB, Alves LS, de Oliveira R, Dutra FF, Rodrigues D, Fernandez PL, et al. Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood. 2012;119:2368–75. PubMed PMC
Menon AV, Liu J, Tsai HP, Zeng L, Yang S, Asnani A, et al. Excess heme upregulates heme oxygenase 1 and promotes cardiac ferroptosis in mice with sickle cell disease. Blood. 2022;139:936–41. PubMed PMC
Yao C, Kong J, Xu F, Wang S, Wu S, Sun W, et al. Heme-inducing endothelial pyroptosis plays a key role in radiofrequency ablation of hepatic hemangioma leading to systemic inflammatory response syndrome. J Inflamm Res. 2024;17:371–85. PubMed PMC
Gerogianni A, Dimitrov JD, Zarantonello A, Poillerat V, Chonat S, Sandholm K, et al. Heme interferes with complement factor I-dependent regulation by enhancing alternative pathway activation. Front Immunol. 2022;13:901876. PubMed PMC
Van Avondt K, Nur E, Zeerleder S. Mechanisms of haemolysis-induced kidney injury. Nat Rev Nephrol. 2019;15:671–92. PubMed
Lang E, Qadri SM, Lang F. Killing me softly - suicidal erythrocyte death. Int J Biochem Cell Biol. 2012;44:1236–43. PubMed
Lang F, Qadri SM. Mechanisms and significance of eryptosis, the suicidal death of erythrocytes. Blood Purif. 2012;33:125–30. PubMed
Qadri SM, Bissinger R, Solh Z, Oldenborg PA. Eryptosis in health and disease: a paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes. Blood Rev. 2017;31:349–61. PubMed
Birge RB, Boeltz S, Kumar S, Carlson J, Wanderley J, Calianese D, et al. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ. 2016;23:962–78. PubMed PMC
Murao A, Brenner M, Aziz M, Wang P. Exosomes in sepsis. Front Immunol. 2020;11:2140. PubMed PMC
Murao A, Aziz M, Wang H, Brenner M, Wang P. Release mechanisms of major DAMPs. Apoptosis. 2021;26:152–62. PubMed PMC
Thangaraju K, Neerukonda SN, Katneni U, Buehler PW. Extracellular vesicles from red blood cells and their evolving roles in health, coagulopathy and therapy. Int J Mol Sci. 2020;22:153. PubMed PMC
Kuo WP, Tigges JC, Toxavidis V, Ghiran I. Red blood cells: a source of extracellular vesicles. Methods Mol Biol. 2017;1660:15–22. PubMed
Bakkour S, Acker JP, Chafets DM, Inglis HC, Norris PJ, Lee TH, et al. Manufacturing method affects mitochondrial DNA release and extracellular vesicle composition in stored red blood cells. Vox Sang. 2016;111:22–32. PubMed
Doran AC, Yurdagul A, Tabas I. Efferocytosis in health and disease. Nat Rev Immunol. 2020;20:254–67. PubMed PMC
Schilperoort M, Ngai D, Sukka SR, Avrampou K, Shi H, Tabas I. The role of efferocytosis-fueled macrophage metabolism in the resolution of inflammation. Immunol Rev. 2023;319:65–80. PubMed PMC
Chang CF, Goods BA, Askenase MH, Hammond MD, Renfroe SC, Steinschneider AF, et al. Erythrocyte efferocytosis modulates macrophages towards recovery after intracerebral hemorrhage. J Clin Invest. 2018;128:607–24. PubMed PMC
Fang M, Xia F, Chen Y, Shen Y, Ma L, You C, et al. Role of eryptosis in hemorrhagic stroke. Front Mol Neurosci. 2022;15:932931. PubMed PMC
Kaliuzhka V, Tkachenko A, Myasoedov V, Markevych M, Onishchenko A, Babalyan I, et al. The prognostic value of eryptosis parameters in the cerebrospinal fluid for cerebral vasospasm and delayed cerebral ischemia formation. World Neurosurg. 2023;173:e578–85. PubMed
Foley RN, Parfrey PS, Harnett JD, Kent GM, Murray DC, Barre PE. The impact of anemia on cardiomyopathy, morbidity, and and mortality in end-stage renal disease. Am J Kidney Dis. 1996;28:53–61. PubMed
Radtke HW, Claussner A, Erbes PM, Scheuermann EH, Schoeppe W, Koch KM. Serum erythropoietin concentration in chronic renal failure: relationship to degree of anemia and excretory renal function. Blood. 1979;54:877–84. PubMed
Voelkl J, Alzoubi K, Mamar AK, Ahmed MS, Abed M, Lang F. Stimulation of suicidal erythrocyte death by increased extracellular phosphate concentrations. Kidney Blood Press Res. 2013;38:42–51. PubMed
Li D, Zheng X, Zhang Y, Li X, Chen X, Yin Y, et al. What should be responsible for eryptosis in chronic kidney disease?. Kidney Blood Press Res. 2022;47:375–90. PubMed
Bissinger R, Qadri SM, Artunc F. Eryptosis: a driver of anemia in chronic kidney disease. Curr Opin Nephrol Hypertens. 2024;33:220–5. PubMed
Fırat U, Kaya S, Cim A, Büyükbayram H, Gökalp O, Dal MS, et al. Increased caspase-3 immunoreactivity of erythrocytes in STZ diabetic rats. Exp Diab Res. 2012;2012:316384. PubMed PMC
Flaherty S, Strauch P, Maktabi M, Pybus BS, Reichard G, Walker LA, et al. Mechanisms of 8-aminoquinoline induced haemolytic toxicity in a G6PDd humanized mouse model. J Cell Mol Med. 2022;26:3675–86. PubMed PMC
Bissinger R, Nemkov T, D’Alessandro A, Grau M, Dietz T, Bohnert BN, et al. Proteinuric chronic kidney disease is associated with altered red blood cell lifespan, deformability and metabolism. Kidney Int. 2021;100:1227–39. PubMed
Bonan NB, Steiner TM, Kuntsevich V, Virzì GM, Azevedo M, Nakao LS, et al. Uremic toxicity-induced eryptosis and monocyte modulation: the erythrophagocytosis as a novel pathway to renal anemia. Blood Purif. 2016;41:317–23. PubMed
Ahmed MS, Abed M, Voelkl J, Lang F. Triggering of suicidal erythrocyte death by uremic toxin indoxyl sulfate. BMC Nephrol. 2013;14:244. PubMed PMC
Ahmed MS, Langer H, Abed M, Voelkl J, Lang F. The uremic toxin acrolein promotes suicidal erythrocyte death. Kidney Blood Press Res. 2013;37:158–67. PubMed
Gao C, Ji S, Dong W, Qi Y, Song W, Cui D, et al. Indolic uremic solutes enhance procoagulant activity of red blood cells through phosphatidylserine exposure and microparticle release. Toxins. 2015;7:4390–403. PubMed PMC
Virzì GM, Mattiotti M, Clementi A, Milan Manani S, Battaglia GG, Ronco C, et al. In vitro induction of eryptosis by uremic toxins and inflammation mediators in healthy red blood cells. J Clin Med. 2022;11:5329. PubMed PMC
Dias GF, Bonan NB, Steiner TM, Tozoni SS, Rodrigues S, Nakao LS, et al. Indoxyl sulfate, a uremic toxin, stimulates reactive oxygen species production and erythrocyte cell death supposedly by an organic anion transporter 2 (OAT2) and NADPH oxidase activity-dependent pathways. Toxins. 2018;10:280. PubMed PMC
Kopera M, Gwozdzinski K, Pieniazek A. Acrolein induces changes in cell membrane and cytosol proteins of erythrocytes. Molecules. 2024;29:2519. PubMed PMC
Benabe JE, Echegoyen LA, Pastrana B, Martínez-Maldonado M. Mechanism of inhibition of glycolysis by vanadate. J Biol Chem. 1987;262:9555–60. PubMed
