Current understanding of eryptosis: mechanisms, physiological functions, role in disease, pharmacological applications, and nomenclature recommendations

. 2025 Jul 01 ; 16 (1) : 467. [epub] 20250701

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40592821

Grantová podpora
EHA Ukraine Bridge Funding European Hematology Association (EHA)

Odkazy

PubMed 40592821
PubMed Central PMC12216432
DOI 10.1038/s41419-025-07784-w
PII: 10.1038/s41419-025-07784-w
Knihovny.cz E-zdroje

Early studies have shown that erythrocytes have caspase-3 and caspase-8 and are capable of dying through an apoptotic-like cell death triggered by Ca2+ ionophores. This cell death is associated with apoptosis-like morphological signs, including cell shrinkage, membrane blebbing, and phosphatidylserine externalization. To emphasize that mature erythrocytes don't have the apoptotic mitochondrial machinery and distinguish this unique cell death modality from apoptosis, it was named "eryptosis". Over recent decades, our knowledge of eryptosis has been significantly expanded, providing more insights into the uniqueness of cell death pathways in erythrocytes. In this review, we aim to summarize our current understanding of eryptosis, formulate the nomenclature and guidelines to interpret results of eryptosis studies, provide a synopsis of morphological and biochemical features of eryptosis, and highlight the role of eryptosis in health and disease, including its druggability.

1st Department of Internal Medicine Hematology General University Hospital and 1st Faculty of Medicine Charles University Prague Czech Republic

BIOCEV 1st Faculty of Medicine Charles University Vestec Czech Republic

Chair of Medical and Molecular Genetics Research Department of Clinical Laboratory Sciences College of Applied Medical Sciences King Saud University Riyadh Saudi Arabia

Department of Biochemistry and Systems Biology Institute of Systems Molecular and Integrative Biology Faculty of Health and Life Sciences University of Liverpool Liverpool UK

Department of Biochemistry University of Agriculture Faisalabad Pakistan

Department of Biological Chemical and Pharmaceutical Sciences and Technologies University of Palermo Palermo Italy

Department of Biophysics of Environmental Pollution Faculty of Biology and Environmental Protection University of Lodz Lodz Poland

Department of Clinical Laboratory Sciences College of Applied Medical Sciences King Saud University Riyadh Saudi Arabia

Department of Cryobiochemistry Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine Kharkiv Ukraine

Department of Nephrology Dialysis and Transplant St Bortolo Hospital Vicenza Italy

Department of Physiological Sciences Faculty of Science Stellenbosch University Stellenbosch South Africa

Department of Physiology University of Hohenheim Stuttgart Germany

Department of Veterinary and Animal Sciences University of Rajshahi 6205 Rajshahi Bangladesh

Institute of Physiology 1 Eberhard Karls University Tübingen Tübingen Germany

IRRIV International Renal Research Institute Vicenza Vicenza Italy

Medicine and Nutrition Faculty Universidad Juárez del Estado de Durango Durango Dgo México

Nutrition and Food Science Area Faculty of Pharmacy and Food Sciences University of Valencia Burjassot Spain

Research Institute of Experimental and Clinical Medicine Kharkiv National Medical University Kharkiv Ukraine

Zobrazit více v PubMed

Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, et al. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther. 2022;7:286. PubMed PMC

Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 2015;22:58–73. PubMed PMC

Green DR, Llambi F. Cell death signaling. Cold Spring Harb Perspect Biol. 2015;7:a006080 PubMed PMC

Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25:486–541. PubMed PMC

Song X, Zhu S, Xie Y, Liu J, Sun L, Zeng D, et al. JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice. Gastroenterology. 2018;154:1480–93. PubMed PMC

Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375:1254–61. PubMed PMC

Liu X, Nie L, Zhang Y, Yan Y, Wang C, Colic M, et al. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat Cell Biol. 2023;25:404–14. PubMed PMC

Holze C, Michaudel C, Mackowiak C, Haas DA, Benda C, Hubel P, et al. Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat Immunol. 2018;19:130–40. PubMed PMC

Malireddi RKS, Kesavardhana S, Kanneganti TD. ZBP1 and TAK1: Master regulators of NLRP3 inflammasome/pyroptosis, apoptosis, and necroptosis (PAN-optosis). Front Cell Infect Microbiol. 2019;9:406. PubMed PMC

Vitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, et al. Apoptotic cell death in disease-current understanding of the NCCD 2023. Cell Death Differ. 2023;30:1097–154. PubMed PMC

Kumar S, Cakouros D. Transcriptional control of the core cell-death machinery. Trends Biochem Sci. 2004;29:193–9. PubMed

Gao Y, Jiao Y, Gong X, Liu J, Xiao H, Zheng Q. Role of transcription factors in apoptotic cells clearance. Front Cell Dev Biol. 2023;11:1110225. PubMed PMC

Hajji N, Joseph B. Epigenetic regulation of cell life and death decisions and deregulation in cancer. Essays Biochem. 2010;48:121–46. PubMed

Chen C, Wang J, Zhang S, Zhu X, Hu J, Liu C, et al. Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis. Redox Biol. 2024;76:103321. PubMed PMC

Zhou S, Liu J, Wan A, Zhang Y, Qi X. Epigenetic regulation of diverse cell death modalities in cancer: a focus on pyroptosis, ferroptosis, cuproptosis, and disulfidptosis. J Hematol Oncol. 2024;17:22. PubMed PMC

Zamaraev AV, Kopeina GS, Prokhorova EA, Zhivotovsky B, Lavrik IN. Post-translational modification of caspases: the other side of apoptosis regulation. Trends Cell Biol. 2017;27:322–39. PubMed

Seyrek K, Ivanisenko NV, Richter M, Hillert LK, König C, Lavrik IN. Controlling cell death through post-translational modifications of DED proteins. Trends Cell Biol. 2020;30:354–69. PubMed

Meng Y, Sandow JJ, Czabotar PE, Murphy JM. The regulation of necroptosis by post-translational modifications. Cell Death Differ. 2021;28:861–83. PubMed PMC

Wu P, Zhang X, Duan D, Zhao L. Organelle-specific mechanisms in crosstalk between apoptosis and ferroptosis. Oxid Med Cell Longev. 2023;2023:3400147. PubMed PMC

Park W, Wei S, Kim B-S, Kim B, Bae S-J, Chae YC, et al. Diversity and complexity of cell death: a historical review. Exp Mol Med. 2023;55:1573–94. PubMed PMC

Zhang Y, Wu Y, Zhang M, Li Z, Liu B, Liu H, et al. Synergistic mechanism between the endoplasmic reticulum and mitochondria and their crosstalk with other organelles. Cell Death Discov. 2023;9:51. PubMed PMC

Berg CP, Engels IH, Rothbart A, Lauber K, Renz A, Schlosser SF, et al. Human mature red blood cells express caspase-3 and caspase-8, but are devoid of mitochondrial regulators of apoptosis. Cell Death Differ. 2001;8:1197–206. PubMed

Bratosin D, Estaquier J, Petit F, Arnoult D, Quatannens B, Tissier JP, et al. Programmed cell death in mature erythrocytes: a model for investigating death effector pathways operating in the absence of mitochondria. Cell Death Differ. 2001;8:1143–56. PubMed

Lang KS, Lang PA, Bauer C, Duranton C, Wieder T, Huber SM, et al. Mechanisms of suicidal erythrocyte death. Cell Physiol Biochem. 2005;15:195–202. PubMed

LaRocca TJ, Stivison EA, Hod EA, Spitalnik SL, Cowan PJ, Randis TM, et al. Human-specific bacterial pore-forming toxins induce programmed necrosis in erythrocytes. mBio. 2014;5:e01251–e01214. PubMed PMC

Dasgupta A, Nomura M, Shuck R, Yustein J. Cancer’s Achilles’ heel: apoptosis and necroptosis to the rescue. Int J Mol Sci. 2016;18:23 PubMed PMC

LaRocca TJ, Stivison EA, Mal-Sarkar T, Hooven TA, Hod EA, Spitalnik SL, et al. CD59 signaling and membrane pores drive Syk-dependent erythrocyte necroptosis. Cell Death Dis. 2015;6:e1773–e1773. PubMed PMC

Tkachenko A, Havranek O. Erythronecroptosis: an overview of necroptosis or programmed necrosis in red blood cells. Mol Cell Biochem. 2024;479:3273-3291. PubMed

Zhang X, Lin Y, Xin J, Zhang Y, Yang K, Luo Y, et al. Red blood cells in biology and translational medicine: natural vehicle inspires new biomedical applications. Theranostics. 2024;14:220–48. PubMed PMC

Dzierzak E, Philipsen S. Erythropoiesis: development and differentiation. Cold Spring Harb Perspect Med. 2013;3:a011601. PubMed PMC

Zivot A, Lipton JM, Narla A, Blanc L. Erythropoiesis: insights into pathophysiology and treatments in 2017. Mol Med. 2018;24:11. PubMed PMC

Moras M, Lefevre SD, Ostuni MA. From erythroblasts to mature red blood cells: organelle clearance in mammals. Front Physiol. 2017;8:1076. PubMed PMC

Menon V, Ghaffari S. Erythroid enucleation: a gateway into a “bloody” world. Exp Hematol. 2021;95:13–22. PubMed PMC

Chaichompoo P, Svasti S, Smith DR. The roles of mitophagy and autophagy in ineffective erythropoiesis in β-thalassemia. Int J Mol Sci. 2022;23:10811. PubMed PMC

Moras M, Hattab C, Gonzalez-Menendez P, Fader CM, Dussiot M, Larghero J, et al. Human erythroid differentiation requires VDAC1-mediated mitochondrial clearance. Haematologica. 2022;107:167–77. PubMed PMC

Liu Y, Mei Y, Han X, Korobova FV, Prado MA, Yang J, et al. Membrane skeleton modulates erythroid proteome remodeling and organelle clearance. Blood. 2021;137:398–409. PubMed PMC

Testa U. Apoptotic mechanisms in the control of erythropoiesis. Leukemia. 2004;18:1176–99. PubMed

Raducka-Jaszul O, Bogusławska DM, Jędruchniewicz N, Sikorski AF. Role of extrinsic apoptotic signaling pathway during definitive erythropoiesis in normal patients and in patients with β-thalassemia. Int J Mol Sci. 2020;21:3325. PubMed PMC

Roderick JE, Hermance N, Zelic M, Simmons MJ, Polykratis A, Pasparakis M, et al. Hematopoietic RIPK1 deficiency results in bone marrow failure caused by apoptosis and RIPK3-mediated necroptosis. Proc Natl Acad Sci USA. 2014;111:14436–41. PubMed PMC

Zheng H, Jiang L, Tsuduki T, Conrad M, Toyokuni S. Embryonal erythropoiesis and aging exploit ferroptosis. Redox Biol. 2021;48:102175. PubMed PMC

Kumar SD, Kar D, Akhtar MN, Willard B, Roy D, Hussain T, et al. Evidence for low-level translation in human erythrocytes. Mol Biol Cell. 2022;33:br21. PubMed PMC

Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (review). Int J Mol Med. 2019;44:3–15. PubMed PMC

Zhang Y, Xu Y, Zhang S, Lu Z, Li Y, Zhao B. The regulation roles of Ca(2+) in erythropoiesis: what have we learned?. Exp Hematol. 2022;106:19–30. PubMed

Ahmed MH, Ghatge MS, Safo MK. Hemoglobin: wtructure, function and allostery. Subcell Biochem. 2020;94:345–82. PubMed PMC

Chen K, Popel AS. Nitric oxide production pathways in erythrocytes and plasma. Biorheology. 2009;46:107–19. PubMed PMC

Gajecki D, Gawryś J, Szahidewicz-Krupska E, Doroszko A. Role of erythrocytes in nitric oxide metabolism and paracrine regulation of endothelial function. Antioxidants. 2022;11:943. PubMed PMC

Litvinov RI, Weisel JW. Role of red blood cells in haemostasis and thrombosis. ISBT Sci Ser. 2017;12:176–83. PubMed PMC

Tutwiler V, Mukhitov AR, Peshkova AD, Le Minh G, Khismatullin RR, Vicksman J, et al. Shape changes of erythrocytes during blood clot contraction and the structure of polyhedrocytes. Sci Rep. 2018;8:17907. PubMed PMC

Gillespie AH, Doctor A. Red blood cell contribution to hemostasis. Front Pediatr. 2021;9:629824. PubMed PMC

Weisel JW, Litvinov RI. Red blood cells: the forgotten player in hemostasis and thrombosis. J Thromb Haemost. 2019;17:271–82. PubMed PMC

Van Der Meijden PE, Van Schilfgaarde M, Van Oerle R, Renné T, ten Cate H, Spronk HM. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J Thromb Haemost. 2012;10:1355–62. PubMed

Franchini M, Lippi G. Relative risks of thrombosis and bleeding in different ABO blood groups. Semin Thromb Hemost. 2016;42:112–7. PubMed

Orrico F, Laurance S, Lopez AC, Lefevre SD, Thomson L, Möller MN, et al. Oxidative stress in healthy and pathological red blood cells. Biomolecules. 2023;13:1262. PubMed PMC

Tkachenko A, Havránek O. Redox status of erythrocytes as an important factor in eryptosis and erythronecroptosis. Folia Biol. 2023;69:116–26. PubMed

Lam LKM, Murphy S, Kokkinaki D, Venosa A, Sherrill-Mix S, Casu C, et al. DNA binding to TLR9 expressed by red blood cells promotes innate immune activation and anemia. Sci Transl Med. 2021;13:eabj1008. PubMed PMC

