Eryptosis in Liver Diseases: Contribution to Anemia and Hypercoagulation
Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
40843747
PubMed Central
PMC12372038
DOI
10.3390/medsci13030125
PII: medsci13030125
Knihovny.cz E-resources
- Keywords
- bile acids, bilirubin, chronic liver disease, eryptosis, non-alcoholic fatty liver disease, regulated cell death,
- MeSH
- Anemia * pathology etiology MeSH
- Eryptosis * physiology MeSH
- Erythrocytes pathology metabolism MeSH
- Humans MeSH
- Liver Diseases * complications pathology blood MeSH
- Thrombophilia * etiology pathology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Eryptosis is a type of regulated cell death of mature erythrocytes characterized by excessive Ca2+ accumulation followed by phosphatidylserine externalization. Eryptosis facilitates erythrophagocytosis resulting in eradication of damaged erythrocytes, which maintains the population of healthy erythrocytes in blood. Over recent years, a wide array of diseases has been reported to be linked to accelerated eryptosis, which leads to anemia. A growing number of studies furnish evidence that eryptosis is implicated in the pathogenesis of liver diseases. Herein, we summarize the current knowledge of eryptosis signaling, its physiological role, and the impact of eryptosis on anemia and hypercoagulation. In this article, upon systemically analyzing the PubMed-indexed publications, we also provide a comprehensive overview of the role of eryptosis in the spectrum of hepatic diseases, its contribution to the development of complications in liver pathology, metabolites (bilirubin, bile acids, etc.) that might trigger eryptosis in liver diseases, and eryptosis-inducing liver disease medications. Eryptosis in liver diseases contributes to anemia, hypercoagulation, and endothelial damage (via ferroptosis of endothelial cells). Treatment-associated anemia in liver diseases might be at least partly attributed to drug-induced eryptosis. Ultimately, we analyze the concept of inhibiting eryptosis pharmaceutically to prevent eryptosis-associated anemia and thrombosis in liver diseases.
BIOCEV 1st Faculty of Medicine Charles University Průmyslová 595 25250 Vestec Czech Republic
Department of Microbiology NJSC Semey Medical University 103 Abay st Semey 071400 Kazakhstan
Rivne Regional Clinical Hospital 78g Kyivska st 33007 Rivne Ukraine
See more in PubMed
Stanke F., Janciauskiene S., Olejnicka B. Editorial: Acute phase proteins as biomarkers and therapeutics in acute and chronic inflammatory conditions. Front. Pharmacol. 2023;14:1145990. doi: 10.3389/fphar.2023.1145990. PubMed DOI PMC
Trefts E., Gannon M., Wasserman D.H. The liver. Curr. Biol. 2017;27:R1147–R1151. doi: 10.1016/j.cub.2017.09.019. PubMed DOI PMC
Kalra A., Yetiskul E., Wehrle C.J., Tuma F. StatPearls. StatPearls Publishing LLC.; Treasure Island, FL, USA: 2025. Physiology, Liver. PubMed
Anderson G.J., Frazer D.M. Current understanding of iron homeostasis. Am. J. Clin. Nutr. 2017;106:1559s–1566s. doi: 10.3945/ajcn.117.155804. PubMed DOI PMC
Kubes P., Jenne C. Immune Responses in the Liver. Annu. Rev. Immunol. 2018;36:247–277. doi: 10.1146/annurev-immunol-051116-052415. PubMed DOI
Roizen J.D., Levine M.A. Chapter 67—The role of genetic variation in CYP2R1, the principal vitamin D 25-hydroxylase, and CYP3A4 in vitamin D homeostasis. In: Hewison M., Bouillon R., Giovannucci E., Goltzman D., Meyer M., Welsh J., editors. Feldman and Pike’s Vitamin D (Fifth Edition) Academic Press; Cambridge, MA, USA: 2024. pp. 341–357.