Clementi A, Virzì GM, Milan Manani S, Battaglia GG, Ronco C, Zanella M. Eryptosis in patients with chronic kidney disease: a possible relationship with oxidative stress and inflammatory markers. J Clin Med. 2022;11:7167. PubMed PMC
Abed M, Artunc F, Alzoubi K, Honisch S, Baumann D, Föller M, et al. Suicidal erythrocyte death in end-stage renal disease. J Mol Med. 2014;92:871–9. PubMed
Meyring-Wösten A, Kuntsevich V, Campos I, Williams S, Ma J, Patel S, et al. Erythrocyte sodium sensitivity and eryptosis in chronic hemodialysis patients. Kidney Blood Press Res. 2017;42:314–26. PubMed
Caprara C, Virzì GM, Chieregato K, Marchionna N, Corradi V, Brendolan A, et al. Immunomodulation driven by theranova filter during a single HD session. J Clin Med. 2024;13. PubMed PMC
Hefny A, Fikry AA, Zahran MH, Shendi AM. Parathormone enhances eryptosis in patients with end stage renal disease treated by hemodialysis. Hemodial Int. 2022;26:234–42. PubMed
Bissinger R, Artunc F, Qadri SM, Lang F. Reduced erythrocyte survival in uremic patients under hemodialysis or peritoneal dialysis. Kidney Blood Press Res. 2016;41:966–77. PubMed
Vos FE, Schollum JB, Coulter CV, Doyle TC, Duffull SB, Walker RJ. Red blood cell survival in long-term dialysis patients. Am J Kidney Dis. 2011;58:591–8. PubMed
Bonomini M, Sirolli V, Settefrati N, Dottori S, Di Liberato L, Arduini A. Increased erythrocyte phosphatidylserine exposure in chronic renal failure. J Am Soc Nephrol. 1999;10:1982–90. PubMed
Virzì GM, Milan Manani S, Clementi A, Castegnaro S, Brocca A, Riello C, et al. Eryptosis is altered in peritoneal dialysis patients. Blood Purif. 2019;48:351–7. PubMed
Bester J, Pretorius E. Effects of IL-1β, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity. Sci Rep. 2016;6:32188. PubMed PMC
Abed M, Thiel C, Towhid ST, Alzoubi K, Honisch S, Lang F, et al. Stimulation of erythrocyte cell membrane scrambling by C-reactive protein. Cell Physiol Biochem. 2017;41:806–18. PubMed
Virzì GM, Milan Manani S, Marturano D, Clementi A, Lerco S, Tantillo I, et al. Eryptosis in peritoneal dialysis-related peritonitis: the potential role of inflammation in mediating the increase in eryptosis in PD. J Clin Med. 2022;11:6918. PubMed PMC
La A, Nguyen T, Tran K, Sauble E, Tu D, Gonzalez A, et al. Mobilization of iron from ferritin: new steps and details. Metallomics. 2018;10:154–68. PubMed
Lee SJ, Park SY, Jung MY, Bae SM, Kim IS. Mechanism for phosphatidylserine-dependent erythrophagocytosis in mouse liver. Blood. 2011;117:5215–23. PubMed
Theurl I, Hilgendorf I, Nairz M, Tymoszuk P, Haschka D, Asshoff M, et al. On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nat Med. 2016;22:945–51. PubMed PMC
Penberthy KK, Ravichandran KS. Apoptotic cell recognition receptors and scavenger receptors. Immunol Rev. 2016;269:44–59. PubMed PMC
Dasgupta SK, Thiagarajan P. The role of lactadherin in the phagocytosis of phosphatidylserine-expressing sickle red blood cells by macrophages. Haematologica. 2005;90:1267–8. PubMed
Kim S, Park SY, Kim SY, Bae DJ, Pyo JH, Hong M, et al. Cross talk between engulfment receptors stabilin-2 and integrin αvβ5 orchestrates engulfment of phosphatidylserine-exposed erythrocytes. Mol Cell Biol. 2012;32:2698–708. PubMed PMC
Ayi K, Lu Z, Serghides L, Ho JM, Finney C, Wang JCY, et al. CD47-SIRPα interactions regulate macrophage uptake of plasmodium falciparum-infected erythrocytes and clearance of malaria in vivo. Infect Immun. 2016;84:2002–11. PubMed PMC
Willekens FL, Werre JM, Kruijt JK, Roerdinkholder-Stoelwinder B, Groenen-Döpp YA, van den Bos AG, et al. Liver Kupffer cells rapidly remove red blood cell-derived vesicles from the circulation by scavenger receptors. Blood. 2005;105:2141–5. PubMed
Wu X, Yao Z, Zhao L, Zhang Y, Cao M, Li T, et al. Phosphatidylserine on blood cells and endothelial cells contributes to the hypercoagulable state in cirrhosis. Liver Int. 2016;36:1800–10. PubMed
Su Y, Deng X, Ma R, Dong Z, Wang F, Shi J. The exposure of phosphatidylserine influences procoagulant activity in retinal vein occlusion by microparticles, blood cells, and endothelium. Oxid Med Cell Longev. 2018;2018:3658476. PubMed PMC
Das K, Rao LVM. Coagulation protease-induced extracellular vesicles: their potential effects on coagulation and inflammation. J Thromb Haemost. 2024;22:2976–90. PubMed PMC
Kuypers FA, de Jong K. The role of phosphatidylserine in recognition and removal of erythrocytes. Cell Mol Biol (Noisy-le-Gd). 2004;50:147–58. PubMed
Otogawa K, Kinoshita K, Fujii H, Sakabe M, Shiga R, Nakatani K, et al. Erythrophagocytosis by liver macrophages (Kupffer cells) promotes oxidative stress, inflammation, and fibrosis in a rabbit model of steatohepatitis: implications for the pathogenesis of human nonalcoholic steatohepatitis. Am J Pathol. 2007;170:967–80. PubMed PMC
Lang E, Gatidis S, Freise NF, Bock H, Kubitz R, Lauermann C, et al. Conjugated bilirubin triggers anemia by inducing erythrocyte death. Hepatology. 2015;61:275–84. PubMed PMC
Funke C, Schneider SA, Berg D, Kell DB. Genetics and iron in the systems biology of Parkinson’s disease and some related disorders. Neurochem Int. 2013;62:637–52. PubMed
Pretorius E, Swanepoel AC, Buys AV, Vermeulen N, Duim W, Kell DB. Eryptosis as a marker of Parkinson’s disease. Aging. 2014;6:788–819. PubMed PMC
Mattson MP. Calcium and neurodegeneration. Aging Cell. 2007;6:337–50. PubMed
Arduíno DM, Esteves AR, Cardoso SM, Oliveira CR. Endoplasmic reticulum and mitochondria interplay mediates apoptotic cell death: relevance to Parkinson’s disease. Neurochem Int. 2009;55:341–8. PubMed
Touyz RM. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance?. Hypertension. 2004;44:248–52. PubMed
Minuz P, Patrignani P, Gaino S, Seta F, Capone ML, Tacconelli S, et al. Determinants of platelet activation in human essential hypertension. Hypertension. 2004;43:64–70. PubMed
Grossman E. Does increased oxidative stress cause hypertension?. Diab Care. 2008;31:S185–9. PubMed
Rodrigo R, Prat H, Passalacqua W, Araya J, Guichard C, Bächler JP. Relationship between oxidative stress and essential hypertension. Hypertens Res. 2007;30:1159–67. PubMed
Cvetković T, Veličković-Radovanović R, Djordjević V, Radenković S, Vlahović P, Stefanović N. Evidences for oxidative stress in essential hypertension. Open Medicine. 2012;7:610–6.