Minton K. Red blood cells join the ranks as immune sentinels. Nat Rev Immunol. 2021;21:760–1. PubMed PMC

Ren Y, Yan C, Yang H. Erythrocytes: member of the immune system that should not be ignored. Crit Rev Oncol/Hematol. 2023;187:104039. PubMed

Anderson HL, Brodsky IE, Mangalmurti NS. The evolving erythrocyte: red blood cells as modulators of innate immunity. J Immunol. 2018;201:1343–51. PubMed PMC

Drvenica IT, Stančić AZ, Maslovarić IS, Trivanović DI, Ilić VL. Extracellular hemoglobin: modulation of cellular functions and pathophysiological effects. Biomolecules. 2022;12:1708. PubMed PMC

Zhang G, Wang J, Zhao Z, Xin T, Fan X, Shen Q, et al. Regulated necrosis, a proinflammatory cell death, potentially counteracts pathogenic infections. Cell Death Dis. 2022;13:637. PubMed PMC

Płuciennik K, Sicińska P, Misztal W, Bukowska B. Important factors affecting induction of cell death, oxidative stress and DNA damage by nano- and microplastic particles in vitro. Cells. 2024;13:768. PubMed PMC

Mendonça R, Silveira AA, Conran N. Red cell DAMPs and inflammation. Inflamm Res. 2016;65:665–78. PubMed

Jeney V. Pro-inflammatory actions of red blood cell-derived DAMPs. Exp Suppl. 2018;108:211–33. PubMed

Daugas E, Candé C, Kroemer G. Erythrocytes: death of a mummy. Cell Death Differ. 2001;8:1131–3. PubMed

Canli Ö, Alankuş YB, Grootjans S, Vegi N, Hültner L, Hoppe PS, et al. Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors. Blood. 2016;127:139–48. PubMed PMC

Waugh RE, Narla M, Jackson CW, Mueller TJ, Suzuki T, Dale GL. Rheologic properties of senescent erythrocytes: loss of surface area and volume with red blood cell age. Blood. 1992;79:1351–8. PubMed

Badior KE, Casey JR. Molecular mechanism for the red blood cell senescence clock. IUBMB Life. 2018;70:32–40. PubMed

Barshtein G, Gural A, Arbell D, Barkan R, Livshits L, Pajic-Lijakovic I, et al. Red blood cell deformability is expressed by a set of interrelated membrane proteins. Int J Mol Sci. 2023;24:12755. PubMed PMC

Lutz HU, Bogdanova A. Mechanisms tagging senescent red blood cells for clearance in healthy humans. Front Physiol. 2013;4:387. PubMed PMC

Klei TRL, Dalimot JJ, Beuger BM, Veldthuis M, Ichou FA, Verkuijlen P, et al. The Gardos effect drives erythrocyte senescence and leads to Lu/BCAM and CD44 adhesion molecule activation. Blood Adv. 2020;4:6218–29. PubMed PMC

Mohanty J, Nagababu E, Rifkind JM. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front Physiol. 2014;5:84. PubMed PMC

Ghashghaeinia M, Cluitmans JC, Akel A, Dreischer P, Toulany M, Köberle M, et al. The impact of erythrocyte age on eryptosis. Br J Haematol. 2012;157:606–14. PubMed

van Bruggen R. CD47 functions as a removal marker on aged erythrocytes. ISBT Sci Ser. 2013;8:153–6.

Bogdanova A, Makhro A, Wang J, Lipp P, Kaestner L. Calcium in red blood cells—a perilous balance. Int J Mol Sci. 2013;14:9848–72. PubMed PMC

Badior KE, Casey JR. Large conformational dynamics in band 3 protein: Significance for erythrocyte senescence signalling. Biochim Biophys Acta Biomembr. 2021;1863:183678. PubMed

Seki M, Arashiki N, Takakuwa Y, Nitta K, Nakamura F. Reduction in flippase activity contributes to surface presentation of phosphatidylserine in human senescent erythrocytes. J Cell Mol Med. 2020;24:13991–4000. PubMed PMC

Lang PA, Kasinathan RS, Brand VB, Duranton C, Lang C, Koka S, et al. Accelerated clearance of Plasmodium-infected erythrocytes in sickle cell trait and annexin-A7 deficiency. Cell Physiol Biochem. 2009;24:415–28. PubMed

Dreischer P, Duszenko M, Stein J, Wieder T. Eryptosis: programmed death of nucleus-free, iron-filled blood cells. Cells. 2022;11:503. PubMed PMC

Lang KS, Duranton C, Poehlmann H, Myssina S, Bauer C, Lang F, et al. Cation channels trigger apoptotic death of erythrocytes. Cell Death Differ. 2003;10:249–56. PubMed

Lang KS, Roll B, Myssina S, Schittenhelm M, Scheel-Walter HG, Kanz L, et al. Enhanced erythrocyte apoptosis in sickle cell anemia, thalassemia and glucose-6-phosphate dehydrogenase deficiency. Cell Physiol Biochem. 2002;12:365–72. PubMed

LaRocca TJ, Sosunov SA, Shakerley NL, Ten VS, Ratner AJ. Hyperglycemic conditions prime cells for RIP1-dependent necroptosis. J Biol Chem. 2016;291:13753–61. PubMed PMC

McCaig WD, Hodges AL, Deragon MA, Haluska RJ Jr., Bandyopadhyay S, Ratner AJ, et al. Storage primes erythrocytes for necroptosis and clearance. Cell Physiol Biochem. 2019;53:496–507. PubMed PMC

du Plooy JN, Bester J, Pretorius E. Eryptosis in haemochromatosis: implications for rheology. Clin Hemorheol Microcirc. 2018;69:457–69. PubMed

Tkachenko A. Apoptosis and eryptosis: similarities and differences. Apoptosis. 2024;29:482–502. PubMed

Jacob SS, Prasad K, Rao P, Kamath A, Hegde RB, Baby PM, et al. Computerized morphometric analysis of eryptosis. Front Physiol. 2019;10:1230. PubMed PMC

Scovino AM, Totino PRR, Morrot A. Eryptosis as a new insight in malaria pathogenesis. Front Immunol. 2022;13:855795. PubMed PMC

Lang F, Gulbins E, Lerche H, Huber SM, Kempe DS, Foller M. Eryptosis, a window to systemic disease. Cell Physiol Biochem. 2008;22:373–80. PubMed

Repsold L, Joubert AM. Eryptosis: an erythrocyte’s suicidal type of cell death. Biomed Res Int. 2018;2018:9405617. PubMed PMC

Alghareeb SA, Alfhili MA, Fatima S. Molecular mechanisms and pathophysiological significance of eryptosis. Int J Mol Sci. 2023;24:5079. PubMed PMC

Föller M, Lang F. Ion transport in eryptosis, the suicidal death of erythrocytes. Front Cell Dev Biol. 2020;8:597. PubMed PMC

Lang F, Lang KS, Lang PA, Huber SM, Wieder T. Mechanisms and significance of eryptosis. Antioxid Redox Signal. 2006;8:1183–92. PubMed

Reithmeier RAF, Casey JR, Kalli AC, Sansom MSP, Alguel Y, Iwata S. Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. Biochim Biophys Acta. 2016;1858:1507–32. PubMed

Mandal D, Baudin-Creuza V, Bhattacharyya A, Pathak S, Delaunay J, Kundu M, et al. Caspase 3-mediated proteolysis of the N-terminal cytoplasmic domain of the human erythroid anion exchanger 1 (band 3)*. J Biol Chem. 2003;278:52551–8. PubMed

Rinalducci S, Ferru E, Blasi B, Turrini F, Zolla L. Oxidative stress and caspase-mediated fragmentation of cytoplasmic domain of erythrocyte band 3 during blood storage. Blood Transfus. 2012;10 Suppl. 2:s55–62. PubMed PMC

Schwarz-Ben Meir N, Glaser T, Kosower NS. Band 3 protein degradation by calpain is enhanced in erythrocytes of old people. Biochem J. 1991;275:47–52. Pt 1. PubMed PMC

Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 2008;27:6407–18. PubMed PMC

Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol. 2003;4:552–65. PubMed

Duranton C, Huber SM, Lang F. Oxidation induces a Cl(-)-dependent cation conductance in human red blood cells. J Physiol. 2002;539:847–55. PubMed PMC

Hirschler-Laszkiewicz I, Tong Q, Waybill K, Conrad K, Keefer K, Zhang W, et al. The transient receptor potential (TRP) channel TRPC3 TRP domain and AMP-activated protein kinase binding site are required for TRPC3 activation by erythropoietin. J Biol Chem. 2011;286:30636–46. PubMed PMC

Foller M, Kasinathan RS, Koka S, Lang C, Shumilina E, Birnbaumer L, et al. TRPC6 contributes to the Ca(2+) leak of human erythrocytes. Cell Physiol Biochem. 2008;21:183–92. PubMed

Danielczok J, Hertz L, Ruppenthal S, Kaiser E, Petkova-Kirova P, Bogdanova A, et al. Does erythropoietin regulate TRPC channels in red blood cells?. Cell Physiol Biochem. 2017;41:1219–28. PubMed

Makhro A, Hänggi P, Goede JS, Wang J, Brüggemann A, Gassmann M, et al. N-methyl-D-aspartate receptors in human erythroid precursor cells and in circulating red blood cells contribute to the intracellular calcium regulation. Am J Physiol Cell Physiol. 2013;305:C1123–38. PubMed

Kaestner L, Bogdanova A, Egee S. Calcium channels and calcium-regulated channels in human red blood cells. Adv Exp Med Biol. 2020;1131:625–48. PubMed

Föller M, Mahmud H, Gu S, Kucherenko Y, Gehring EM, Shumilina E, et al. Modulation of suicidal erythrocyte cation channels by an AMPA antagonist. J Cell Mol Med. 2009;13:3680–6. PubMed PMC

Cahalan SM, Lukacs V, Ranade SS, Chien S, Bandell M, Patapoutian A. Piezo1 links mechanical forces to red blood cell volume. eLife. 2015;4:e07370. PubMed PMC

Andrews DA, Yang L, Low PS. Phorbol ester stimulates a protein kinase C-mediated agatoxin-TK-sensitive calcium permeability pathway in human red blood cells. Blood. 2002;100:3392–9. PubMed

Rapetti-Mauss R, Picard V, Guitton C, Ghazal K, Proulle V, Badens C, et al. Red blood cell Gardos channel (KCNN4): the essential determinant of erythrocyte dehydration in hereditary xerocytosis. Haematologica. 2017;102:e415–e418. PubMed PMC

Pretorius E, du Plooy JN, Bester J. A comprehensive review on eryptosis. Cell Physiol Biochem. 2016;39:1977–2000. PubMed

Weiss E, Cytlak UM, Rees DC, Osei A, Gibson JS. Deoxygenation-induced and Ca(2+) dependent phosphatidylserine externalisation in red blood cells from normal individuals and sickle cell patients. Cell Calcium. 2012;51:51–6. PubMed

Wieschhaus A, Khan A, Zaidi A, Rogalin H, Hanada T, Liu F, et al. Calpain-1 knockout reveals broad effects on erythrocyte deformability and physiology. Biochem J. 2012;448:141–52. PubMed PMC

Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47. PubMed

Meng J, Lv Z, Zhang Y, Wang Y, Qiao X, Sun C, et al. Precision redox: the key for antioxidant pharmacology. Antioxid Redox Signal. 2021;34:1069–82. PubMed PMC

Ghashghaeinia M, Giustarini D, Koralkova P, Köberle M, Alzoubi K, Bissinger R, et al. Pharmacological targeting of glucose-6-phosphate dehydrogenase in human erythrocytes by Bay 11–7082, parthenolide and dimethyl fumarate. Sci Rep. 2016;6:28754. PubMed PMC

Sun Y, Liu G, Jiang Y, Wang H, Xiao H, Guan G. Erythropoietin protects erythrocytes against oxidative stress-induced eryptosis in vitro. Clin Lab. 2018;64:365–9. PubMed

Tkachenko AS, Kot YG, Kapustnik VA, Myasoedov VV, Makieieva NI, Chumachenko TO, et al. Semi-refined carrageenan promotes generation of reactive oxygen species in leukocytes of rats upon oral exposure but not in vitro. Wien Med Wochenschr. 2021;171:68–78. PubMed

Pan X, Giustarini D, Lang F, Rossi R, Wieder T, Köberle M, et al. Desipramine induces eryptosis in human erythrocytes, an effect blunted by nitric oxide donor sodium nitroprusside and N-acetyl-L-cysteine but enhanced by Calcium depletion. Cell Cycle. 2023;22:1827–53. PubMed PMC

Onishchenko A, Myasoedov V, Yefimova S, Nakonechna O, Prokopyuk V, Butov D, et al. UV light-activated GdYVO(4):Eu(3+) nanoparticles induce reactive oxygen species generation in leukocytes without affecting erythrocytes in Vitro. Biol Trace Elem Res. 2022;200:2777–92. PubMed

Maruyama T, Hieda M, Mawatari S, Fujino T. Rheological abnormalities in human erythrocytes subjected to oxidative inflammation. Front Physiol. 2022;13:837926. PubMed PMC

Geilen CC, Wieder T, Orfanos CE. Ceramide signalling: regulatory role in cell proliferation, differentiation and apoptosis in human epidermis. Arch Dermatol Res. 1997;289:559–66. PubMed

Canals D, Hannun YA. Biological function, topology, and quantification of plasma membrane Ceramide. Adv Biol Regul. 2024;91:101009. PubMed PMC

Green CD, Maceyka M, Cowart LA, Spiegel S. Sphingolipids in metabolic disease: the good, the bad, and the unknown. Cell Metab. 2021;33:1293–306. PubMed PMC