Adamek A., Kasprzak A. Insulin-Like Growth Factor (IGF) System in Liver Diseases. Int. J. Mol. Sci. 2018;19:1308. doi: 10.3390/ijms19051308. PubMed DOI PMC
Bruinstroop E., van der Spek A.H., Boelen A. Role of hepatic deiodinases in thyroid hormone homeostasis and liver metabolism, inflammation, and fibrosis. Eur. Thyroid. J. 2023;12:e220211. doi: 10.1530/ETJ-22-0211. PubMed DOI PMC
Watt M.J., Miotto P.M., De Nardo W., Montgomery M.K. The Liver as an Endocrine Organ-Linking NAFLD and Insulin Resistance. Endocr. Rev. 2019;40:1367–1393. doi: 10.1210/er.2019-00034. PubMed DOI
Stefan N., Schick F., Birkenfeld A.L., Häring H.U., White M.F. The role of hepatokines in NAFLD. Cell Metab. 2023;35:236–252. doi: 10.1016/j.cmet.2023.01.006. PubMed DOI PMC
Rowe M.M., Kaestner K.H. The Role of Non-Coding RNAs in Liver Disease, Injury, and Regeneration. Cells. 2023;12:359. doi: 10.3390/cells12030359. PubMed DOI PMC
Devarbhavi H., Asrani S.K., Arab J.P., Nartey Y.A., Pose E., Kamath P.S. Global burden of liver disease: 2023 update. J. Hepatol. 2023;79:516–537. doi: 10.1016/j.jhep.2023.03.017. PubMed DOI
Borrello M.T., Mann D. Chronic liver diseases: From development to novel pharmacological therapies: IUPHAR Review 37. Br. J. Pharmacol. 2023;180:2880–2897. doi: 10.1111/bph.15853. PubMed DOI
Rinella M.E., Sookoian S. From NAFLD to MASLD: Updated naming and diagnosis criteria for fatty liver disease. J. Lipid Res. 2024;65:100485. doi: 10.1016/j.jlr.2023.100485. PubMed DOI PMC
Sharma A., Nagalli S. StatPearls. StatPearls Publishing LLC.; Treasure Island, FL, USA: 2025. Chronic Liver Disease. PubMed
Gan C., Yuan Y., Shen H., Gao J., Kong X., Che Z., Guo Y., Wang H., Dong E., Xiao J. Liver diseases: Epidemiology, causes, trends and predictions. Signal Transduct. Target. Ther. 2025;10:33. doi: 10.1038/s41392-024-02072-z. PubMed DOI PMC
Moon A.M., Singal A.G., Tapper E.B. Contemporary Epidemiology of Chronic Liver Disease and Cirrhosis. Clin. Gastroenterol. Hepatol. 2020;18:2650–2666. doi: 10.1016/j.cgh.2019.07.060. PubMed DOI PMC
Ebel N.H., Horslen S.P. Diseases of the Liver and Biliary System in Children. Wiley Online Library; Hoboken, NJ, USA: 2017. Complications and Management of Chronic Liver Disease; pp. 341–365.
Lingas E.C. Hematological Abnormalities in Cirrhosis: A Narrative Review. Cureus. 2023;15:e39239. doi: 10.7759/cureus.39239. PubMed DOI PMC
McMurry H.S., Jou J., Shatzel J. The hemostatic and thrombotic complications of liver disease. Eur. J. Haematol. 2021;107:383–392. doi: 10.1111/ejh.13688. PubMed DOI PMC
Gonzalez-Casas R., Jones E.A., Moreno-Otero R. Spectrum of anemia associated with chronic liver disease. World J. Gastroenterol. 2009;15:4653–4658. doi: 10.3748/wjg.15.4653. PubMed DOI PMC
Marginean C.M., Pirscoveanu D., Popescu M., Docea A.O., Radu A., Popescu A.I.S., Vasile C.M., Mitrut R., Marginean I.C., Iacob G.A., et al. Diagnostic Approach and Pathophysiological Mechanisms of Anemia in Chronic Liver Disease—An Overview. Gastroenterol. Insights. 2023;14:327–341. doi: 10.3390/gastroent14030024. DOI
Gkamprela E., Deutsch M., Pectasides D. Iron deficiency anemia in chronic liver disease: Etiopathogenesis, diagnosis and treatment. Ann. Gastroenterol. 2017;30:405–413. doi: 10.20524/aog.2017.0152. PubMed DOI PMC