Ward NC, Hodgson JM, Puddey IB, Mori TA, Beilin LJ, Croft KD. Oxidative stress in human hypertension: association with antihypertensive treatment, gender, nutrition, and lifestyle. Free Radic Biol Med. 2004;36:226–32. PubMed
Vasconcelos SM, Goulart MO, Silva MA, Manfredini V, Benfato Mda S, Rabelo LA, et al. Markers of redox imbalance in the blood of hypertensive patients of a community in Northeastern Brazil. Arq Bras Cardiol. 2011;97:141–7. PubMed
Muda P, Kampus P, Zilmer M, Zilmer K, Kairane C, Ristimäe T, et al. Homocysteine and red blood cell glutathione as indices for middle-aged untreated essential hypertension patients. J Hypertens. 2003;21:2329–33. PubMed
Redón J, Oliva MR, Tormos C, Giner V, Chaves J, Iradi A, et al. Antioxidant activities and oxidative stress byproducts in human hypertension. Hypertension. 2003;41:1096–101. PubMed
Rybka J, Kupczyk D, Kędziora-Kornatowska K, Motyl J, Czuczejko J, Szewczyk-Golec K, et al. Glutathione-related antioxidant defense system in elderly patients treated for hypertension. Cardiovasc Toxicol. 2011;11:1–9. PubMed PMC
Myssina S, Huber SM, Birka C, Lang PA, Lang KS, Friedrich B, et al. Inhibition of erythrocyte cation channels by erythropoietin. J Am Soc Nephrol. 2003;14:2750–7. PubMed
Lang PA, Beringer O, Nicolay JP, Amon O, Kempe DS, Hermle T, et al. Suicidal death of erythrocytes in recurrent hemolytic uremic syndrome. J Mol Med (Berl). 2006;84:378–88. PubMed
Aguilar-Dorado IC, Hernández G, Quintanar-Escorza MA, Maldonado-Vega M, Rosas-Flores M, Calderón-Salinas JV. Eryptosis in lead-exposed workers. Toxicol Appl Pharmacol. 2014;281:195–202. PubMed
Calderón-Salinas JV, Muñoz-Reyes EG, Guerrero-Romero JF, Rodríguez-Morán M, Bracho-Riquelme RL, Carrera-Gracia MA, et al. Eryptosis and oxidative damage in type 2 diabetic mellitus patients with chronic kidney disease. Mol Cell Biochem. 2011;357:171–9. PubMed
Lindner A, Hinds TR, Davidson RC, Vincenzi FF. Increased cytosolic free calcium in red blood cells is associated with essential hypertension in humans. Am J Hypertens. 1993;6:771–9. PubMed
Lang E, Bissinger R, Gulbins E, Lang F. Ceramide in the regulation of eryptosis, the suicidal erythrocyte death. Apoptosis. 2015;20:758–67. PubMed
Golbidi S, Ebadi SA, Laher I. Antioxidants in the treatment of diabetes. Curr Diab Rev. 2011;7:106–25. PubMed
Likidlilid A, Patchanans N, Peerapatdit T, Sriratanasathavorn C. Lipid peroxidation and antioxidant enzyme activities in erythrocytes of type 2 diabetic patients. J Med Assoc Thai. 2010;93:682–93. PubMed
Mahboob M, Rahman MF, Grover P. Serum lipid peroxidation and antioxidant enzyme levels in male and female diabetic patients. Singap Med J. 2005;46:322–4. PubMed
Srivatsan R, Das S, Gadde R, Manoj-Kumar K, Taduri S, Rao N, et al. Antioxidants and lipid peroxidation status in diabetic patients with and without complications. Arch Iran Med. 2009;12:121–7. PubMed
Kaneto H, Katakami N, Matsuhisa M, Matsuoka TA. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediat Inflamm. 2010;2010:453892. PubMed PMC
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058–70. PubMed PMC
Singh DK, Winocour P, Farrington K. Oxidative stress in early diabetic nephropathy: fueling the fire. Nat Rev Endocrinol. 2011;7:176–84. PubMed
Lam CS, Benzie IF, Choi SW, Chan LY, Yeung VT, Woo GC. Relationships among diabetic retinopathy, antioxidants, and glycemic control. Optom Vis Sci. 2011;88:251–6. PubMed
Tsutsui H, Kinugawa S, Matsushima S, Yokota T. Oxidative stress in cardiac and skeletal muscle dysfunction associated with diabetes mellitus. J Clin Biochem Nutr. 2011;48:68–71. PubMed PMC
Wagener FA, Dekker D, Berden JH, Scharstuhl A, van der Vlag J. The role of reactive oxygen species in apoptosis of the diabetic kidney. Apoptosis. 2009;14:1451–8. PubMed PMC
Shah SV, Baliga R, Rajapurkar M, Fonseca VA. Oxidants in chronic kidney disease. J Am Soc Nephrol. 2007;18:16–28. PubMed
Puchades Montesa MJ, González Rico MA, Solís Salguero MA, Torregrosa Maicas I, Tormos Muñoz MC, Saez Tormo G, et al. [Study of oxidative stress in advanced kidney disease]. Nefrologia. 2009;29:464–73. PubMed
Hur J, Sullivan KA, Schuyler AD, Hong Y, Pande M, States DJ, et al. Literature-based discovery of diabetes- and ROS-related targets. BMC Med Genom. 2010;3:49. PubMed PMC
Zitouni K, Nourooz-Zadeh J, Harry D, Kerry SM, Betteridge DJ, Cappuccio FP, et al. Race-specific differences in antioxidant enzyme activity in patients with type 2 diabetes: a potential association with the risk of developing nephropathy. Diabetes Care. 2005;28:1698–703. PubMed
Beisswenger PJ, Drummond KS, Nelson RG, Howell SK, Szwergold BS, Mauer M. Susceptibility to diabetic nephropathy is related to dicarbonyl and oxidative stress. Diabetes. 2005;54:3274–81. PubMed
Nicolay JP, Schneider J, Niemoeller OM, Artunc F, Portero-Otin M, Haik G Jr., et al. Stimulation of suicidal erythrocyte death by methylglyoxal. Cell Physiol Biochem. 2006;18:223–32. PubMed
Pavone B, Bucci S, Sirolli V, Merlini G, Del Boccio P, Di Rienzo M, et al. Beta2-microglobulin causes abnormal phosphatidylserine exposure in human red blood cells. Mol Biosyst. 2011;7:651–8. PubMed
Alsaeid K, Kamal H, Haider MZ, Al-Enezi HM, Malaviya AN. Systemic lupus erythematosus in Kuwaiti children: organ system involvement and serological findings. Lupus. 2004;13:613–7. PubMed
Zhao XY, Zhang P, Huang LS, Zhang XH. [The clinical significance of hematological damage in systemic lupus erythematosus and related antibodies]. Zhonghua Nei Ke Za Zhi. 2006;45:369–71. PubMed
Aleem A, Al Arfaj AS, khalil N, Alarfaj H. Haematological abnormalities in systemic lupus erythematosus. Acta Reumatol Port. 2014;39:236–41. PubMed
Shaikh MA, Memon I, Ghori RA. Frequency of anaemia in patients with systemic lupus erythematosus at tertiary care hospitals. J Pak Med Assoc. 2010;60:822–5. PubMed