Lang KS, Myssina S, Brand V, Sandu C, Lang PA, Berchtold S, et al. Involvement of ceramide in hyperosmotic shock-induced death of erythrocytes. Cell Death Differ. 2004;11:231–43. PubMed

Qadri SM, Bauer J, Zelenak C, Mahmud H, Kucherenko Y, Lee SH, et al. Sphingosine but not sphingosine-1-phosphate stimulates suicidal erythrocyte death. Cell Physiol Biochem. 2011;28:339–46. PubMed

Yang L, Yatomi Y, Miura Y, Satoh K, Ozaki Y. Metabolism and functional effects of sphingolipids in blood cells. Br J Haematol. 1999;107:282–93. PubMed

Dinkla S, Wessels K, Verdurmen WP, Tomelleri C, Cluitmans JC, Fransen J, et al. Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure. Cell Death Dis. 2012;3:e410. PubMed PMC

Kempe DS, Akel A, Lang PA, Hermle T, Biswas R, Muresanu J, et al. Suicidal erythrocyte death in sepsis. J Mol Med. 2007;85:273–81. PubMed

Abusukhun M, Winkler MS, Pöhlmann S, Moerer O, Meissner K, Tampe B, et al. Activation of sphingomyelinase-ceramide-pathway in COVID-19 purposes its inhibition for therapeutic strategies. Front Immunol. 2021;12:784989. PubMed PMC

Geng Z, Huang J, Kang L, Gao S, Yuan Y, Li Y, et al. Clostridium perfringens epsilon toxin binds to erythrocyte MAL receptors and triggers phosphatidylserine exposure. J Cell Mol Med. 2020;24:7341–52. PubMed PMC

Lang PA, Kempe DS, Tanneur V, Eisele K, Klarl BA, Myssina S, et al. Stimulation of erythrocyte ceramide formation by platelet-activating factor. J Cell Sci. 2005;118:1233–43. PubMed

Restivo I, Attanzio A, Giardina IC, Di Gaudio F, Tesoriere L, Allegra M. Cigarette smoke extract induces p38 MAPK-initiated, Fas-mediated eryptosis. Int J Mol Sci. 2022;23:14730. PubMed PMC

Lang PA, Schenck M, Nicolay JP, Becker JU, Kempe DS, Lupescu A, et al. Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide. Nat Med. 2007;13:164–70. PubMed

Julien O, Wells JA. Caspases and their substrates. Cell Death Differ. 2017;24:1380–9. PubMed PMC

Van Opdenbosch N, Lamkanfi M. Caspases in cell death, inflammation, and disease. Immunity. 2019;50:1352–64. PubMed PMC

Lang E, Lang F. Triggers, inhibitors, mechanisms, and significance of eryptosis: the suicidal erythrocyte death. Biomed Res Int. 2015;2015:513518. PubMed PMC

Mandal D, Moitra PK, Saha S, Basu J. Caspase 3 regulates phosphatidylserine externalization and phagocytosis of oxidatively stressed erythrocytes. FEBS Lett. 2002;513:184–8. PubMed

Mandal D, Mazumder A, Das P, Kundu M, Basu J. Fas-, Caspase 8-, and caspase 3-dependent signaling regulates the activity of the aminophospholipid translocase and phosphatidylserine externalization in human erythrocytes*. J Biol Chem. 2005;280:39460–7. PubMed

Kroemer G. Mitochondrial implication in apoptosis. Towards an endosymbiont hypothesis of apoptosis evolution. Cell Death Differ. 1997;4:443–56. PubMed

Kaushal V, Klim J, Skoneczna A, Kurlandzka A, Enkhbaatar T, Kaczanowski S, et al. Apoptotic factors are evolutionarily conserved since mitochondrial domestication. Genome Biol Evol. 2023;15:evad154. PubMed PMC

McGrath C. Highlight: unlocking the ancient origins of cell death. Genome Biol Evol. 2023;15:evad172.

Zermati Y, Garrido C, Amsellem S, Fishelson S, Bouscary D, Valensi F, et al. Caspase activation is required for terminal erythroid differentiation. J Exp Med. 2001;193:247–54. PubMed PMC

Carlile GW, Smith DH, Wiedmann M. Caspase-3 has a nonapoptotic function in erythroid maturation. Blood. 2004;103:4310–6. PubMed

Lemasters JJ. Dying a thousand deaths: redundant pathways from different organelles to apoptosis and necrosis. Gastroenterology. 2005;129:351–60. PubMed

Vandenabeele P, Melino G. The flick of a switch: which death program to choose?. Cell Death Differ. 2012;19:1093–5. PubMed PMC

Tummers B, Green DR. Caspase-8: regulating life and death. Immunol Rev. 2017;277:76–89. PubMed PMC

Fritsch M, Günther SD, Schwarzer R, Albert M-C, Schorn F, Werthenbach JP, et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature. 2019;575:683–7. PubMed

Newton K, Wickliffe KE, Maltzman A, Dugger DL, Reja R, Zhang Y, et al. Activity of caspase-8 determines plasticity between cell death pathways. Nature. 2019;575:679–82. PubMed

Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. 2021;18:1106–21. PubMed PMC

Restivo I, Attanzio A, Tesoriere L, Allegra M, Garcia-Llatas G, Cilla A. A Mixture of dietary plant sterols at nutritional relevant serum concentration inhibits extrinsic pathway of eryptosis induced by cigarette smoke extract. Int J Mol Sci. 2023;24:1264. PubMed PMC

Föller M, Sopjani M, Koka S, Gu S, Mahmud H, Wang K, et al. Regulation of erythrocyte survival by AMP-activated protein kinase. FASEB J. 2009;23:1072–80. PubMed

Zelenak C, Föller M, Velic A, Krug K, Qadri SM, Viollet B, et al. Proteome analysis of erythrocytes lacking AMP-activated protein kinase reveals a role of PAK2 kinase in eryptosis. J Proteome Res. 2011;10:1690–7. PubMed

Bhavsar SK, Gu S, Bobbala D, Lang F. Janus kinase 3 is expressed in erythrocytes, phosphorylated upon energy depletion and involved in the regulation of suicidal erythrocyte death. Cell Physiol Biochem. 2011;27:547–56. PubMed

Lang E, Bissinger R, Fajol A, Salker MS, Singh Y, Zelenak C, et al. Accelerated apoptotic death and in vivo turnover of erythrocytes in mice lacking functional mitogen- and stress-activated kinase MSK1/2. Sci Rep. 2015;5:17316. PubMed PMC

Föller M, Mahmud H, Koka S, Lang F. Reduced Ca2+ entry and suicidal death of erythrocytes in PDK1 hypomorphic mice. Pflug Arch. 2008;455:939–49. PubMed

de Jong K, Rettig MP, Low PS, Kuypers FA. Protein kinase C activation induces phosphatidylserine exposure on red blood cells. Biochemistry. 2002;41:12562–7. PubMed

Klarl BA, Lang PA, Kempe DS, Niemoeller OM, Akel A, Sobiesiak M, et al. Protein kinase C mediates erythrocyte “programmed cell death” following glucose depletion. Am J Physiol Cell Physiol. 2006;290:C244–53. PubMed

Zelenak C, Eberhard M, Jilani K, Qadri SM, Macek B, Lang F. Protein kinase CK1α regulates erythrocyte survival. Cell Physiol Biochem. 2012;29:171–80. PubMed

Gatidis S, Zelenak C, Fajol A, Lang E, Jilani K, Michael D, et al. p38 MAPK activation and function following osmotic shock of erythrocytes. Cell Physiol Biochem. 2011;28:1279–86. PubMed

Lang E, Zelenak C, Eberhard M, Bissinger R, Rotte A, Ghashghaeinia M, et al. Impact of cyclin-dependent kinase CDK4 inhibition on eryptosis. Cell Physiol Biochem. 2015;37:1178–86. PubMed

Bell RAV, Megeney LA. Evolution of caspase-mediated cell death and differentiation: twins separated at birth. Cell Death Differ. 2017;24:1359–68. PubMed PMC

Parrish AB, Freel CD, Kornbluth S. Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol. 2013;5:a008672. PubMed PMC

Silva M, Grillot D, Benito A, Richard C, Nuñez G. Fernández-Luna JL. Erythropoietin can promote erythroid progenitor survival by repressing apoptosis through Bcl-XL and Bcl-2. Blood. 1996;88:1576–82. PubMed

Gregoli PA, Bondurant MC. The roles of Bcl-X(L) and apopain in the control of erythropoiesis by erythropoietin. Blood. 1997;90:630–40. PubMed

Gregoli PA, Bondurant MC. Function of caspases in regulating apoptosis caused by erythropoietin deprivation in erythroid progenitors. J Cell Physiol. 1999;178:133–43. PubMed

Siegmund D, Mauri D, Peters N, Juo P, Thome M, Reichwein M, et al. Fas-associated death domain protein (FADD) and caspase-8 mediate up-regulation of c-Fos by Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) via a FLICE inhibitory protein (FLIP)-regulated pathway. J Biol Chem. 2001;276:32585–90. PubMed

Gajate C, Mollinedo F. The antitumor ether lipid ET-18-OCH(3) induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells. Blood. 2001;98:3860–3. PubMed

Brown DA, London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem. 2000;275:17221–4. PubMed

Varshney P, Yadav V, Saini N. Lipid rafts in immune signalling: current progress and future perspective. Immunology. 2016;149:13–24. PubMed PMC

Biswas D, Sen G, Sarkar A, Biswas T. Atorvastatin acts synergistically with N-acetyl cysteine to provide therapeutic advantage against Fas-activated erythrocyte apoptosis during chronic arsenic exposure in rats. Toxicol Appl Pharmacol. 2011;250:39–53. PubMed

Mandal S, Mukherjee S, Chowdhury KD, Sarkar A, Basu K, Paul S, et al. S-allyl cysteine in combination with clotrimazole downregulates Fas induced apoptotic events in erythrocytes of mice exposed to lead. Biochim Biophys Acta. 2012;1820:9–23. PubMed

Nicolay JP, Liebig G, Niemoeller OM, Koka S, Ghashghaeinia M, Wieder T, et al. Inhibition of suicidal erythrocyte death by nitric oxide. Pflug Arch. 2008;456:293–305. PubMed

Kleinbongard P, Schulz R, Rassaf T, Lauer T, Dejam A, Jax T, et al. Red blood cells express a functional endothelial nitric oxide synthase. Blood. 2006;107:2943–51. PubMed

Chen LY, Mehta JL. Evidence for the presence of L-arginine-nitric oxide pathway in human red blood cells: relevance in the effects of red blood cells on platelet function. J Cardiovasc Pharmacol. 1998;32:57–61. PubMed

Kahn MJ, Maley JH, Lasker GF, Kadowitz PJ. Updated role of nitric oxide in disorders of erythrocyte function. Cardiovasc Hematol Disord Drug Targets. 2013;13:83–7. PubMed PMC

Montfort WR, Wales JA, Weichsel A. Structure and activation of soluble guanylyl cyclase, the nitric oxide sensor. Antioxid Redox Signal. 2017;26:107–21. PubMed PMC

Föller M, Feil S, Ghoreschi K, Koka S, Gerling A, Thunemann M, et al. Anemia and splenomegaly in cGKI-deficient mice. Proc Natl Acad Sci USA. 2008;105:6771–6. PubMed PMC

Mulloy JC, Cancelas JA, Filippi MD, Kalfa TA, Guo F, Zheng Y. Rho GTPases in hematopoiesis and hemopathies. Blood. 2010;115:936–47. PubMed PMC

Patel S, Tang J, Overstreet JM, Anorga S, Lian F, Arnouk A, et al. Rac-GTPase promotes fibrotic TGF-β1 signaling and chronic kidney disease via EGFR, p53, and Hippo/YAP/TAZ pathways. FASEB J. 2019;33:9797–810. PubMed PMC

George A, Pushkaran S, Li L, An X, Zheng Y, Mohandas N, et al. Altered phosphorylation of cytoskeleton proteins in sickle red blood cells: the role of protein kinase C, Rac GTPases, and reactive oxygen species. Blood Cells Mol Dis. 2010;45:41–5. PubMed PMC

George A, Pushkaran S, Konstantinidis DG, Koochaki S, Malik P, Mohandas N, et al. Erythrocyte NADPH oxidase activity modulated by Rac GTPases, PKC, and plasma cytokines contributes to oxidative stress in sickle cell disease. Blood. 2013;121:2099–107. PubMed PMC

Attanzio A, Frazzitta A, Cilla A, Livrea MA, Tesoriere L, Allegra M. 7-Keto-cholesterol and cholestan-3beta, 5alpha, 6beta-triol induce eryptosis through distinct pathways leading to NADPH oxidase and nitric oxide synthase activation. Cell Physiol Biochem. 2019;53:933–47. PubMed

Paone S, D’Alessandro S, Parapini S, Celani F, Tirelli V, Pourshaban M, et al. Characterization of the erythrocyte GTPase Rac1 in relation to Plasmodium falciparum invasion. Sci Rep. 2020;10:22054. PubMed PMC

Chatzinikolaou PN, Margaritelis NV, Paschalis V, Theodorou AA, Vrabas IS, Kyparos A, et al. Erythrocyte metabolism. Acta Physiol. 2024;240:e14081. PubMed

Guizouarn H, Allegrini B. Erythroid glucose transport in health and disease. Pflug Arch. 2020;472:1371–83. PubMed

Zhang R, Xiang Y, Ran Q, Deng X, Xiao Y, Xiang L, et al. Involvement of calcium, reactive oxygen species, and ATP in hexavalent chromium-induced damage in red blood cells. Cell Physiol Biochem. 2014;34:1780–91. PubMed

Biswas D, Banerjee M, Sen G, Das JK, Banerjee A, Sau TJ, et al. Mechanism of erythrocyte death in human population exposed to arsenic through drinking water. Toxicol Appl Pharmacol. 2008;230:57–66. PubMed

Qadri SM, Chen D, Schubert P, Perruzza DL, Bhakta V, Devine DV, et al. Pathogen inactivation by riboflavin and ultraviolet light illumination accelerates the red blood cell storage lesion and promotes eryptosis. Transfusion. 2017;57:661–73. PubMed

Tortora F, Notariale R, Lang F, Manna C. Hydroxytyrosol decreases phosphatidylserine exposure and inhibits suicidal death induced by lysophosphatidic acid in human erythrocytes. Cell Physiol Biochem. 2019;53:921–32. PubMed

Zhang Z, Tai Y, Liu Z, Pu Y, An L, Li X, et al. Effects of d-ribose on human erythrocytes: Non-enzymatic glycation of hemoglobin, eryptosis, oxidative stress and energy metabolism. Blood Cells Mol Dis. 2023;99:102725. PubMed

Holcik M. Do mature red blood cells die by apoptosis. Trends Genet. 2002;18:121.