Buttler L., Tiede A., Griemsmann M., Rieland H., Mauz J., Kahlhöfer J., Wedemeyer H., Cornberg M., Tergast T.L., Maasoumy B., et al. Folic acid supplementation is associated with a decreased mortality and reduced hospital readmission in patients with decompensated alcohol-related liver cirrhosis. Clin. Nutr. 2024;43:1719–1727. doi: 10.1016/j.clnu.2024.05.044. PubMed DOI
Sawada K., Takai A., Yamada T., Araki O., Yamauchi Y., Eso Y., Takahashi K., Shindo T., Sakurai T., Ueda Y., et al. Hepatitis-associated Aplastic Anemia with Rapid Progression of Liver Fibrosis Due to Repeated Hepatitis. Intern. Med. 2020;59:1035–1040. doi: 10.2169/internalmedicine.4072-19. PubMed DOI PMC
Li L., Duan M., Chen W., Jiang A., Li X., Yang J., Li Z. The spleen in liver cirrhosis: Revisiting an old enemy with novel targets. J. Transl. Med. 2017;15:111. doi: 10.1186/s12967-017-1214-8. PubMed DOI PMC
Gaur K., Puri V., Agarwal K., Suman S., Dhamija R.K. Chronic Liver Disease Presenting as Immune Hemolytic Anemia: The Challenges of Diagnosis in the Critically Ill in a Resource-Limited Health Care Setting. Cureus. 2021;13:e14880. doi: 10.7759/cureus.14880. PubMed DOI PMC
DebRoy S., Kribs-Zaleta C., Mubayi A., Cardona-Meléndez G.M., Medina-Rios L., Kang M., Diaz E. Evaluating treatment of hepatitis C for hemolytic anemia management. Math. Biosci. 2010;225:141–155. doi: 10.1016/j.mbs.2010.02.005. PubMed DOI
Tkachenko A. Hemocompatibility studies in nanotoxicology: Hemolysis or eryptosis? (A review) Toxicol. In Vitro. 2024;98:105814. doi: 10.1016/j.tiv.2024.105814. PubMed DOI
Lang K.S., Lang P.A., Bauer C., Duranton C., Wieder T., Huber S.M., Lang F. Mechanisms of suicidal erythrocyte death. Cell Physiol. Biochem. 2005;15:195–202. doi: 10.1159/000086406. PubMed DOI
Lang F., Qadri S.M. Mechanisms and significance of eryptosis, the suicidal death of erythrocytes. Blood Purif. 2012;33:125–130. doi: 10.1159/000334163. PubMed DOI
Tkachenko A., Onishchenko A. Casein kinase 1α mediates eryptosis: A review. Apoptosis. 2023;28:1–19. doi: 10.1007/s10495-022-01776-3. PubMed DOI
Tkachenko A., Havranek O. Cell death signaling in human erythron: Erythrocytes lose the complexity of cell death machinery upon maturation. Apoptosis. 2025;30:652–673. doi: 10.1007/s10495-025-02081-5. PubMed DOI PMC
Tkachenko A., Alfhili M.A., Alsughayyir J., Attanzio A., Al Mamun Bhuyan A., Bukowska B., Cilla A., Quintanar-Escorza M.A., Föller M., Havranek O., et al. Current understanding of eryptosis: Mechanisms, physiological functions, role in disease, pharmacological applications, and nomenclature recommendations. Cell Death Dis. 2025;16:467. doi: 10.1038/s41419-025-07784-w. PubMed DOI PMC
Tkachenko A. Apoptosis and eryptosis: Similarities and differences. Apoptosis. 2024;29:482–502. doi: 10.1007/s10495-023-01915-4. PubMed DOI
Dreischer P., Duszenko M., Stein J., Wieder T. Eryptosis: Programmed Death of Nucleus-Free, Iron-Filled Blood Cells. Cells. 2022;11:503. doi: 10.3390/cells11030503. PubMed DOI PMC
Bissinger R., Qadri S.M., Artunc F. Eryptosis: A driver of anemia in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2024;33:220–225. doi: 10.1097/MNH.0000000000000957. PubMed DOI