Giannouli S, Voulgarelis M, Ziakas PD, Tzioufas AG. Anaemia in systemic lupus erythematosus: from pathophysiology to clinical assessment. Ann Rheum Dis. 2006;65:144–8. PubMed PMC
Jiang P, Bian M, Ma W, Liu C, Yang P, Zhu B, et al. Eryptosis as an underlying mechanism in systemic lupus erythematosus-related anemia. Cell Physiol Biochem. 2016;40:1391–400. PubMed
Bartolmäs T, Mayer B, Balola AH, Salama A. Eryptosis in autoimmune haemolytic anaemia. Eur J Haematol. 2018;100:36–44. PubMed
Chadebech P, Michel M, Janvier D, Yamada K, Copie-Bergman C, Bodivit G, et al. IgA-mediated human autoimmune hemolytic anemia as a result of hemagglutination in the spleen, but independent of complement activation and FcαRI. Blood. 2010;116:4141–7. PubMed
Föller M, Kasinathan RS, Koka S, Huber SM, Schuler B, Vogel J, et al. Enhanced susceptibility to suicidal death of erythrocytes from transgenic mice overexpressing erythropoietin. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1127–34. PubMed
Vomero M, Finucci A, Barbati C, Colasanti T, Ceccarelli F, Novelli L, et al. Increased eryptosis in patients with primary antiphospholipid syndrome (APS): a new actor in the pathogenesis of APS. Clin Exp Rheumatol. 2021;39:838–43. PubMed
Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395:1417–8. PubMed PMC
Jing H, Wu X, Xiang M, Liu L, Novakovic VA, Shi J. Pathophysiological mechanisms of thrombosis in acute and long COVID-19. Front Immunol. 2022;13:992384. PubMed PMC
Huertas A, Montani D, Savale L, Pichon J, Tu L, Parent F, et al. Endothelial cell dysfunction: a major player in SARS-CoV-2 infection (COVID-19)? Eur Respir J. 2020;56:2001634. PubMed PMC
Peluso MJ, Deeks SG. Mechanisms of long COVID and the path toward therapeutics. Cell. 2024;187:5500–29. PubMed PMC
Al-Aly Z, Davis H, McCorkell L, Soares L, Wulf-Hanson S, Iwasaki A, et al. Long COVID science, research and policy. Nat Med. 2024;30:2148–64. PubMed
Goshua G, Pine AB, Meizlish ML, Chang CH, Zhang H, Bahel P, et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020;7:e575–e582. PubMed PMC
Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383:120–8. PubMed PMC
Pretorius E, Venter C, Laubscher GJ, Lourens PJ, Steenkamp J, Kell DB. Prevalence of readily detected amyloid blood clots in ‘unclotted’ type 2 diabetes mellitus and COVID-19 plasma: a preliminary report. Cardiovasc Diabetol. 2020;19:193. PubMed PMC
Lam LKM, Reilly JP, Rux AH, Murphy SJ, Kuri-Cervantes L, Weisman AR, et al. Erythrocytes identify complement activation in patients with COVID-19. Am J Physiol Lung Cell Mol Physiol. 2021;321:L485–l489. PubMed PMC
Berzuini A, Bianco C, Paccapelo C, Bertolini F, Gregato G, Cattaneo A, et al. Red cell-bound antibodies and transfusion requirements in hospitalized patients with COVID-19. Blood. 2020;136:766–8. PubMed PMC
Akhter N, Ahmad S, Alzahrani FA, Dar SA, Wahid M, Haque S, et al. Impact of COVID-19 on the cerebrovascular system and the prevention of RBC lysis. Eur Rev Med Pharm Sci. 2020;24:10267–78. PubMed
Zinellu A, Mangoni AA. Red blood cell distribution width, disease severity, and mortality in hospitalized patients with SARS-CoV-2 infection: a systematic review and meta-analysis. J Clin Med. 2021;10:286. PubMed PMC
Russo A, Tellone E, Barreca D, Ficarra S, Laganà G. Implication of COVID-19 on erythrocytes functionality: red blood cell biochemical implications and morpho-functional aspects. Int J Mol Sci. 2022;23:2171. PubMed PMC
Wang ZH, Fu BQ, Lin YW, Wei XB, Geng H, Guo WX, et al. Red blood cell distribution width: a severity indicator in patients with COVID-19. J Med Virol. 2022;94:2133–8. PubMed PMC
Karampitsakos T, Akinosoglou K, Papaioannou O, Panou V, Koromilias A, Bakakos P, et al. Increased red cell distribution width is associated with disease severity in hospitalized adults with SARS-CoV-2 infection: an observational multicentric study. Front Med. 2020;7:616292. PubMed PMC
Guaní-Guerra E, Torres-Murillo B, Muñoz-Corona C, Rodríguez-Jiménez JC, Macías AE, Scavo-Montes DA, et al. Diagnostic accuracy of the RDW for predicting death in COVID-19. Medicina PubMed PMC
Farooqui AA, Farooqui T, Sun GY, Lin T-N, Teh DBL, Ong W-Y. COVID-19, blood lipid changes, and thrombosis. Biomedicines. 2023;11:1181. PubMed PMC
Turner S, Khan MA, Putrino D, Woodcock A, Kell DB, Pretorius E. Long COVID: pathophysiological factors and abnormalities of coagulation. Trends Endocrinol Metab. 2023;34:321–44. PubMed PMC
Kell DB, Laubscher GJ, Pretorius E. A central role for amyloid fibrin microclots in long COVID/PASC: origins and therapeutic implications. Biochem J. 2022;479:537–59. PubMed PMC
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J. 2022;479:1653–708. PubMed PMC
Kruger A, Vlok M, Turner S, Venter C, Laubscher GJ, Kell DB, et al. Proteomics of fibrin amyloid microclots in long COVID/post-acute sequelae of COVID-19 (PASC) shows many entrapped pro-inflammatory molecules that may also contribute to a failed fibrinolytic system. Cardiovasc Diabetol. 2022;21:190. PubMed PMC
Pretorius E, Venter C, Laubscher GJ, Kotze MJ, Oladejo SO, Watson LR, et al. Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology in individuals with Long COVID/Post-Acute Sequelae of COVID-19 (PASC). Cardiovasc Diabetol. 2022;21:148. PubMed PMC
Pretorius E, Kell DB. A perspective on how fibrinaloid microclots and platelet pathology may be applied in clinical investigations. Semin Thromb Hemost. 2024;50:537–51. PubMed PMC
Turner S, Naidoo CA, Usher TJ, Kruger A, Venter C, Laubscher GJ, et al. Increased levels of inflammatory and endothelial biomarkers in blood of long COVID patients point to thrombotic endothelialitis. Semin Thromb Hemost. 2024;50:288–94. PubMed
Thierry AR. NETosis creates a link between diabetes and Long COVID. Physiol Rev. 2024;104:651–4. PubMed
Thierry AR, Salmon D. Inflammation-, immunothrombosis,- and autoimmune-feedback loops may lead to persistent neutrophil self-stimulation in long COVID. J Med Virol. 2024;96:e29887. PubMed