Green DR. The death receptor pathway of apoptosis. Cold Spring Harb Perspect Biol. 2022;14:a041053. PubMed PMC

Bigdelou P, Farnoud AM. Induction of eryptosis in red blood cells using a calcium ionophore. J Vis Exp. 2020;155:10.3791/60659. PubMed PMC

Dhaouadi N, Vitto VAM, Pinton P, Galluzzi L, Marchi S. Ca2+ signaling and cell death. Cell Calcium. 2023;113:102759. PubMed

Cai X, Wang X, Patel S, Clapham DE. Insights into the early evolution of animal calcium signaling machinery: a unicellular point of view. Cell Calcium. 2015;57:166–73. PubMed PMC

Plattner H, Verkhratsky A. The ancient roots of calcium signalling evolutionary tree. Cell Calcium. 2015;57:123–32. PubMed

Marchadier E, Oates ME, Fang H, Donoghue PCJ, Hetherington AM, Gough J. Evolution of the calcium-based intracellular signaling system. Genome Biol Evol. 2016;8:2118–32. PubMed PMC

Kerkelä E, Lahtela J, Larjo A, Impola U, Mäenpää L, Mattila P. Exploring transcriptomic landscapes in red blood cells, in their extracellular vesicles and on a single-cell level. Int J Mol Sci. 2022;23:12897. PubMed PMC

Liang N, Jiao Z, Zhang C, Wu Y, Wang T, Li S, et al. Mature red blood cells contain long DNA fragments and could acquire DNA from lung cancer tissue. Adv Sci. 2023;10:e2206361. PubMed PMC

Clemens MJ. Translational regulation in cell stress and apoptosis. Roles of the eIF4E binding proteins. J Cell Mol Med. 2001;5:221–39. PubMed PMC

Yao Z, Szabadkai G. Transcriptional profiling of apoptosis: cell death classification moves toward the systems era. Cell Cycle. 2012;11:3721–2. PubMed PMC

Chakraborty, Nandi S, Mishra P, Niharika J, Roy A, Manna S, et al. Molecular mechanisms in regulation of autophagy and apoptosis in view of epigenetic regulation of genes and involvement of liquid-liquid phase separation. Cancer Lett. 2024;587:216779. PubMed

An X, Yu W, Liu J, Tang D, Yang L, Chen X. Oxidative cell death in cancer: mechanisms and therapeutic opportunities. Cell Death Dis. 2024;15:556. PubMed PMC

Bissinger R, Bhuyan AAM, Qadri SM, Lang F. Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J. 2019;286:826–54. PubMed

Pyrshev KA, Klymchenko AS, Csúcs G, Demchenko AP. Apoptosis and eryptosis: Striking differences on biomembrane level. Biochim Biophys. 2018;1860:1362–71. PubMed

Alfhili MA, Aljuraiban GS. Lauric acid, a dietary saturated medium-chain fatty acid, elicits calcium-dependent eryptosis. Cells. 2021;10:3388. PubMed PMC

Alsughayyir J, Alshaiddi W, Alsubki R, Alshammary A, Basudan AM, Alfhili MA. Geraniin inhibits whole blood IFN-γ and IL-6 and promotes IL-1β and IL-8, and stimulates calcium-dependent and sucrose-sensitive erythrocyte death. Toxicol Appl Pharmacol. 2022;436:115881. PubMed

Kim-Shapiro DB, Gladwin MT. Mechanisms &of nitrite bioactivation. Nitric Oxide. 2014;38:58–68. PubMed PMC

Ren G, Roberts AI, Shi Y. Adhesion molecules: key players in mesenchymal stem cell-mediated immunosuppression. Cell Adh Migr. 2011;5:20–2. PubMed PMC

Lang F, Lang E, Föller M. Physiology and pathophysiology of eryptosis. Transfus Med Hemother. 2012;39:308–14. PubMed PMC

Sattar T, Jilani K, Parveen K, Mushataq Z, Nawaz H, Khan MAB. Induction of erythrocyte membrane blebbing by methotrexate-induced oxidative stress. Dose Response. 2022;20:15593258221093853. PubMed PMC

Boulet C, Doerig CD, Carvalho TG. Manipulating eryptosis of human red blood cells: a novel antimalarial strategy?. Front Cell Infect Microbiol. 2018;8:419. PubMed PMC

Lang F, Jilani K, Lang E. Therapeutic potential of manipulating suicidal erythrocyte death. Expert Opin Ther Targets. 2015;19:1219–27. PubMed

Föller M, Huber SM, Lang F. Erythrocyte programmed cell death. IUBMB Life. 2008;60:661–8. PubMed

Neri S, Swinkels DW, Matlung HL, van Bruggen R. Novel concepts in red blood cell clearance. Curr Opin Hematol. 2021;28:438–44. PubMed

Borges MD, Sesti-Costa R. Macrophages: key players in erythrocyte turnover. Hematol Transfus Cell Ther. 2022;44:574–81. PubMed PMC

Dini L, Autuori F, Lentini A, Oliverio S, Piacentini M. The clearance of apoptotic cells in the liver is mediated by the asialoglycoprotein receptor. FEBS Lett. 1992;296:174–8. PubMed

Qadri SM, Donkor DA, Nazy I, Branch DR, Sheffield WP. Bacterial neuraminidase-mediated erythrocyte desialylation provokes cell surface aminophospholipid exposure. Eur J Haematol. 2018;100:502–10. PubMed

Lang E, Lang PA, Shumilina E, Qadri SM, Kucherenko Y, Kempe DS, et al. Enhanced eryptosis of erythrocytes from gene-targeted mice lacking annexin A7. Pflug Arch. 2010;460:667–76. PubMed

Thiagarajan P, Parker CJ, Prchal JT. How do red blood cells die?. Front Physiol. 2021;12:655393. PubMed PMC

Lutz HU. Naturally occurring autoantibodies in mediating clearance of senescent red blood cells. Adv Exp Med Biol. 2012;750:76–90. PubMed

Giger U, Sticher B, Naef R, Burger R, Lutz H. Naturally occurring human anti-band 3 autoantibodies accelerate clearance of erythrocytes in guinea pigs. Blood. 1995;85:1920–8. PubMed

Kordbacheh F, O’Meara CH, Coupland LA, Lelliott PM, Parish CR. Extracellular histones induce erythrocyte fragility and anemia. Blood. 2017;130:2884–8. PubMed PMC

Takeda T, Azumi J, Masaki M, Nagasawa T, Shimada Y, Aso H, et al. Organogermanium, Ge-132, promotes the clearance of senescent red blood cells via macrophage-mediated phagocyte activation. Heliyon. 2024;10:e23296. PubMed PMC

Smith A, McCulloh RJ. Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders. Front Physiol. 2015;6:187. PubMed PMC

Bozza MT, Jeney V. Pro-inflammatory actions of heme and other hemoglobin-derived DAMPs. Front Immunol. 2020;11:1323. PubMed PMC

Fortes GB, Alves LS, de Oliveira R, Dutra FF, Rodrigues D, Fernandez PL, et al. Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood. 2012;119:2368–75. PubMed PMC

Menon AV, Liu J, Tsai HP, Zeng L, Yang S, Asnani A, et al. Excess heme upregulates heme oxygenase 1 and promotes cardiac ferroptosis in mice with sickle cell disease. Blood. 2022;139:936–41. PubMed PMC

Yao C, Kong J, Xu F, Wang S, Wu S, Sun W, et al. Heme-inducing endothelial pyroptosis plays a key role in radiofrequency ablation of hepatic hemangioma leading to systemic inflammatory response syndrome. J Inflamm Res. 2024;17:371–85. PubMed PMC

Gerogianni A, Dimitrov JD, Zarantonello A, Poillerat V, Chonat S, Sandholm K, et al. Heme interferes with complement factor I-dependent regulation by enhancing alternative pathway activation. Front Immunol. 2022;13:901876. PubMed PMC

Van Avondt K, Nur E, Zeerleder S. Mechanisms of haemolysis-induced kidney injury. Nat Rev Nephrol. 2019;15:671–92. PubMed

Lang E, Qadri SM, Lang F. Killing me softly - suicidal erythrocyte death. Int J Biochem Cell Biol. 2012;44:1236–43. PubMed

Lang F, Qadri SM. Mechanisms and significance of eryptosis, the suicidal death of erythrocytes. Blood Purif. 2012;33:125–30. PubMed

Qadri SM, Bissinger R, Solh Z, Oldenborg PA. Eryptosis in health and disease: a paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes. Blood Rev. 2017;31:349–61. PubMed

Birge RB, Boeltz S, Kumar S, Carlson J, Wanderley J, Calianese D, et al. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ. 2016;23:962–78. PubMed PMC

Murao A, Brenner M, Aziz M, Wang P. Exosomes in sepsis. Front Immunol. 2020;11:2140. PubMed PMC

Murao A, Aziz M, Wang H, Brenner M, Wang P. Release mechanisms of major DAMPs. Apoptosis. 2021;26:152–62. PubMed PMC

Thangaraju K, Neerukonda SN, Katneni U, Buehler PW. Extracellular vesicles from red blood cells and their evolving roles in health, coagulopathy and therapy. Int J Mol Sci. 2020;22:153. PubMed PMC

Kuo WP, Tigges JC, Toxavidis V, Ghiran I. Red blood cells: a source of extracellular vesicles. Methods Mol Biol. 2017;1660:15–22. PubMed

Bakkour S, Acker JP, Chafets DM, Inglis HC, Norris PJ, Lee TH, et al. Manufacturing method affects mitochondrial DNA release and extracellular vesicle composition in stored red blood cells. Vox Sang. 2016;111:22–32. PubMed

Doran AC, Yurdagul A, Tabas I. Efferocytosis in health and disease. Nat Rev Immunol. 2020;20:254–67. PubMed PMC

Schilperoort M, Ngai D, Sukka SR, Avrampou K, Shi H, Tabas I. The role of efferocytosis-fueled macrophage metabolism in the resolution of inflammation. Immunol Rev. 2023;319:65–80. PubMed PMC

Chang CF, Goods BA, Askenase MH, Hammond MD, Renfroe SC, Steinschneider AF, et al. Erythrocyte efferocytosis modulates macrophages towards recovery after intracerebral hemorrhage. J Clin Invest. 2018;128:607–24. PubMed PMC

Fang M, Xia F, Chen Y, Shen Y, Ma L, You C, et al. Role of eryptosis in hemorrhagic stroke. Front Mol Neurosci. 2022;15:932931. PubMed PMC

Kaliuzhka V, Tkachenko A, Myasoedov V, Markevych M, Onishchenko A, Babalyan I, et al. The prognostic value of eryptosis parameters in the cerebrospinal fluid for cerebral vasospasm and delayed cerebral ischemia formation. World Neurosurg. 2023;173:e578–85. PubMed

Foley RN, Parfrey PS, Harnett JD, Kent GM, Murray DC, Barre PE. The impact of anemia on cardiomyopathy, morbidity, and and mortality in end-stage renal disease. Am J Kidney Dis. 1996;28:53–61. PubMed

Radtke HW, Claussner A, Erbes PM, Scheuermann EH, Schoeppe W, Koch KM. Serum erythropoietin concentration in chronic renal failure: relationship to degree of anemia and excretory renal function. Blood. 1979;54:877–84. PubMed

Voelkl J, Alzoubi K, Mamar AK, Ahmed MS, Abed M, Lang F. Stimulation of suicidal erythrocyte death by increased extracellular phosphate concentrations. Kidney Blood Press Res. 2013;38:42–51. PubMed

Li D, Zheng X, Zhang Y, Li X, Chen X, Yin Y, et al. What should be responsible for eryptosis in chronic kidney disease?. Kidney Blood Press Res. 2022;47:375–90. PubMed

Bissinger R, Qadri SM, Artunc F. Eryptosis: a driver of anemia in chronic kidney disease. Curr Opin Nephrol Hypertens. 2024;33:220–5. PubMed

Fırat U, Kaya S, Cim A, Büyükbayram H, Gökalp O, Dal MS, et al. Increased caspase-3 immunoreactivity of erythrocytes in STZ diabetic rats. Exp Diab Res. 2012;2012:316384. PubMed PMC