Alghareeb S.A., Alfhili M.A., Fatima S. Molecular Mechanisms and Pathophysiological Significance of Eryptosis. Int. J. Mol. Sci. 2023;24:5079. doi: 10.3390/ijms24065079. PubMed DOI PMC
Moreno-Amaral A.N., Dias E.S., Monte-Alegre J.B., Van Spitzenbergen B.A.K., Andrade G.B., Brugnolo-Santos V.A., Ozogovski Y.D., Ferreira Dias G., Grobe N., Kotanko P., et al. Exploring the Interplay of Inflammation, Eryptosis, and Anemia in ESKD: TH-PO878. J. Am. Soc. Nephrol. 2024;35 doi: 10.1681/ASN.2024xjezmrp3. DOI
Virzì G.M., Mattiotti M., Clementi A., Milan Manani S., Battaglia G.G., Ronco C., Zanella M. In Vitro Induction of Eryptosis by Uremic Toxins and Inflammation Mediators in Healthy Red Blood Cells. J. Clin. Med. 2022;11:5329. doi: 10.3390/jcm11185329. PubMed DOI PMC
Repsold L., Joubert A.M. Eryptosis: An Erythrocyte’s Suicidal Type of Cell Death. Biomed. Res. Int. 2018;2018:9405617. doi: 10.1155/2018/9405617. PubMed DOI PMC
Tkachenko A., Kot Y., Prokopyuk V., Onishchenko A., Bondareva A., Kapustnik V., Chumachenko T., Perskiy Y., Butov D., Nakonechna O. Food additive E407a stimulates eryptosis in a dose-dependent manner. Wien. Med. Wochenschr. 2021;172:135–143. doi: 10.1007/s10354-021-00874-2. PubMed DOI
Hankins H.M., Baldridge R.D., Xu P., Graham T.R. Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution. Traffic. 2015;16:35–47. doi: 10.1111/tra.12233. PubMed DOI PMC
Fraser M., Matuschewski K., Maier A.G. Of membranes and malaria: Phospholipid asymmetry in Plasmodium falciparum-infected red blood cells. Cell Mol. Life Sci. 2021;78:4545–4561. doi: 10.1007/s00018-021-03799-6. PubMed DOI PMC
Sakuragi T., Nagata S. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases. Nat. Rev. Mol. Cell Biol. 2023;24:576–596. doi: 10.1038/s41580-023-00604-z. PubMed DOI PMC
Kim O.-H., Kang G.-H., Hur J., Lee J., Jung Y., Hong I.-S., Lee H., Seo S.-Y., Lee D.H., Lee C.S., et al. Externalized phosphatidylinositides on apoptotic cells are eat-me signals recognized by CD14. Cell Death Differ. 2022;29:1423–1432. doi: 10.1038/s41418-022-00931-2. PubMed DOI PMC
Boulet C., Doerig C.D., Carvalho T.G. Manipulating Eryptosis of Human Red Blood Cells: A Novel Antimalarial Strategy? Front. Cell Infect. Microbiol. 2018;8:419. doi: 10.3389/fcimb.2018.00419. PubMed DOI PMC
Jemaà M., Fezai M., Bissinger R., Lang F. Methods Employed in Cytofluorometric Assessment of Eryptosis, the Suicidal Erythrocyte Death. Cell Physiol. Biochem. 2017;43:431–444. doi: 10.1159/000480469. PubMed DOI
Lang F., Gulbins E., Lang P.A., Zappulla D., Föller M. Ceramide in suicidal death of erythrocytes. Cell Physiol. Biochem. 2010;26:21–28. doi: 10.1159/000315102. PubMed DOI
Lang P.A., Kempe D.S., Myssina S., Tanneur V., Birka C., Laufer S., Lang F., Wieder T., Huber S.M. PGE2 in the regulation of programmed erythrocyte death. Cell Death Differ. 2005;12:415–428. doi: 10.1038/sj.cdd.4401561. PubMed DOI
Tkachenko A., Havránek O. Redox Status of Erythrocytes as an Important Factor in Eryptosis and Erythronecroptosis. Folia Biol. 2023;69:116–126. doi: 10.14712/fb2023069040116. PubMed DOI
Föller M., Huber S.M., Lang F. Erythrocyte programmed cell death. IUBMB Life. 2008;60:661–668. doi: 10.1002/iub.106. PubMed DOI