Burmeister A, Vidal YSS, Liu X, Mess C, Wang Y, Konwar S, et al. Impact of neutrophil extracellular traps on fluid properties, blood flow and complement activation. Front Immunol. 2022;13:1078891. PubMed PMC
Ryu JK, Yan Z, Montano M, Sozmen EG, Dixit K, Suryawanshi RK, et al. Fibrin drives thromboinflammation and neuropathology in COVID-19. Nature. 2024;633:905–13. PubMed PMC
Grobbelaar LM, Venter C, Vlok M, Ngoepe M, Laubscher GJ, Lourens PJ, et al. SARS-CoV-2 spike protein S1 induces fibrin(ogen) resistant to fibrinolysis: implications for microclot formation in COVID-19. Biosci Rep PubMed PMC
Zhou M, Yin Z, Xu J, Wang S, Liao T, Wang K, et al. Inflammatory profiles and clinical features of coronavirus 2019 survivors 3 months after discharge in Wuhan, China. J Infect Dis. 2021;224:1473–88. PubMed PMC
Fogarty H, Townsend L, Morrin H, Ahmad A, Comerford C, Karampini E, et al. Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J Thromb Haemost. 2021;19:2546–53. PubMed PMC
Singh I, Joseph P, Heerdt PM, Cullinan M, Lutchmansingh DD, Gulati M, et al. Persistent exertional intolerance after COVID-19: insights from invasive cardiopulmonary exercise testing. Chest. 2022;161:54–63. PubMed PMC
Modjtahedi BS, Do D, Luong TQ, Shaw J. Changes in the incidence of retinal vascular occlusions after COVID-19 diagnosis. JAMA Ophthalmol. 2022;140:523–7. PubMed PMC
Appelman B, Charlton BT, Goulding RP, Kerkhoff TJ, Breedveld EA, Noort W, et al. Muscle abnormalities worsen after post-exertional malaise in long COVID. Nat Commun. 2024;15:17. PubMed PMC
Richards RS, Wang L, Jelinek H. Erythrocyte oxidative damage in chronic fatigue syndrome. Arch Med Res. 2007;38:94–8. PubMed
Thomas T, Stefanoni D, Dzieciatkowska M, Issaian A, Nemkov T, Hill RC, et al. Evidence of structural protein damage and membrane lipid remodeling in red blood cells from COVID-19 Patients. J Proteome Res. 2020;19:4455–69. PubMed PMC
Noonong K, Chatatikun M, Surinkaew S, Kotepui M, Hossain R, Bunluepuech K, et al. Mitochondrial oxidative stress, mitochondrial ROS storms in long COVID pathogenesis. Front Immunol. 2023;14:1275001. PubMed PMC
Georgieva E, Ananiev J, Yovchev Y, Arabadzhiev G, Abrashev H, Abrasheva D, et al. COVID-19 complications: oxidative stress, inflammation, and mitochondrial and endothelial dysfunction. Int J Mol Sci. 2023;24:14876. PubMed PMC
Simpson LO. Nondiscocytic erythrocytes in myalgic encephalomyelitis. N Z Med J. 1989;102:126–7. PubMed
Saha AK, Schmidt BR, Wilhelmy J, Nguyen V, Abugherir A, Do JK, et al. Red blood cell deformability is diminished in patients with chronic fatigue syndrome. Clin Hemorheol Microcirc. 2019;71:113–6. PubMed PMC
Baklund IH, Dammen T, Moum T, Kristiansen W, Duarte DS, Castro-Marrero J, et al. Evaluating routine blood tests according to clinical symptoms and diagnostic criteria in individuals with myalgic encephalomyelitis/chronic fatigue syndrome. J Clin Med. 2021;10. PubMed PMC
McMahon CJ, Hopkins S, Vail A, King AT, Smith D, Illingworth KJ, et al. Inflammation as a predictor for delayed cerebral ischemia after aneurysmal subarachnoid haemorrhage. J Neurointerv Surg. 2013;5:512–7. PubMed PMC
Lang E, Lang F. Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death. Semin Cell Dev Biol. 2015;39:35–42. PubMed
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). Jama. 2016;315:801–10. PubMed PMC
Hall MJ, Levant S, DeFrances CJ. Trends in inpatient hospital deaths: National Hospital Discharge Survey, 2000-2010. NCHS Data Brief. 2013. pp. 1–8. PubMed
Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–10. PubMed
Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG. The pathogenesis of sepsis. Annu Rev Pathol. 2011;6:19–48. PubMed PMC
Nguyen DB, Wagner-Britz L, Maia S, Steffen P, Wagner C, Kaestner L, et al. Regulation of phosphatidylserine exposure in red blood cells. Cell Physiol Biochem. 2011;28:847–56. PubMed
Piagnerelli M, Boudjeltia KZ, Rapotec A, Richard T, Brohée D, Babar S, et al. Neuraminidase alters red blood cells in sepsis. Crit Care Med. 2009;37:1244–50. PubMed
Reggiori G, Occhipinti G, De Gasperi A, Vincent JL, Piagnerelli M. Early alterations of red blood cell rheology in critically ill patients. Crit Care Med. 2009;37:3041–6. PubMed
Marcello M, Virzì GM, Marturano D, de Cal M, Marchionna N, Sgarabotto L, et al. The cytotoxic effect of septic plasma on healthy RBCs: is eryptosis a new mechanism for sepsis? Int J Mol Sci. 2023;24. PubMed PMC
Bostanci H, Dikmen K, Comu FM, Arslan M, Kucuk A. Investigation of the effects of thymoquinone on erythrocyte deformability in sepsis treatment which created by cecal perforation in rat. Bratisl Lek Listy. 2018;119:152–5. PubMed
Oliveira YP, Pontes-de-Carvalho LC, Couto RD, Noronha-Dutra AA. Oxidative stress in sepsis. Possible production of free radicals through an erythrocyte-mediated positive feedback mechanism. Braz J Infect Dis. 2017;21:19–26. PubMed PMC
Bateman RM, Sharpe MD, Singer M, Ellis CG. The effect of sepsis on the erythrocyte. Int J Mol Sci. 2017;18:1932. PubMed PMC
Subramani K, Raju SP, Chu X, Warren M, Pandya CD, Hoda N, et al. Effect of plasma-derived extracellular vesicles on erythrocyte deformability in polymicrobial sepsis. Int Immunopharmacol. 2018;65:244–7. PubMed
Sadaka F, O’Brien J, Prakash S. Red cell distribution width and outcome in patients with septic shock. J Intensive Care Med. 2013;28:307–13. PubMed
Kim CH, Park JT, Kim EJ, Han JH, Han JS, Choi JY, et al. An increase in red blood cell distribution width from baseline predicts mortality in patients with severe sepsis or septic shock. Crit Care. 2013;17:R282. PubMed PMC
Kellum JA, Ronco C. The role of endotoxin in septic shock. Crit Care. 2023;27:400. PubMed PMC
Bissinger R, Schumacher C, Qadri SM, Honisch S, Malik A, Götz F, et al. Enhanced eryptosis contributes to anemia in lung cancer patients. Oncotarget. 2016;7:14002–14. PubMed PMC