Flaherty S, Strauch P, Maktabi M, Pybus BS, Reichard G, Walker LA, et al. Mechanisms of 8-aminoquinoline induced haemolytic toxicity in a G6PDd humanized mouse model. J Cell Mol Med. 2022;26:3675–86. PubMed PMC

Bissinger R, Nemkov T, D’Alessandro A, Grau M, Dietz T, Bohnert BN, et al. Proteinuric chronic kidney disease is associated with altered red blood cell lifespan, deformability and metabolism. Kidney Int. 2021;100:1227–39. PubMed

Bonan NB, Steiner TM, Kuntsevich V, Virzì GM, Azevedo M, Nakao LS, et al. Uremic toxicity-induced eryptosis and monocyte modulation: the erythrophagocytosis as a novel pathway to renal anemia. Blood Purif. 2016;41:317–23. PubMed

Ahmed MS, Abed M, Voelkl J, Lang F. Triggering of suicidal erythrocyte death by uremic toxin indoxyl sulfate. BMC Nephrol. 2013;14:244. PubMed PMC

Ahmed MS, Langer H, Abed M, Voelkl J, Lang F. The uremic toxin acrolein promotes suicidal erythrocyte death. Kidney Blood Press Res. 2013;37:158–67. PubMed

Gao C, Ji S, Dong W, Qi Y, Song W, Cui D, et al. Indolic uremic solutes enhance procoagulant activity of red blood cells through phosphatidylserine exposure and microparticle release. Toxins. 2015;7:4390–403. PubMed PMC

Virzì GM, Mattiotti M, Clementi A, Milan Manani S, Battaglia GG, Ronco C, et al. In vitro induction of eryptosis by uremic toxins and inflammation mediators in healthy red blood cells. J Clin Med. 2022;11:5329. PubMed PMC

Dias GF, Bonan NB, Steiner TM, Tozoni SS, Rodrigues S, Nakao LS, et al. Indoxyl sulfate, a uremic toxin, stimulates reactive oxygen species production and erythrocyte cell death supposedly by an organic anion transporter 2 (OAT2) and NADPH oxidase activity-dependent pathways. Toxins. 2018;10:280. PubMed PMC

Kopera M, Gwozdzinski K, Pieniazek A. Acrolein induces changes in cell membrane and cytosol proteins of erythrocytes. Molecules. 2024;29:2519. PubMed PMC

Benabe JE, Echegoyen LA, Pastrana B, Martínez-Maldonado M. Mechanism of inhibition of glycolysis by vanadate. J Biol Chem. 1987;262:9555–60. PubMed

Clementi A, Virzì GM, Milan Manani S, Battaglia GG, Ronco C, Zanella M. Eryptosis in patients with chronic kidney disease: a possible relationship with oxidative stress and inflammatory markers. J Clin Med. 2022;11:7167. PubMed PMC

Abed M, Artunc F, Alzoubi K, Honisch S, Baumann D, Föller M, et al. Suicidal erythrocyte death in end-stage renal disease. J Mol Med. 2014;92:871–9. PubMed

Meyring-Wösten A, Kuntsevich V, Campos I, Williams S, Ma J, Patel S, et al. Erythrocyte sodium sensitivity and eryptosis in chronic hemodialysis patients. Kidney Blood Press Res. 2017;42:314–26. PubMed

Caprara C, Virzì GM, Chieregato K, Marchionna N, Corradi V, Brendolan A, et al. Immunomodulation driven by theranova filter during a single HD session. J Clin Med. 2024;13. PubMed PMC

Hefny A, Fikry AA, Zahran MH, Shendi AM. Parathormone enhances eryptosis in patients with end stage renal disease treated by hemodialysis. Hemodial Int. 2022;26:234–42. PubMed

Bissinger R, Artunc F, Qadri SM, Lang F. Reduced erythrocyte survival in uremic patients under hemodialysis or peritoneal dialysis. Kidney Blood Press Res. 2016;41:966–77. PubMed

Vos FE, Schollum JB, Coulter CV, Doyle TC, Duffull SB, Walker RJ. Red blood cell survival in long-term dialysis patients. Am J Kidney Dis. 2011;58:591–8. PubMed

Bonomini M, Sirolli V, Settefrati N, Dottori S, Di Liberato L, Arduini A. Increased erythrocyte phosphatidylserine exposure in chronic renal failure. J Am Soc Nephrol. 1999;10:1982–90. PubMed

Virzì GM, Milan Manani S, Clementi A, Castegnaro S, Brocca A, Riello C, et al. Eryptosis is altered in peritoneal dialysis patients. Blood Purif. 2019;48:351–7. PubMed

Bester J, Pretorius E. Effects of IL-1β, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity. Sci Rep. 2016;6:32188. PubMed PMC

Abed M, Thiel C, Towhid ST, Alzoubi K, Honisch S, Lang F, et al. Stimulation of erythrocyte cell membrane scrambling by C-reactive protein. Cell Physiol Biochem. 2017;41:806–18. PubMed

Virzì GM, Milan Manani S, Marturano D, Clementi A, Lerco S, Tantillo I, et al. Eryptosis in peritoneal dialysis-related peritonitis: the potential role of inflammation in mediating the increase in eryptosis in PD. J Clin Med. 2022;11:6918. PubMed PMC

La A, Nguyen T, Tran K, Sauble E, Tu D, Gonzalez A, et al. Mobilization of iron from ferritin: new steps and details. Metallomics. 2018;10:154–68. PubMed

Lee SJ, Park SY, Jung MY, Bae SM, Kim IS. Mechanism for phosphatidylserine-dependent erythrophagocytosis in mouse liver. Blood. 2011;117:5215–23. PubMed

Theurl I, Hilgendorf I, Nairz M, Tymoszuk P, Haschka D, Asshoff M, et al. On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nat Med. 2016;22:945–51. PubMed PMC

Penberthy KK, Ravichandran KS. Apoptotic cell recognition receptors and scavenger receptors. Immunol Rev. 2016;269:44–59. PubMed PMC

Dasgupta SK, Thiagarajan P. The role of lactadherin in the phagocytosis of phosphatidylserine-expressing sickle red blood cells by macrophages. Haematologica. 2005;90:1267–8. PubMed

Kim S, Park SY, Kim SY, Bae DJ, Pyo JH, Hong M, et al. Cross talk between engulfment receptors stabilin-2 and integrin αvβ5 orchestrates engulfment of phosphatidylserine-exposed erythrocytes. Mol Cell Biol. 2012;32:2698–708. PubMed PMC

Ayi K, Lu Z, Serghides L, Ho JM, Finney C, Wang JCY, et al. CD47-SIRPα interactions regulate macrophage uptake of plasmodium falciparum-infected erythrocytes and clearance of malaria in vivo. Infect Immun. 2016;84:2002–11. PubMed PMC

Willekens FL, Werre JM, Kruijt JK, Roerdinkholder-Stoelwinder B, Groenen-Döpp YA, van den Bos AG, et al. Liver Kupffer cells rapidly remove red blood cell-derived vesicles from the circulation by scavenger receptors. Blood. 2005;105:2141–5. PubMed

Wu X, Yao Z, Zhao L, Zhang Y, Cao M, Li T, et al. Phosphatidylserine on blood cells and endothelial cells contributes to the hypercoagulable state in cirrhosis. Liver Int. 2016;36:1800–10. PubMed

Su Y, Deng X, Ma R, Dong Z, Wang F, Shi J. The exposure of phosphatidylserine influences procoagulant activity in retinal vein occlusion by microparticles, blood cells, and endothelium. Oxid Med Cell Longev. 2018;2018:3658476. PubMed PMC

Das K, Rao LVM. Coagulation protease-induced extracellular vesicles: their potential effects on coagulation and inflammation. J Thromb Haemost. 2024;22:2976–90. PubMed PMC

Kuypers FA, de Jong K. The role of phosphatidylserine in recognition and removal of erythrocytes. Cell Mol Biol (Noisy-le-Gd). 2004;50:147–58. PubMed

Otogawa K, Kinoshita K, Fujii H, Sakabe M, Shiga R, Nakatani K, et al. Erythrophagocytosis by liver macrophages (Kupffer cells) promotes oxidative stress, inflammation, and fibrosis in a rabbit model of steatohepatitis: implications for the pathogenesis of human nonalcoholic steatohepatitis. Am J Pathol. 2007;170:967–80. PubMed PMC

Lang E, Gatidis S, Freise NF, Bock H, Kubitz R, Lauermann C, et al. Conjugated bilirubin triggers anemia by inducing erythrocyte death. Hepatology. 2015;61:275–84. PubMed PMC

Funke C, Schneider SA, Berg D, Kell DB. Genetics and iron in the systems biology of Parkinson’s disease and some related disorders. Neurochem Int. 2013;62:637–52. PubMed

Pretorius E, Swanepoel AC, Buys AV, Vermeulen N, Duim W, Kell DB. Eryptosis as a marker of Parkinson’s disease. Aging. 2014;6:788–819. PubMed PMC

Mattson MP. Calcium and neurodegeneration. Aging Cell. 2007;6:337–50. PubMed

Arduíno DM, Esteves AR, Cardoso SM, Oliveira CR. Endoplasmic reticulum and mitochondria interplay mediates apoptotic cell death: relevance to Parkinson’s disease. Neurochem Int. 2009;55:341–8. PubMed

Touyz RM. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance?. Hypertension. 2004;44:248–52. PubMed

Minuz P, Patrignani P, Gaino S, Seta F, Capone ML, Tacconelli S, et al. Determinants of platelet activation in human essential hypertension. Hypertension. 2004;43:64–70. PubMed

Grossman E. Does increased oxidative stress cause hypertension?. Diab Care. 2008;31:S185–9. PubMed

Rodrigo R, Prat H, Passalacqua W, Araya J, Guichard C, Bächler JP. Relationship between oxidative stress and essential hypertension. Hypertens Res. 2007;30:1159–67. PubMed

Cvetković T, Veličković-Radovanović R, Djordjević V, Radenković S, Vlahović P, Stefanović N. Evidences for oxidative stress in essential hypertension. Open Medicine. 2012;7:610–6.

Ward NC, Hodgson JM, Puddey IB, Mori TA, Beilin LJ, Croft KD. Oxidative stress in human hypertension: association with antihypertensive treatment, gender, nutrition, and lifestyle. Free Radic Biol Med. 2004;36:226–32. PubMed

Vasconcelos SM, Goulart MO, Silva MA, Manfredini V, Benfato Mda S, Rabelo LA, et al. Markers of redox imbalance in the blood of hypertensive patients of a community in Northeastern Brazil. Arq Bras Cardiol. 2011;97:141–7. PubMed

Muda P, Kampus P, Zilmer M, Zilmer K, Kairane C, Ristimäe T, et al. Homocysteine and red blood cell glutathione as indices for middle-aged untreated essential hypertension patients. J Hypertens. 2003;21:2329–33. PubMed

Redón J, Oliva MR, Tormos C, Giner V, Chaves J, Iradi A, et al. Antioxidant activities and oxidative stress byproducts in human hypertension. Hypertension. 2003;41:1096–101. PubMed

Rybka J, Kupczyk D, Kędziora-Kornatowska K, Motyl J, Czuczejko J, Szewczyk-Golec K, et al. Glutathione-related antioxidant defense system in elderly patients treated for hypertension. Cardiovasc Toxicol. 2011;11:1–9. PubMed PMC

Myssina S, Huber SM, Birka C, Lang PA, Lang KS, Friedrich B, et al. Inhibition of erythrocyte cation channels by erythropoietin. J Am Soc Nephrol. 2003;14:2750–7. PubMed

Lang PA, Beringer O, Nicolay JP, Amon O, Kempe DS, Hermle T, et al. Suicidal death of erythrocytes in recurrent hemolytic uremic syndrome. J Mol Med (Berl). 2006;84:378–88. PubMed

Aguilar-Dorado IC, Hernández G, Quintanar-Escorza MA, Maldonado-Vega M, Rosas-Flores M, Calderón-Salinas JV. Eryptosis in lead-exposed workers. Toxicol Appl Pharmacol. 2014;281:195–202. PubMed

Calderón-Salinas JV, Muñoz-Reyes EG, Guerrero-Romero JF, Rodríguez-Morán M, Bracho-Riquelme RL, Carrera-Gracia MA, et al. Eryptosis and oxidative damage in type 2 diabetic mellitus patients with chronic kidney disease. Mol Cell Biochem. 2011;357:171–9. PubMed

Lindner A, Hinds TR, Davidson RC, Vincenzi FF. Increased cytosolic free calcium in red blood cells is associated with essential hypertension in humans. Am J Hypertens. 1993;6:771–9. PubMed

Lang E, Bissinger R, Gulbins E, Lang F. Ceramide in the regulation of eryptosis, the suicidal erythrocyte death. Apoptosis. 2015;20:758–67. PubMed

Golbidi S, Ebadi SA, Laher I. Antioxidants in the treatment of diabetes. Curr Diab Rev. 2011;7:106–25. PubMed

Likidlilid A, Patchanans N, Peerapatdit T, Sriratanasathavorn C. Lipid peroxidation and antioxidant enzyme activities in erythrocytes of type 2 diabetic patients. J Med Assoc Thai. 2010;93:682–93. PubMed

Mahboob M, Rahman MF, Grover P. Serum lipid peroxidation and antioxidant enzyme levels in male and female diabetic patients. Singap Med J. 2005;46:322–4. PubMed

Srivatsan R, Das S, Gadde R, Manoj-Kumar K, Taduri S, Rao N, et al. Antioxidants and lipid peroxidation status in diabetic patients with and without complications. Arch Iran Med. 2009;12:121–7. PubMed

Kaneto H, Katakami N, Matsuhisa M, Matsuoka TA. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediat Inflamm. 2010;2010:453892. PubMed PMC

Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058–70. PubMed PMC

Singh DK, Winocour P, Farrington K. Oxidative stress in early diabetic nephropathy: fueling the fire. Nat Rev Endocrinol. 2011;7:176–84. PubMed

Lam CS, Benzie IF, Choi SW, Chan LY, Yeung VT, Woo GC. Relationships among diabetic retinopathy, antioxidants, and glycemic control. Optom Vis Sci. 2011;88:251–6. PubMed

Tsutsui H, Kinugawa S, Matsushima S, Yokota T. Oxidative stress in cardiac and skeletal muscle dysfunction associated with diabetes mellitus. J Clin Biochem Nutr. 2011;48:68–71. PubMed PMC

Wagener FA, Dekker D, Berden JH, Scharstuhl A, van der Vlag J. The role of reactive oxygen species in apoptosis of the diabetic kidney. Apoptosis. 2009;14:1451–8. PubMed PMC

Shah SV, Baliga R, Rajapurkar M, Fonseca VA. Oxidants in chronic kidney disease. J Am Soc Nephrol. 2007;18:16–28. PubMed

Puchades Montesa MJ, González Rico MA, Solís Salguero MA, Torregrosa Maicas I, Tormos Muñoz MC, Saez Tormo G, et al. [Study of oxidative stress in advanced kidney disease]. Nefrologia. 2009;29:464–73. PubMed

Hur J, Sullivan KA, Schuyler AD, Hong Y, Pande M, States DJ, et al. Literature-based discovery of diabetes- and ROS-related targets. BMC Med Genom. 2010;3:49. PubMed PMC

Zitouni K, Nourooz-Zadeh J, Harry D, Kerry SM, Betteridge DJ, Cappuccio FP, et al. Race-specific differences in antioxidant enzyme activity in patients with type 2 diabetes: a potential association with the risk of developing nephropathy. Diabetes Care. 2005;28:1698–703. PubMed

Beisswenger PJ, Drummond KS, Nelson RG, Howell SK, Szwergold BS, Mauer M. Susceptibility to diabetic nephropathy is related to dicarbonyl and oxidative stress. Diabetes. 2005;54:3274–81. PubMed

Nicolay JP, Schneider J, Niemoeller OM, Artunc F, Portero-Otin M, Haik G Jr., et al. Stimulation of suicidal erythrocyte death by methylglyoxal. Cell Physiol Biochem. 2006;18:223–32. PubMed

Pavone B, Bucci S, Sirolli V, Merlini G, Del Boccio P, Di Rienzo M, et al. Beta2-microglobulin causes abnormal phosphatidylserine exposure in human red blood cells. Mol Biosyst. 2011;7:651–8. PubMed

Alsaeid K, Kamal H, Haider MZ, Al-Enezi HM, Malaviya AN. Systemic lupus erythematosus in Kuwaiti children: organ system involvement and serological findings. Lupus. 2004;13:613–7. PubMed

Zhao XY, Zhang P, Huang LS, Zhang XH. [The clinical significance of hematological damage in systemic lupus erythematosus and related antibodies]. Zhonghua Nei Ke Za Zhi. 2006;45:369–71. PubMed

Aleem A, Al Arfaj AS, khalil N, Alarfaj H. Haematological abnormalities in systemic lupus erythematosus. Acta Reumatol Port. 2014;39:236–41. PubMed

Shaikh MA, Memon I, Ghori RA. Frequency of anaemia in patients with systemic lupus erythematosus at tertiary care hospitals. J Pak Med Assoc. 2010;60:822–5. PubMed

Giannouli S, Voulgarelis M, Ziakas PD, Tzioufas AG. Anaemia in systemic lupus erythematosus: from pathophysiology to clinical assessment. Ann Rheum Dis. 2006;65:144–8. PubMed PMC

Jiang P, Bian M, Ma W, Liu C, Yang P, Zhu B, et al. Eryptosis as an underlying mechanism in systemic lupus erythematosus-related anemia. Cell Physiol Biochem. 2016;40:1391–400. PubMed

Bartolmäs T, Mayer B, Balola AH, Salama A. Eryptosis in autoimmune haemolytic anaemia. Eur J Haematol. 2018;100:36–44. PubMed

Chadebech P, Michel M, Janvier D, Yamada K, Copie-Bergman C, Bodivit G, et al. IgA-mediated human autoimmune hemolytic anemia as a result of hemagglutination in the spleen, but independent of complement activation and FcαRI. Blood. 2010;116:4141–7. PubMed

Föller M, Kasinathan RS, Koka S, Huber SM, Schuler B, Vogel J, et al. Enhanced susceptibility to suicidal death of erythrocytes from transgenic mice overexpressing erythropoietin. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1127–34. PubMed

Vomero M, Finucci A, Barbati C, Colasanti T, Ceccarelli F, Novelli L, et al. Increased eryptosis in patients with primary antiphospholipid syndrome (APS): a new actor in the pathogenesis of APS. Clin Exp Rheumatol. 2021;39:838–43. PubMed

Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395:1417–8. PubMed PMC

Jing H, Wu X, Xiang M, Liu L, Novakovic VA, Shi J. Pathophysiological mechanisms of thrombosis in acute and long COVID-19. Front Immunol. 2022;13:992384. PubMed PMC

Huertas A, Montani D, Savale L, Pichon J, Tu L, Parent F, et al. Endothelial cell dysfunction: a major player in SARS-CoV-2 infection (COVID-19)? Eur Respir J. 2020;56:2001634. PubMed PMC

Peluso MJ, Deeks SG. Mechanisms of long COVID and the path toward therapeutics. Cell. 2024;187:5500–29. PubMed PMC

Al-Aly Z, Davis H, McCorkell L, Soares L, Wulf-Hanson S, Iwasaki A, et al. Long COVID science, research and policy. Nat Med. 2024;30:2148–64. PubMed

Goshua G, Pine AB, Meizlish ML, Chang CH, Zhang H, Bahel P, et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020;7:e575–e582. PubMed PMC

Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383:120–8. PubMed PMC

Pretorius E, Venter C, Laubscher GJ, Lourens PJ, Steenkamp J, Kell DB. Prevalence of readily detected amyloid blood clots in ‘unclotted’ type 2 diabetes mellitus and COVID-19 plasma: a preliminary report. Cardiovasc Diabetol. 2020;19:193. PubMed PMC

Lam LKM, Reilly JP, Rux AH, Murphy SJ, Kuri-Cervantes L, Weisman AR, et al. Erythrocytes identify complement activation in patients with COVID-19. Am J Physiol Lung Cell Mol Physiol. 2021;321:L485–l489. PubMed PMC

Berzuini A, Bianco C, Paccapelo C, Bertolini F, Gregato G, Cattaneo A, et al. Red cell-bound antibodies and transfusion requirements in hospitalized patients with COVID-19. Blood. 2020;136:766–8. PubMed PMC

Akhter N, Ahmad S, Alzahrani FA, Dar SA, Wahid M, Haque S, et al. Impact of COVID-19 on the cerebrovascular system and the prevention of RBC lysis. Eur Rev Med Pharm Sci. 2020;24:10267–78. PubMed

Zinellu A, Mangoni AA. Red blood cell distribution width, disease severity, and mortality in hospitalized patients with SARS-CoV-2 infection: a systematic review and meta-analysis. J Clin Med. 2021;10:286. PubMed PMC

Russo A, Tellone E, Barreca D, Ficarra S, Laganà G. Implication of COVID-19 on erythrocytes functionality: red blood cell biochemical implications and morpho-functional aspects. Int J Mol Sci. 2022;23:2171. PubMed PMC

Wang ZH, Fu BQ, Lin YW, Wei XB, Geng H, Guo WX, et al. Red blood cell distribution width: a severity indicator in patients with COVID-19. J Med Virol. 2022;94:2133–8. PubMed PMC

Karampitsakos T, Akinosoglou K, Papaioannou O, Panou V, Koromilias A, Bakakos P, et al. Increased red cell distribution width is associated with disease severity in hospitalized adults with SARS-CoV-2 infection: an observational multicentric study. Front Med. 2020;7:616292. PubMed PMC

Guaní-Guerra E, Torres-Murillo B, Muñoz-Corona C, Rodríguez-Jiménez JC, Macías AE, Scavo-Montes DA, et al. Diagnostic accuracy of the RDW for predicting death in COVID-19. Medicina PubMed PMC

Farooqui AA, Farooqui T, Sun GY, Lin T-N, Teh DBL, Ong W-Y. COVID-19, blood lipid changes, and thrombosis. Biomedicines. 2023;11:1181. PubMed PMC

Turner S, Khan MA, Putrino D, Woodcock A, Kell DB, Pretorius E. Long COVID: pathophysiological factors and abnormalities of coagulation. Trends Endocrinol Metab. 2023;34:321–44. PubMed PMC

Kell DB, Laubscher GJ, Pretorius E. A central role for amyloid fibrin microclots in long COVID/PASC: origins and therapeutic implications. Biochem J. 2022;479:537–59. PubMed PMC

Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J. 2022;479:1653–708. PubMed PMC

Kruger A, Vlok M, Turner S, Venter C, Laubscher GJ, Kell DB, et al. Proteomics of fibrin amyloid microclots in long COVID/post-acute sequelae of COVID-19 (PASC) shows many entrapped pro-inflammatory molecules that may also contribute to a failed fibrinolytic system. Cardiovasc Diabetol. 2022;21:190. PubMed PMC

Pretorius E, Venter C, Laubscher GJ, Kotze MJ, Oladejo SO, Watson LR, et al. Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology in individuals with Long COVID/Post-Acute Sequelae of COVID-19 (PASC). Cardiovasc Diabetol. 2022;21:148. PubMed PMC

Pretorius E, Kell DB. A perspective on how fibrinaloid microclots and platelet pathology may be applied in clinical investigations. Semin Thromb Hemost. 2024;50:537–51. PubMed PMC

Turner S, Naidoo CA, Usher TJ, Kruger A, Venter C, Laubscher GJ, et al. Increased levels of inflammatory and endothelial biomarkers in blood of long COVID patients point to thrombotic endothelialitis. Semin Thromb Hemost. 2024;50:288–94. PubMed

Thierry AR. NETosis creates a link between diabetes and Long COVID. Physiol Rev. 2024;104:651–4. PubMed

Thierry AR, Salmon D. Inflammation-, immunothrombosis,- and autoimmune-feedback loops may lead to persistent neutrophil self-stimulation in long COVID. J Med Virol. 2024;96:e29887. PubMed

Burmeister A, Vidal YSS, Liu X, Mess C, Wang Y, Konwar S, et al. Impact of neutrophil extracellular traps on fluid properties, blood flow and complement activation. Front Immunol. 2022;13:1078891. PubMed PMC

Ryu JK, Yan Z, Montano M, Sozmen EG, Dixit K, Suryawanshi RK, et al. Fibrin drives thromboinflammation and neuropathology in COVID-19. Nature. 2024;633:905–13. PubMed PMC

Grobbelaar LM, Venter C, Vlok M, Ngoepe M, Laubscher GJ, Lourens PJ, et al. SARS-CoV-2 spike protein S1 induces fibrin(ogen) resistant to fibrinolysis: implications for microclot formation in COVID-19. Biosci Rep PubMed PMC

Zhou M, Yin Z, Xu J, Wang S, Liao T, Wang K, et al. Inflammatory profiles and clinical features of coronavirus 2019 survivors 3 months after discharge in Wuhan, China. J Infect Dis. 2021;224:1473–88. PubMed PMC

Fogarty H, Townsend L, Morrin H, Ahmad A, Comerford C, Karampini E, et al. Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J Thromb Haemost. 2021;19:2546–53. PubMed PMC

Singh I, Joseph P, Heerdt PM, Cullinan M, Lutchmansingh DD, Gulati M, et al. Persistent exertional intolerance after COVID-19: insights from invasive cardiopulmonary exercise testing. Chest. 2022;161:54–63. PubMed PMC

Modjtahedi BS, Do D, Luong TQ, Shaw J. Changes in the incidence of retinal vascular occlusions after COVID-19 diagnosis. JAMA Ophthalmol. 2022;140:523–7. PubMed PMC

Appelman B, Charlton BT, Goulding RP, Kerkhoff TJ, Breedveld EA, Noort W, et al. Muscle abnormalities worsen after post-exertional malaise in long COVID. Nat Commun. 2024;15:17. PubMed PMC

Richards RS, Wang L, Jelinek H. Erythrocyte oxidative damage in chronic fatigue syndrome. Arch Med Res. 2007;38:94–8. PubMed

Thomas T, Stefanoni D, Dzieciatkowska M, Issaian A, Nemkov T, Hill RC, et al. Evidence of structural protein damage and membrane lipid remodeling in red blood cells from COVID-19 Patients. J Proteome Res. 2020;19:4455–69. PubMed PMC

Noonong K, Chatatikun M, Surinkaew S, Kotepui M, Hossain R, Bunluepuech K, et al. Mitochondrial oxidative stress, mitochondrial ROS storms in long COVID pathogenesis. Front Immunol. 2023;14:1275001. PubMed PMC

Georgieva E, Ananiev J, Yovchev Y, Arabadzhiev G, Abrashev H, Abrasheva D, et al. COVID-19 complications: oxidative stress, inflammation, and mitochondrial and endothelial dysfunction. Int J Mol Sci. 2023;24:14876. PubMed PMC

Simpson LO. Nondiscocytic erythrocytes in myalgic encephalomyelitis. N Z Med J. 1989;102:126–7. PubMed