Bissinger R, Bouguerra G, Stockinger K, Abbès S, Lang F. Triggering of suicidal erythrocyte death by topotecan. Cell Physiol Biochem. 2015;37:1607–18. PubMed
Mahmud H, Föller M, Lang F. Suicidal erythrocyte death triggered by cisplatin. Toxicology. 2008;249:40–44. PubMed
Suwalsky M, Hernández P, Villena F, Aguilar F, Sotomayor CP. Interaction of the anticancer drug tamoxifen with the human erythrocyte membrane and molecular models. Z Naturforsch C J Biosci. 1998;53:182–90. PubMed
Cruz Silva MM, Madeira VM, Almeida LM, Custódio JB. Hemolysis of human erythrocytes induced by tamoxifen is related to disruption of membrane structure. Biochim Biophys Acta. 2000;1464:49–61. PubMed
Alfhili MA, Alyousef AM, Alsughayyir J. Tamoxifen induces eryptosis through calcium accumulation and oxidative stress. Med Oncol. 2023;40:333. PubMed
Snow RW, Craig M, Deichmann U, Marsh K. Estimating mortality, morbidity and disability due to malaria among Africa’s non-pregnant population. Bull World Health Organ. 1999;77:624–40. PubMed PMC
Boulet C, Gaynor TL, Carvalho TG. Eryptosis and malaria: new experimental guidelines and re-evaluation of the antimalarial potential of eryptosis inducers. Front Cell Infect Microbiol. 2021;11:630812. PubMed PMC
Venkatesan P. The 2023 WHO world malaria report. Lancet Microbe. 2024;5:e214. PubMed
Perkins DJ, Were T, Davenport GC, Kempaiah P, Hittner JB, Ong’echa JM. Severe malarial anemia: innate immunity and pathogenesis. Int J Biol Sci. 2011;7:1427–42. PubMed PMC
Haldar K, Mohandas N. Malaria, erythrocytic infection, and anemia. Hematol Am Soc Hematol Educ Program. 2009;2009:87–93. PubMed PMC
Lackritz EM, Campbell CC, Ruebush TK 2nd, Hightower AW, Wakube W, Steketee RW, et al. Effect of blood transfusion on survival among children in a Kenyan hospital. Lancet. 1992;340:524–8. PubMed
Lamikanra AA, Brown D, Potocnik A, Casals-Pascual C, Langhorne J, Roberts DJ. Malarial anemia: of mice and men. Blood. 2007;110:18–28. PubMed
Föller M, Bobbala D, Koka S, Huber SM, Gulbins E, Lang F. Suicide for survival-death of infected erythrocytes as a host mechanism to survive malaria. Cell Physiol Biochem. 2009;24:133–40. PubMed
Atamna H, Ginsburg H. Origin of reactive oxygen species in erythrocytes infected with Plasmodium falciparum. Mol Biochem Parasitol. 1993;61:231–41. PubMed
Das BS, Nanda NK. Evidence for erythrocyte lipid peroxidation in acute falciparum malaria. Trans R Soc Trop Med Hyg. 1999;93:58–62. PubMed
Al Mamun Bhuyan A, Lang F. Stimulation of eryptosis by afatinib. Cell Physiol Biochem. 2018;47:1259–73. PubMed
Ghashghaeinia M, Bobbala D, Wieder T, Koka S, Brück J, Fehrenbacher B, et al. Targeting glutathione by dimethylfumarate protects against experimental malaria by enhancing erythrocyte cell membrane scrambling. Am J Physiol Cell Physiol. 2010;299:C791–804. PubMed
Siraskar B, Ballal A, Bobbala D, Föller M, Lang F. Effect of amphotericin B on parasitemia and survival of plasmodium berghei-infected mice. Cell Physiol Biochem. 2010;26:347–54. PubMed
Bobbala D, Alesutan I, Föller M, Huber SM, Lang F. Effect of anandamide in Plasmodium Berghei-infected mice. Cell Physiol Biochem. 2010;26:355–62. PubMed
Totino PR, Daniel-Ribeiro CT, Ferreira-da-Cruz MdeF. Refractoriness of eryptotic red blood cells to Plasmodium falciparum infection: a putative host defense mechanism limiting parasitaemia. PLoS ONE. 2011;6:e26575. PubMed PMC
Ibrahim HA, Fouda MI, Yahya RS, Abousamra NK, Abd Elazim RA. Erythrocyte phosphatidylserine exposure in β-thalassemia. Lab Hematol. 2014;20:9–14. PubMed
Nader E, Romana M, Guillot N, Fort R, Stauffer E, Lemonne N, et al. Association between nitric oxide, oxidative stress, eryptosis, red blood cell microparticles, and vascular function in sickle cell anemia. Front Immunol. 2020;11:551441. PubMed PMC
Basu S, Banerjee D, Chandra S, Chakrabarti A. Eryptosis in hereditary spherocytosis and thalassemia: role of glycoconjugates. Glycoconj J. 2010;27:717–22. PubMed
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023;186:243–78. PubMed
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. PubMed
Akel A, Wagner CA, Kovacikova J, Kasinathan RS, Kiedaisch V, Koka S, et al. Enhanced suicidal death of erythrocytes from gene-targeted mice lacking the Cl-/HCO(3)(-) exchanger AE1. Am J Physiol Cell Physiol. 2007;292:C1759–67. PubMed
Yadav S, Deepika, Maurya PK. A systematic review of red blood cells biomarkers in human aging. J Gerontol A Biol Sci Med Sci. 2024;79:glae004. PubMed
Hernández G, Villanueva-Ibarra CA, Maldonado-Vega M, López-Vanegas NC, Ruiz-Cascante CE, Calderón-Salinas JV. Participation of phospholipase-A(2) and sphingomyelinase in the molecular pathways to eryptosis induced by oxidative stress in lead-exposed workers. Toxicol Appl Pharmacol. 2019;371:12–9. PubMed
Alfhili MA, Alamri HS, Alsughayyir J, Basudan AM. Induction of hemolysis and eryptosis by occupational pollutant nickel chloride is mediated through calcium influx and p38 MAP kinase signaling. Int J Occup Med Environ Health. 2022;35:1–11. PubMed PMC
Jarosiewicz M, Michałowicz J, Bukowska B. In vitro assessment of eryptotic potential of tetrabromobisphenol A and other bromophenolic flame retardants. Chemosphere. 2019;215:404–12. PubMed
Maćczak A, Cyrkler M, Bukowska B, Michałowicz J. Eryptosis-inducing activity of bisphenol A and its analogs in human red blood cells (in vitro study). J Hazard Mater. 2016;307:328–35. PubMed
Sicińska P. Di-n-butyl phthalate, butylbenzyl phthalate and their metabolites induce haemolysis and eryptosis in human erythrocytes. Chemosphere. 2018;203:44–53. PubMed
Jin Q, Yao C, Bian Y, Pi J. Pb-induced eryptosis may provoke thrombosis prior to hemolysis. Int J Mol Sci. 2022;23:7008. PubMed PMC
Mitra S, Chakraborty AJ, Tareq AM, Emran TB, Nainu F, Khusro A, et al. Impact of heavy metals on the environment and human health: novel therapeutic insights to counter the toxicity. J King Saud Univ - Sci. 2022;34:101865.