Saha AK, Schmidt BR, Wilhelmy J, Nguyen V, Abugherir A, Do JK, et al. Red blood cell deformability is diminished in patients with chronic fatigue syndrome. Clin Hemorheol Microcirc. 2019;71:113–6. PubMed PMC

Baklund IH, Dammen T, Moum T, Kristiansen W, Duarte DS, Castro-Marrero J, et al. Evaluating routine blood tests according to clinical symptoms and diagnostic criteria in individuals with myalgic encephalomyelitis/chronic fatigue syndrome. J Clin Med. 2021;10. PubMed PMC

McMahon CJ, Hopkins S, Vail A, King AT, Smith D, Illingworth KJ, et al. Inflammation as a predictor for delayed cerebral ischemia after aneurysmal subarachnoid haemorrhage. J Neurointerv Surg. 2013;5:512–7. PubMed PMC

Lang E, Lang F. Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death. Semin Cell Dev Biol. 2015;39:35–42. PubMed

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). Jama. 2016;315:801–10. PubMed PMC

Hall MJ, Levant S, DeFrances CJ. Trends in inpatient hospital deaths: National Hospital Discharge Survey, 2000-2010. NCHS Data Brief. 2013. pp. 1–8. PubMed

Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–10. PubMed

Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG. The pathogenesis of sepsis. Annu Rev Pathol. 2011;6:19–48. PubMed PMC

Nguyen DB, Wagner-Britz L, Maia S, Steffen P, Wagner C, Kaestner L, et al. Regulation of phosphatidylserine exposure in red blood cells. Cell Physiol Biochem. 2011;28:847–56. PubMed

Piagnerelli M, Boudjeltia KZ, Rapotec A, Richard T, Brohée D, Babar S, et al. Neuraminidase alters red blood cells in sepsis. Crit Care Med. 2009;37:1244–50. PubMed

Reggiori G, Occhipinti G, De Gasperi A, Vincent JL, Piagnerelli M. Early alterations of red blood cell rheology in critically ill patients. Crit Care Med. 2009;37:3041–6. PubMed

Marcello M, Virzì GM, Marturano D, de Cal M, Marchionna N, Sgarabotto L, et al. The cytotoxic effect of septic plasma on healthy RBCs: is eryptosis a new mechanism for sepsis? Int J Mol Sci. 2023;24. PubMed PMC

Bostanci H, Dikmen K, Comu FM, Arslan M, Kucuk A. Investigation of the effects of thymoquinone on erythrocyte deformability in sepsis treatment which created by cecal perforation in rat. Bratisl Lek Listy. 2018;119:152–5. PubMed

Oliveira YP, Pontes-de-Carvalho LC, Couto RD, Noronha-Dutra AA. Oxidative stress in sepsis. Possible production of free radicals through an erythrocyte-mediated positive feedback mechanism. Braz J Infect Dis. 2017;21:19–26. PubMed PMC

Bateman RM, Sharpe MD, Singer M, Ellis CG. The effect of sepsis on the erythrocyte. Int J Mol Sci. 2017;18:1932. PubMed PMC

Subramani K, Raju SP, Chu X, Warren M, Pandya CD, Hoda N, et al. Effect of plasma-derived extracellular vesicles on erythrocyte deformability in polymicrobial sepsis. Int Immunopharmacol. 2018;65:244–7. PubMed

Sadaka F, O’Brien J, Prakash S. Red cell distribution width and outcome in patients with septic shock. J Intensive Care Med. 2013;28:307–13. PubMed

Kim CH, Park JT, Kim EJ, Han JH, Han JS, Choi JY, et al. An increase in red blood cell distribution width from baseline predicts mortality in patients with severe sepsis or septic shock. Crit Care. 2013;17:R282. PubMed PMC

Kellum JA, Ronco C. The role of endotoxin in septic shock. Crit Care. 2023;27:400. PubMed PMC

Bissinger R, Schumacher C, Qadri SM, Honisch S, Malik A, Götz F, et al. Enhanced eryptosis contributes to anemia in lung cancer patients. Oncotarget. 2016;7:14002–14. PubMed PMC

Bissinger R, Bouguerra G, Stockinger K, Abbès S, Lang F. Triggering of suicidal erythrocyte death by topotecan. Cell Physiol Biochem. 2015;37:1607–18. PubMed

Mahmud H, Föller M, Lang F. Suicidal erythrocyte death triggered by cisplatin. Toxicology. 2008;249:40–44. PubMed

Suwalsky M, Hernández P, Villena F, Aguilar F, Sotomayor CP. Interaction of the anticancer drug tamoxifen with the human erythrocyte membrane and molecular models. Z Naturforsch C J Biosci. 1998;53:182–90. PubMed

Cruz Silva MM, Madeira VM, Almeida LM, Custódio JB. Hemolysis of human erythrocytes induced by tamoxifen is related to disruption of membrane structure. Biochim Biophys Acta. 2000;1464:49–61. PubMed

Alfhili MA, Alyousef AM, Alsughayyir J. Tamoxifen induces eryptosis through calcium accumulation and oxidative stress. Med Oncol. 2023;40:333. PubMed

Snow RW, Craig M, Deichmann U, Marsh K. Estimating mortality, morbidity and disability due to malaria among Africa’s non-pregnant population. Bull World Health Organ. 1999;77:624–40. PubMed PMC

Boulet C, Gaynor TL, Carvalho TG. Eryptosis and malaria: new experimental guidelines and re-evaluation of the antimalarial potential of eryptosis inducers. Front Cell Infect Microbiol. 2021;11:630812. PubMed PMC

Venkatesan P. The 2023 WHO world malaria report. Lancet Microbe. 2024;5:e214. PubMed

Perkins DJ, Were T, Davenport GC, Kempaiah P, Hittner JB, Ong’echa JM. Severe malarial anemia: innate immunity and pathogenesis. Int J Biol Sci. 2011;7:1427–42. PubMed PMC

Haldar K, Mohandas N. Malaria, erythrocytic infection, and anemia. Hematol Am Soc Hematol Educ Program. 2009;2009:87–93. PubMed PMC

Lackritz EM, Campbell CC, Ruebush TK 2nd, Hightower AW, Wakube W, Steketee RW, et al. Effect of blood transfusion on survival among children in a Kenyan hospital. Lancet. 1992;340:524–8. PubMed

Lamikanra AA, Brown D, Potocnik A, Casals-Pascual C, Langhorne J, Roberts DJ. Malarial anemia: of mice and men. Blood. 2007;110:18–28. PubMed

Föller M, Bobbala D, Koka S, Huber SM, Gulbins E, Lang F. Suicide for survival-death of infected erythrocytes as a host mechanism to survive malaria. Cell Physiol Biochem. 2009;24:133–40. PubMed

Atamna H, Ginsburg H. Origin of reactive oxygen species in erythrocytes infected with Plasmodium falciparum. Mol Biochem Parasitol. 1993;61:231–41. PubMed

Das BS, Nanda NK. Evidence for erythrocyte lipid peroxidation in acute falciparum malaria. Trans R Soc Trop Med Hyg. 1999;93:58–62. PubMed

Al Mamun Bhuyan A, Lang F. Stimulation of eryptosis by afatinib. Cell Physiol Biochem. 2018;47:1259–73. PubMed

Ghashghaeinia M, Bobbala D, Wieder T, Koka S, Brück J, Fehrenbacher B, et al. Targeting glutathione by dimethylfumarate protects against experimental malaria by enhancing erythrocyte cell membrane scrambling. Am J Physiol Cell Physiol. 2010;299:C791–804. PubMed

Siraskar B, Ballal A, Bobbala D, Föller M, Lang F. Effect of amphotericin B on parasitemia and survival of plasmodium berghei-infected mice. Cell Physiol Biochem. 2010;26:347–54. PubMed

Bobbala D, Alesutan I, Föller M, Huber SM, Lang F. Effect of anandamide in Plasmodium Berghei-infected mice. Cell Physiol Biochem. 2010;26:355–62. PubMed

Totino PR, Daniel-Ribeiro CT, Ferreira-da-Cruz MdeF. Refractoriness of eryptotic red blood cells to Plasmodium falciparum infection: a putative host defense mechanism limiting parasitaemia. PLoS ONE. 2011;6:e26575. PubMed PMC

Ibrahim HA, Fouda MI, Yahya RS, Abousamra NK, Abd Elazim RA. Erythrocyte phosphatidylserine exposure in β-thalassemia. Lab Hematol. 2014;20:9–14. PubMed

Nader E, Romana M, Guillot N, Fort R, Stauffer E, Lemonne N, et al. Association between nitric oxide, oxidative stress, eryptosis, red blood cell microparticles, and vascular function in sickle cell anemia. Front Immunol. 2020;11:551441. PubMed PMC

Basu S, Banerjee D, Chandra S, Chakrabarti A. Eryptosis in hereditary spherocytosis and thalassemia: role of glycoconjugates. Glycoconj J. 2010;27:717–22. PubMed

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023;186:243–78. PubMed

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. PubMed

Akel A, Wagner CA, Kovacikova J, Kasinathan RS, Kiedaisch V, Koka S, et al. Enhanced suicidal death of erythrocytes from gene-targeted mice lacking the Cl-/HCO(3)(-) exchanger AE1. Am J Physiol Cell Physiol. 2007;292:C1759–67. PubMed

Yadav S, Deepika, Maurya PK. A systematic review of red blood cells biomarkers in human aging. J Gerontol A Biol Sci Med Sci. 2024;79:glae004. PubMed

Hernández G, Villanueva-Ibarra CA, Maldonado-Vega M, López-Vanegas NC, Ruiz-Cascante CE, Calderón-Salinas JV. Participation of phospholipase-A(2) and sphingomyelinase in the molecular pathways to eryptosis induced by oxidative stress in lead-exposed workers. Toxicol Appl Pharmacol. 2019;371:12–9. PubMed

Alfhili MA, Alamri HS, Alsughayyir J, Basudan AM. Induction of hemolysis and eryptosis by occupational pollutant nickel chloride is mediated through calcium influx and p38 MAP kinase signaling. Int J Occup Med Environ Health. 2022;35:1–11. PubMed PMC

Jarosiewicz M, Michałowicz J, Bukowska B. In vitro assessment of eryptotic potential of tetrabromobisphenol A and other bromophenolic flame retardants. Chemosphere. 2019;215:404–12. PubMed

Maćczak A, Cyrkler M, Bukowska B, Michałowicz J. Eryptosis-inducing activity of bisphenol A and its analogs in human red blood cells (in vitro study). J Hazard Mater. 2016;307:328–35. PubMed

Sicińska P. Di-n-butyl phthalate, butylbenzyl phthalate and their metabolites induce haemolysis and eryptosis in human erythrocytes. Chemosphere. 2018;203:44–53. PubMed

Jin Q, Yao C, Bian Y, Pi J. Pb-induced eryptosis may provoke thrombosis prior to hemolysis. Int J Mol Sci. 2022;23:7008. PubMed PMC

Mitra S, Chakraborty AJ, Tareq AM, Emran TB, Nainu F, Khusro A, et al. Impact of heavy metals on the environment and human health: novel therapeutic insights to counter the toxicity. J King Saud Univ - Sci. 2022;34:101865.

Vota DM, Crisp RL, Nesse AB, Vittori DC. Oxidative stress due to aluminum exposure induces eryptosis which is prevented by erythropoietin. J Cell Biochem. 2012;113:1581–9. PubMed

Lupescu A, Jilani K, Zelenak C, Zbidah M, Qadri SM, Lang F. Hexavalent chromium-induced erythrocyte membrane phospholipid asymmetry. Biometals. 2012;25:309–18. PubMed

Bukowska B. Changes in human erythrocyte exposed to organophosphate flame retardants: Tris(2-chloroethyl) phosphate and Tris(1-chloro-2-propyl) phosphate. Materials PubMed PMC

Michałowicz J, Włuka A, Bukowska B. A review on environmental occurrence, toxic effects and transformation of man-made bromophenols. Sci Total Environ. 2022;811:152289. PubMed

Barańska A, Woźniak A, Mokra K, Michałowicz J. Genotoxic mechanism of action of TBBPA, TBBPS and selected bromophenols in human peripheral blood mononuclear cells. Front Immunol. 2022;13:869741. PubMed PMC

Cheng FJ, Wang CH, Pan HY, Chen CC, Huang WT, Li SH, et al. Levels of organophosphate flame retardants and their metabolites among 391 volunteers in Taiwan: difference between adults and children. Front Public Health. 2023;11:1186561. PubMed PMC

Guo Y, Chen M, Liao M, Su S, Sun W, Gan Z. Organophosphorus flame retardants and their metabolites in paired human blood and urine. Ecotoxicol Environ Saf. 2023;268:115696. PubMed

Wang Y, Qian H. Phthalates and Their Impacts on Human Health. Healthcare PubMed PMC

Tat J, Heskett K, Boss GR. Acute rotenone poisoning: a scoping review. Heliyon. 2024;10:e28334. PubMed PMC

Lupescu A, Jilani K, Zbidah M, Lang F. Induction of apoptotic erythrocyte death by rotenone. Toxicology. 2012;300:132–7. PubMed

Alfhili MA, Nkany MB, Weidner DA, Lee MH. Stimulation of eryptosis by broad-spectrum insect repellent N,N-Diethyl-3-methylbenzamide (DEET). Toxicol Appl Pharmacol. 2019;370:36–43. PubMed

Officioso A, Manna C, Alzoubi K, Lang F. Bromfenvinphos induced suicidal death of human erythrocytes. Pestic Biochem Physiol. 2016;126:58–63. PubMed