Vota DM, Crisp RL, Nesse AB, Vittori DC. Oxidative stress due to aluminum exposure induces eryptosis which is prevented by erythropoietin. J Cell Biochem. 2012;113:1581–9. PubMed
Lupescu A, Jilani K, Zelenak C, Zbidah M, Qadri SM, Lang F. Hexavalent chromium-induced erythrocyte membrane phospholipid asymmetry. Biometals. 2012;25:309–18. PubMed
Bukowska B. Changes in human erythrocyte exposed to organophosphate flame retardants: Tris(2-chloroethyl) phosphate and Tris(1-chloro-2-propyl) phosphate. Materials PubMed PMC
Michałowicz J, Włuka A, Bukowska B. A review on environmental occurrence, toxic effects and transformation of man-made bromophenols. Sci Total Environ. 2022;811:152289. PubMed
Barańska A, Woźniak A, Mokra K, Michałowicz J. Genotoxic mechanism of action of TBBPA, TBBPS and selected bromophenols in human peripheral blood mononuclear cells. Front Immunol. 2022;13:869741. PubMed PMC
Cheng FJ, Wang CH, Pan HY, Chen CC, Huang WT, Li SH, et al. Levels of organophosphate flame retardants and their metabolites among 391 volunteers in Taiwan: difference between adults and children. Front Public Health. 2023;11:1186561. PubMed PMC
Guo Y, Chen M, Liao M, Su S, Sun W, Gan Z. Organophosphorus flame retardants and their metabolites in paired human blood and urine. Ecotoxicol Environ Saf. 2023;268:115696. PubMed
Wang Y, Qian H. Phthalates and Their Impacts on Human Health. Healthcare PubMed PMC
Tat J, Heskett K, Boss GR. Acute rotenone poisoning: a scoping review. Heliyon. 2024;10:e28334. PubMed PMC
Lupescu A, Jilani K, Zbidah M, Lang F. Induction of apoptotic erythrocyte death by rotenone. Toxicology. 2012;300:132–7. PubMed
Alfhili MA, Nkany MB, Weidner DA, Lee MH. Stimulation of eryptosis by broad-spectrum insect repellent N,N-Diethyl-3-methylbenzamide (DEET). Toxicol Appl Pharmacol. 2019;370:36–43. PubMed
Officioso A, Manna C, Alzoubi K, Lang F. Bromfenvinphos induced suicidal death of human erythrocytes. Pestic Biochem Physiol. 2016;126:58–63. PubMed
Borst O, Abed M, Alesutan I, Towhid ST, Qadri SM, Föller M, et al. Dynamic adhesion of eryptotic erythrocytes to endothelial cells via CXCL16/SR-PSOX. Am J Physiol Cell Physiol. 2012;302:C644–51. PubMed
Restivo I, Attanzio A, Tesoriere L, Allegra M. Suicidal erythrocyte death in metabolic syndrome. Antioxidants. 2021;10:154. PubMed PMC
Attanzio A, Frazzitta A, Vasto S, Tesoriere L, Pintaudi AM, Livrea MA, et al. Increased eryptosis in smokers is associated with the antioxidant status and C-reactive protein levels. Toxicology. 2019;411:43–8. PubMed
Schmitt M, Ewendt F, Kluttig A, Mikolajczyk R, Kraus FB, Wätjen W, et al. Smoking is associated with increased eryptosis, suicidal erythrocyte death, in a large population-based cohort. Sci Rep. 2024;14:3024. PubMed PMC
Abdel-Mageed HM, AbuelEzz NZ, Radwan RA, Mohamed SA. Nanoparticles in nanomedicine: a comprehensive updated review on current status, challenges and emerging opportunities. J Microencapsul. 2021;38:414–36. PubMed
Fan D, Cao Y, Cao M, Wang Y, Cao Y, Gong T. Nanomedicine in cancer therapy. Signal Transduct Target Ther. 2023;8:293. PubMed PMC
Rodríguez F, Caruana P, De la Fuente N, Español P, Gámez M, Balart J, et al. Nano-Based Approved Pharmaceuticals for Cancer Treatment: Present and Future Challenges. Biomolecules. 2022;12:784. PubMed PMC
Dri DA, Rinaldi F, Carafa M, Marianecci C. Nanomedicines and nanocarriers in clinical trials: surfing through regulatory requirements and physico-chemical critical quality attributes. Drug Deliv Transl Res. 2023;13:757–69. PubMed PMC
Yang C, Merlin D. Challenges to safe nanomedicine treatment. Nanomaterials PubMed PMC
Krug HF, Nau K. Editorial: Methods and protocols in nanotoxicology. Front Toxicol. 2022;4:1093765. PubMed PMC
de la Harpe KM, Kondiah PPD, Choonara YE, Marimuthu T, du Toit LC, Pillay V. The hemocompatibility of nanoparticles: a review of cell-nanoparticle interactions and hemostasis. Cells. 2019;8:1209. PubMed PMC
Yedgar S, Barshtein G, Gural A. Hemolytic activity of nanoparticles as a marker of their hemocompatibility. Micromachines PubMed PMC
Tkachenko A. Hemocompatibility studies in nanotoxicology: hemolysis or eryptosis? (A review). Toxicol Vitr. 2024;98:105814. PubMed
Kessler A, Hedberg J, Blomberg E, Odnevall I. Reactive oxygen species formed by metal and metal oxide nanoparticles in physiological media—a review of reactions of importance to nanotoxicity and proposal for categorization. Nanomaterials. 2022;12:1922. PubMed PMC
Chen Z, Yang B, Yan Z, Song E, Song Y. Eryptosis is an indicator of hematotoxicity in the risk assessment of environmental amorphous silica nanoparticles exposure: the role of macromolecule corona. Toxicol Lett. 2022;367:40–7. PubMed
Ferdous Z, Beegam S, Tariq S, Ali BH, Nemmar A. The in vitro effect of polyvinylpyrrolidone and citrate coated silver nanoparticles on erythrocytic oxidative damage and eryptosis. Cell Physiol Biochem. 2018;49:1577–88. PubMed
Lau IP, Chen H, Wang J, Ong HC, Leung KC, Ho HP, et al. In vitro effect of CTAB- and PEG-coated gold nanorods on the induction of eryptosis/erythroptosis in human erythrocytes. Nanotoxicology. 2012;6:847–56. PubMed
Prokopiuk V, Yefimova S, Onishchenko A, Kapustnik V, Myasoedov V, Maksimchuk P, et al. Assessing the cytotoxicity of TiO2−x nanoparticles with a different Ti3+(Ti2+)/Ti4+ ratio. Biol Trace Elem Res. 2023;201:3117–30. PubMed
Ran Q, Xiang Y, Liu Y, Xiang L, Li F, Deng X, et al. Eryptosis indices as a novel predictive parameter for biocompatibility of Fe3O4 magnetic nanoparticles on erythrocytes. Sci Rep PubMed PMC
Xu D, Ran Q, Xiang Y, Jiang L, Smith BM, Bou-Abdallah F, et al. Toward hemocompatible self-assembling antimicrobial nanofibers: understanding the synergistic effect of supramolecular structure and PEGylation on hemocompatibility. RSC Adv. 2016;6:15911–9. PubMed PMC
Ferdous Z, Elzaki O, Beegam S, Zaaba NE, Tariq S, Adeghate E, et al. Comparative evaluation of the effects of amorphous silica nanoparticles on the erythrocytes of Wistar normotensive and spontaneously hypertensive rats. Int J Mol Sci. 2023;24:3784. PubMed PMC
Yefimova S, Onishchenko A, Klochkov V, Myasoedov V, Kot Y, Tryfonyuk L, et al. Rare-earth orthovanadate nanoparticles trigger Ca(2+)-dependent eryptosis. Nanotechnology. 2023;34. PubMed
Barzegar S, Rezvani MR, Safa M, Amani A, Abbaspour A, Pourfathollah A, et al. Dose-dependent efficacy of antioxidant nanoparticles on red blood cells storage. J Educ Health Promot. 2021;10:256. PubMed PMC
Tkachenko A, Virych P, Myasoyedov V, Prokopiuk V, Onishchenko A, Butov D, et al. Cytotoxicity of hybrid noble metal-polymer composites. Biomed Res Int. 2022;2022:1487024. PubMed PMC
Yefimova S, Klochkov V, Kavok N, Tkachenko A, Onishchenko A, Chumachenko T, et al. Antimicrobial activity and cytotoxicity study of cerium oxide nanoparticles with two different sizes. J Biomed Mater Res B Appl Biomater. 2023;111:872–80. PubMed
Zhang K, Mikos AG, Reis RL, Zhang X. Translation of biomaterials from bench to clinic. Bioact Mater. 2022;18:337–8. PubMed PMC
Nalezinková M. In vitro hemocompatibility testing of medical devices. Thromb Res. 2020;195:146–50. PubMed
Weber M, Steinle H, Golombek S, Hann L, Schlensak C, Wendel HP, et al. Blood-contacting biomaterials: in vitro evaluation of the hemocompatibility. Front Bioeng Biotechnol. 2018;6:99. PubMed PMC
von Petersdorff-Campen K, Schmid Daners M. Hemolysis testing in vitro: a review of challenges and potential improvements. ASAIO J. 2022;68:3–13. PubMed
Tkachenko A. Is eryptosis druggable? Ann Hematol. 2024:103:1791-1792. PubMed
Virzì GM, Morisi N, Marturano D, Milan Manani S, Tantillo I, Ronco C, et al. Peritoneal inflammation in PD-related peritonitis induces systemic eryptosis: in vitro and in vivo assessments. Int J Mol Sci. 2024;25:4284. PubMed PMC
Alfhili MA, Alsughayyir J. Bufalin reprograms erythrocyte lifespan through p38 MAPK and Rac1 GTPase. Toxicon. 2024;240:107636. PubMed
Alghareeb SA, Alfhili MA, Alsughayyir J. Stimulation of hemolysis and eryptosis by β-caryophyllene oxide. Life. 2023;13:2299. PubMed PMC
Bennett-Guerrero E, Veldman TH, Doctor A, Telen MJ, Ortel TL, Reid TS, et al. Evolution of adverse changes in stored RBCs. Proc Natl Acad Sci USA. 2007;104:17063–8. PubMed PMC
Arifin WN, Zahiruddin WM. Sample size calculation in animal studies using resource equation approach. Malays J Med Sci. 2017;24:101–5. PubMed PMC
Serdar CC, Cihan M, Yücel D, Serdar MA. Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem Med. 2021;31:010502. PubMed PMC
Dinkla S, Peppelman M, Van Der Raadt J, Atsma F, Novotný VM, Van Kraaij MG, et al. Phosphatidylserine exposure on stored red blood cells as a parameter for donor-dependent variation in product quality. Blood Transfus. 2014;12:204–9. PubMed PMC
Samsel L, McCoy JP Jr. Imaging flow cytometry for the study of erythroid cell biology and pathology. J Immunol Methods. 2015;423:52–9. PubMed PMC
Al Mamun Bhuyan A, Cao H, Lang F. Triggering of eryptosis, the suicidal erythrocyte death by mammalian target of rapamycin (mTOR) inhibitor temsirolimus. Cell Physiol Biochem. 2017;42:1575–91. PubMed
Morabito R, Remigante A, Di Pietro ML, Giannetto A, La Spada G, Marino A. SO(4)(=) uptake and catalase role in preconditioning after H(2)O(2)-induced oxidative stress in human erythrocytes. Pflug Arch. 2017;469:235–50. PubMed
Alajeyan IA, Alsughayyir J, Alfhili MA. Stimulation of calcium/NOS/CK1α signaling by cedrol triggers eryptosis and hemolysis in red blood cells. Yonago Acta Med. 2024;67:191–200. PubMed PMC
Sæbø IP, Bjørås M, Franzyk H, Helgesen E, Booth JA. Optimization of the hemolysis assay for the assessment of cytotoxicity. Int J Mol Sci. 2023;24:2914. PubMed PMC
Aslam HM, Sohail A, Shahid A, Khan MAB, Sharif MU, Kausar R, et al. Levofloxacin induces erythrocyte contraction leading to red cell death. Drug Target Insights. 2024;18:78–83. PubMed PMC
Bissinger R, Waibel S, Bouguerra G, Al Mamun Bhuyan A, Abbès S, Lang F. Enhanced eryptosis following exposure to lopinavir. Cell Physiol Biochem. 2015;37:2486–95. PubMed
West CA, He C, Su M, Swanson SJ, Mentzer SJ. Aldehyde fixation of thiol-reactive fluorescent cytoplasmic probes for tracking cell migration. J Histochem Cytochem. 2001;49:511–8. PubMed
Michałowicz J, Włuka A, Cyrkler M, Maćczak A, Sicińska P, Mokra K. Phenol and chlorinated phenols exhibit different apoptotic potential in human red blood cells (in vitro study). Environ Toxicol Pharmacol. 2018;61:95–101. PubMed
Porter SN, Howarth GS, Butler RN. Non-steroidal anti-inflammatory drugs and apoptosis in the gastrointestinal tract: potential role of the pentose phosphate pathways. Eur J Pharmacol. 2000;397:1–9. PubMed
Officioso A, Alzoubi K, Manna C, Lang F. Clofazimine induced suicidal death of human erythrocytes. Cell Physiol Biochem. 2015;37:331–41. PubMed
Nicolay JP, Gatz S, Lang F, Lang UE. Lithium-induced suicidal erythrocyte death. J Psychopharmacol. 2010;24:1533–9. PubMed
Zelenak C, Pasham V, Jilani K, Tripodi PM, Rosaclerio L, Pathare G, et al. Tanshinone IIA stimulates erythrocyte phosphatidylserine exposure. Cell Physiol Biochem. 2012;30:282–94. PubMed
Bosmann HB. Ref cell hydrolases: glycosidase activities in human erythrocyte plasma membranes. J Membr Biol. 1971;4:113–23. PubMed
Lang E, Bissinger R, Qadri SM, Lang F. Suicidal death of erythrocytes in cancer and its chemotherapy: a potential target in the treatment of tumor-associated anemia. Int J Cancer. 2017;141:1522–8. PubMed
Alvarez-Sala A, López-García G, Attanzio A, Tesoriere L, Cilla A, Barberá R, et al. Effects of plant sterols or β-cryptoxanthin at physiological serum concentrations on suicidal erythrocyte death. J Agric Food Chem. 2018;66:1157–66. PubMed
Cilla A, López-García G, Collado-Díaz V, Amparo Blanch-Ruiz M, Garcia-Llatas G, Barberá R, et al. Hypercholesterolemic patients have higher eryptosis and erythrocyte adhesion to human endothelium independently of statin therapy. Int J Clin Pr. 2021;75:e14771. PubMed
Kalkavan H, Green DR. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ. 2018;25:46–55. PubMed PMC
Dadsena S, King LE, García-Sáez AJ. Apoptosis regulation at the mitochondria membrane level. Biochim Biophys Acta. 2021;1863:183716. PubMed
Prokopiuk V, Onishchenko A, Tryfonyuk L, Posokhov Y, Gorbach T, Kot Y, et al. Marine Polysaccharides Carrageenans enhance eryptosis and alter lipid order of cell membranes in erythrocytes. Cell Biochem Biophys. 2024;82:747–66. PubMed
Huang W, Hickson LJ, Eirin A, Kirkland JL, Lerman LO. Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol. 2022;18:611–27. PubMed PMC
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72. PubMed PMC
Zhou Q, Meng Y, Li D, Yao L, Le J, Liu Y, et al. Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies. Signal Transduct Target Ther. 2024;9:55. PubMed PMC
Bao Y, Williamson G. Phospholipid hydroperoxide peroxidase activities in erythrocytes. Biochem Soc Trans. 1997;25:S557. PubMed
Josefsson EC. Platelet intrinsic apoptosis. Thromb Res. 2023;231:206–13. PubMed
Pretorius E. Erythrocyte deformability and eryptosis during inflammation, and impaired blood rheology. Clin Hemorheol Microcirc. 2018;69:545–50. PubMed