Borst O, Abed M, Alesutan I, Towhid ST, Qadri SM, Föller M, et al. Dynamic adhesion of eryptotic erythrocytes to endothelial cells via CXCL16/SR-PSOX. Am J Physiol Cell Physiol. 2012;302:C644–51. PubMed

Restivo I, Attanzio A, Tesoriere L, Allegra M. Suicidal erythrocyte death in metabolic syndrome. Antioxidants. 2021;10:154. PubMed PMC

Attanzio A, Frazzitta A, Vasto S, Tesoriere L, Pintaudi AM, Livrea MA, et al. Increased eryptosis in smokers is associated with the antioxidant status and C-reactive protein levels. Toxicology. 2019;411:43–8. PubMed

Schmitt M, Ewendt F, Kluttig A, Mikolajczyk R, Kraus FB, Wätjen W, et al. Smoking is associated with increased eryptosis, suicidal erythrocyte death, in a large population-based cohort. Sci Rep. 2024;14:3024. PubMed PMC

Abdel-Mageed HM, AbuelEzz NZ, Radwan RA, Mohamed SA. Nanoparticles in nanomedicine: a comprehensive updated review on current status, challenges and emerging opportunities. J Microencapsul. 2021;38:414–36. PubMed

Fan D, Cao Y, Cao M, Wang Y, Cao Y, Gong T. Nanomedicine in cancer therapy. Signal Transduct Target Ther. 2023;8:293. PubMed PMC

Rodríguez F, Caruana P, De la Fuente N, Español P, Gámez M, Balart J, et al. Nano-Based Approved Pharmaceuticals for Cancer Treatment: Present and Future Challenges. Biomolecules. 2022;12:784. PubMed PMC

Dri DA, Rinaldi F, Carafa M, Marianecci C. Nanomedicines and nanocarriers in clinical trials: surfing through regulatory requirements and physico-chemical critical quality attributes. Drug Deliv Transl Res. 2023;13:757–69. PubMed PMC

Yang C, Merlin D. Challenges to safe nanomedicine treatment. Nanomaterials PubMed PMC

Krug HF, Nau K. Editorial: Methods and protocols in nanotoxicology. Front Toxicol. 2022;4:1093765. PubMed PMC

de la Harpe KM, Kondiah PPD, Choonara YE, Marimuthu T, du Toit LC, Pillay V. The hemocompatibility of nanoparticles: a review of cell-nanoparticle interactions and hemostasis. Cells. 2019;8:1209. PubMed PMC

Yedgar S, Barshtein G, Gural A. Hemolytic activity of nanoparticles as a marker of their hemocompatibility. Micromachines PubMed PMC

Tkachenko A. Hemocompatibility studies in nanotoxicology: hemolysis or eryptosis? (A review). Toxicol Vitr. 2024;98:105814. PubMed

Kessler A, Hedberg J, Blomberg E, Odnevall I. Reactive oxygen species formed by metal and metal oxide nanoparticles in physiological media—a review of reactions of importance to nanotoxicity and proposal for categorization. Nanomaterials. 2022;12:1922. PubMed PMC

Chen Z, Yang B, Yan Z, Song E, Song Y. Eryptosis is an indicator of hematotoxicity in the risk assessment of environmental amorphous silica nanoparticles exposure: the role of macromolecule corona. Toxicol Lett. 2022;367:40–7. PubMed

Ferdous Z, Beegam S, Tariq S, Ali BH, Nemmar A. The in vitro effect of polyvinylpyrrolidone and citrate coated silver nanoparticles on erythrocytic oxidative damage and eryptosis. Cell Physiol Biochem. 2018;49:1577–88. PubMed

Lau IP, Chen H, Wang J, Ong HC, Leung KC, Ho HP, et al. In vitro effect of CTAB- and PEG-coated gold nanorods on the induction of eryptosis/erythroptosis in human erythrocytes. Nanotoxicology. 2012;6:847–56. PubMed

Prokopiuk V, Yefimova S, Onishchenko A, Kapustnik V, Myasoedov V, Maksimchuk P, et al. Assessing the cytotoxicity of TiO2−x nanoparticles with a different Ti3+(Ti2+)/Ti4+ ratio. Biol Trace Elem Res. 2023;201:3117–30. PubMed

Ran Q, Xiang Y, Liu Y, Xiang L, Li F, Deng X, et al. Eryptosis indices as a novel predictive parameter for biocompatibility of Fe3O4 magnetic nanoparticles on erythrocytes. Sci Rep PubMed PMC

Xu D, Ran Q, Xiang Y, Jiang L, Smith BM, Bou-Abdallah F, et al. Toward hemocompatible self-assembling antimicrobial nanofibers: understanding the synergistic effect of supramolecular structure and PEGylation on hemocompatibility. RSC Adv. 2016;6:15911–9. PubMed PMC

Ferdous Z, Elzaki O, Beegam S, Zaaba NE, Tariq S, Adeghate E, et al. Comparative evaluation of the effects of amorphous silica nanoparticles on the erythrocytes of Wistar normotensive and spontaneously hypertensive rats. Int J Mol Sci. 2023;24:3784. PubMed PMC

Yefimova S, Onishchenko A, Klochkov V, Myasoedov V, Kot Y, Tryfonyuk L, et al. Rare-earth orthovanadate nanoparticles trigger Ca(2+)-dependent eryptosis. Nanotechnology. 2023;34. PubMed

Barzegar S, Rezvani MR, Safa M, Amani A, Abbaspour A, Pourfathollah A, et al. Dose-dependent efficacy of antioxidant nanoparticles on red blood cells storage. J Educ Health Promot. 2021;10:256. PubMed PMC

Tkachenko A, Virych P, Myasoyedov V, Prokopiuk V, Onishchenko A, Butov D, et al. Cytotoxicity of hybrid noble metal-polymer composites. Biomed Res Int. 2022;2022:1487024. PubMed PMC

Yefimova S, Klochkov V, Kavok N, Tkachenko A, Onishchenko A, Chumachenko T, et al. Antimicrobial activity and cytotoxicity study of cerium oxide nanoparticles with two different sizes. J Biomed Mater Res B Appl Biomater. 2023;111:872–80. PubMed

Zhang K, Mikos AG, Reis RL, Zhang X. Translation of biomaterials from bench to clinic. Bioact Mater. 2022;18:337–8. PubMed PMC

Nalezinková M. In vitro hemocompatibility testing of medical devices. Thromb Res. 2020;195:146–50. PubMed

Weber M, Steinle H, Golombek S, Hann L, Schlensak C, Wendel HP, et al. Blood-contacting biomaterials: in vitro evaluation of the hemocompatibility. Front Bioeng Biotechnol. 2018;6:99. PubMed PMC

von Petersdorff-Campen K, Schmid Daners M. Hemolysis testing in vitro: a review of challenges and potential improvements. ASAIO J. 2022;68:3–13. PubMed

Tkachenko A. Is eryptosis druggable? Ann Hematol. 2024:103:1791-1792. PubMed

Virzì GM, Morisi N, Marturano D, Milan Manani S, Tantillo I, Ronco C, et al. Peritoneal inflammation in PD-related peritonitis induces systemic eryptosis: in vitro and in vivo assessments. Int J Mol Sci. 2024;25:4284. PubMed PMC

Alfhili MA, Alsughayyir J. Bufalin reprograms erythrocyte lifespan through p38 MAPK and Rac1 GTPase. Toxicon. 2024;240:107636. PubMed

Alghareeb SA, Alfhili MA, Alsughayyir J. Stimulation of hemolysis and eryptosis by β-caryophyllene oxide. Life. 2023;13:2299. PubMed PMC

Bennett-Guerrero E, Veldman TH, Doctor A, Telen MJ, Ortel TL, Reid TS, et al. Evolution of adverse changes in stored RBCs. Proc Natl Acad Sci USA. 2007;104:17063–8. PubMed PMC

Arifin WN, Zahiruddin WM. Sample size calculation in animal studies using resource equation approach. Malays J Med Sci. 2017;24:101–5. PubMed PMC

Serdar CC, Cihan M, Yücel D, Serdar MA. Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem Med. 2021;31:010502. PubMed PMC

Dinkla S, Peppelman M, Van Der Raadt J, Atsma F, Novotný VM, Van Kraaij MG, et al. Phosphatidylserine exposure on stored red blood cells as a parameter for donor-dependent variation in product quality. Blood Transfus. 2014;12:204–9. PubMed PMC

Samsel L, McCoy JP Jr. Imaging flow cytometry for the study of erythroid cell biology and pathology. J Immunol Methods. 2015;423:52–9. PubMed PMC

Al Mamun Bhuyan A, Cao H, Lang F. Triggering of eryptosis, the suicidal erythrocyte death by mammalian target of rapamycin (mTOR) inhibitor temsirolimus. Cell Physiol Biochem. 2017;42:1575–91. PubMed

Morabito R, Remigante A, Di Pietro ML, Giannetto A, La Spada G, Marino A. SO(4)(=) uptake and catalase role in preconditioning after H(2)O(2)-induced oxidative stress in human erythrocytes. Pflug Arch. 2017;469:235–50. PubMed

Alajeyan IA, Alsughayyir J, Alfhili MA. Stimulation of calcium/NOS/CK1α signaling by cedrol triggers eryptosis and hemolysis in red blood cells. Yonago Acta Med. 2024;67:191–200. PubMed PMC

Sæbø IP, Bjørås M, Franzyk H, Helgesen E, Booth JA. Optimization of the hemolysis assay for the assessment of cytotoxicity. Int J Mol Sci. 2023;24:2914. PubMed PMC

Aslam HM, Sohail A, Shahid A, Khan MAB, Sharif MU, Kausar R, et al. Levofloxacin induces erythrocyte contraction leading to red cell death. Drug Target Insights. 2024;18:78–83. PubMed PMC

Bissinger R, Waibel S, Bouguerra G, Al Mamun Bhuyan A, Abbès S, Lang F. Enhanced eryptosis following exposure to lopinavir. Cell Physiol Biochem. 2015;37:2486–95. PubMed

West CA, He C, Su M, Swanson SJ, Mentzer SJ. Aldehyde fixation of thiol-reactive fluorescent cytoplasmic probes for tracking cell migration. J Histochem Cytochem. 2001;49:511–8. PubMed

Michałowicz J, Włuka A, Cyrkler M, Maćczak A, Sicińska P, Mokra K. Phenol and chlorinated phenols exhibit different apoptotic potential in human red blood cells (in vitro study). Environ Toxicol Pharmacol. 2018;61:95–101. PubMed

Porter SN, Howarth GS, Butler RN. Non-steroidal anti-inflammatory drugs and apoptosis in the gastrointestinal tract: potential role of the pentose phosphate pathways. Eur J Pharmacol. 2000;397:1–9. PubMed

Officioso A, Alzoubi K, Manna C, Lang F. Clofazimine induced suicidal death of human erythrocytes. Cell Physiol Biochem. 2015;37:331–41. PubMed

Nicolay JP, Gatz S, Lang F, Lang UE. Lithium-induced suicidal erythrocyte death. J Psychopharmacol. 2010;24:1533–9. PubMed

Zelenak C, Pasham V, Jilani K, Tripodi PM, Rosaclerio L, Pathare G, et al. Tanshinone IIA stimulates erythrocyte phosphatidylserine exposure. Cell Physiol Biochem. 2012;30:282–94. PubMed

Bosmann HB. Ref cell hydrolases: glycosidase activities in human erythrocyte plasma membranes. J Membr Biol. 1971;4:113–23. PubMed

Lang E, Bissinger R, Qadri SM, Lang F. Suicidal death of erythrocytes in cancer and its chemotherapy: a potential target in the treatment of tumor-associated anemia. Int J Cancer. 2017;141:1522–8. PubMed

Alvarez-Sala A, López-García G, Attanzio A, Tesoriere L, Cilla A, Barberá R, et al. Effects of plant sterols or β-cryptoxanthin at physiological serum concentrations on suicidal erythrocyte death. J Agric Food Chem. 2018;66:1157–66. PubMed

Cilla A, López-García G, Collado-Díaz V, Amparo Blanch-Ruiz M, Garcia-Llatas G, Barberá R, et al. Hypercholesterolemic patients have higher eryptosis and erythrocyte adhesion to human endothelium independently of statin therapy. Int J Clin Pr. 2021;75:e14771. PubMed

Kalkavan H, Green DR. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ. 2018;25:46–55. PubMed PMC

Dadsena S, King LE, García-Sáez AJ. Apoptosis regulation at the mitochondria membrane level. Biochim Biophys Acta. 2021;1863:183716. PubMed

Prokopiuk V, Onishchenko A, Tryfonyuk L, Posokhov Y, Gorbach T, Kot Y, et al. Marine Polysaccharides Carrageenans enhance eryptosis and alter lipid order of cell membranes in erythrocytes. Cell Biochem Biophys. 2024;82:747–66. PubMed

Huang W, Hickson LJ, Eirin A, Kirkland JL, Lerman LO. Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol. 2022;18:611–27. PubMed PMC

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72. PubMed PMC

Zhou Q, Meng Y, Li D, Yao L, Le J, Liu Y, et al. Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies. Signal Transduct Target Ther. 2024;9:55. PubMed PMC

Bao Y, Williamson G. Phospholipid hydroperoxide peroxidase activities in erythrocytes. Biochem Soc Trans. 1997;25:S557. PubMed

Josefsson EC. Platelet intrinsic apoptosis. Thromb Res. 2023;231:206–13. PubMed

Pretorius E. Erythrocyte deformability and eryptosis during inflammation, and impaired blood rheology. Clin Hemorheol Microcirc. 2018;69:545–50. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...