Dinkla S., Wessels K., Verdurmen W.P.R., Tomelleri C., Cluitmans J.C.A., Fransen J., Fuchs B., Schiller J., Joosten I., Brock R., et al. Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure. Cell Death Dis. 2012;3:e410. doi: 10.1038/cddis.2012.143. PubMed DOI PMC
Restivo I., Attanzio A., Giardina I.C., Di Gaudio F., Tesoriere L., Allegra M. Cigarette Smoke Extract Induces p38 MAPK-Initiated, Fas-Mediated Eryptosis. Int. J. Mol. Sci. 2022;23:14730. doi: 10.3390/ijms232314730. PubMed DOI PMC
Lang E., Lang F. Triggers, inhibitors, mechanisms, and significance of eryptosis: The suicidal erythrocyte death. Biomed. Res. Int. 2015;2015:513518. doi: 10.1155/2015/513518. PubMed DOI PMC
Föller M., Lang F. Ion Transport in Eryptosis, the Suicidal Death of Erythrocytes. Front. Cell Dev. Biol. 2020;8:597. doi: 10.3389/fcell.2020.00597. PubMed DOI PMC
Nader E., Romana M., Guillot N., Fort R., Stauffer E., Lemonne N., Garnier Y., Skinner S.C., Etienne-Julan M., Robert M., et al. Association Between Nitric Oxide, Oxidative Stress, Eryptosis, Red Blood Cell Microparticles, and Vascular Function in Sickle Cell Anemia. Front. Immunol. 2020;11:551441. doi: 10.3389/fimmu.2020.551441. PubMed DOI PMC
Bogdanova A., Makhro A., Wang J., Lipp P., Kaestner L. Calcium in Red Blood Cells—A Perilous Balance. Int. J. Mol. Sci. 2013;14:9848–9872. doi: 10.3390/ijms14059848. PubMed DOI PMC
Ghashghaeinia M., Cluitmans J.C., Akel A., Dreischer P., Toulany M., Köberle M., Skabytska Y., Saki M., Biedermann T., Duszenko M., et al. The impact of erythrocyte age on eryptosis. Br. J. Haematol. 2012;157:606–614. doi: 10.1111/j.1365-2141.2012.09100.x. PubMed DOI
Mendonça R., Silveira A.A., Conran N. Red cell DAMPs and inflammation. Inflamm. Res. 2016;65:665–678. doi: 10.1007/s00011-016-0955-9. PubMed DOI
NaveenKumar S.K., Hemshekhar M., Sharathbabu B.N., Kemparaju K., Mugesh G., Girish K.S. Platelet activation and ferroptosis mediated NETosis drives heme induced pulmonary thrombosis. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2023;1869:166688. doi: 10.1016/j.bbadis.2023.166688. PubMed DOI
Dang D., Meng Z., Zhang C., Li Z., Wei J., Wu H. Heme induces intestinal epithelial cell ferroptosis via mitochondrial dysfunction in transfusion-associated necrotizing enterocolitis. FASEB J. 2022;36:e22649. doi: 10.1096/fj.202200853RRR. PubMed DOI
Chen Y., Fang Z.-M., Yi X., Wei X., Jiang D.-S. The interaction between ferroptosis and inflammatory signaling pathways. Cell Death Dis. 2023;14:205. doi: 10.1038/s41419-023-05716-0. PubMed DOI PMC
Fortes G.B., Alves L.S., de Oliveira R., Dutra F.F., Rodrigues D., Fernandez P.L., Souto-Padron T., De Rosa M.J., Kelliher M., Golenbock D., et al. Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood. 2012;119:2368–2375. doi: 10.1182/blood-2011-08-375303. PubMed DOI PMC
Dhuriya Y.K., Sharma D. Necroptosis: A regulated inflammatory mode of cell death. J. Neuroinflamm. 2018;15:199. doi: 10.1186/s12974-018-1235-0. PubMed DOI PMC
Scovino A.M., Totino P.R.R., Morrot A. Eryptosis as a New Insight in Malaria Pathogenesis. Front. Immunol. 2022;13:855795. doi: 10.3389/fimmu.2022.855795. PubMed DOI PMC
Jin Q., Yao C., Bian Y., Pi J. Pb-Induced Eryptosis May Provoke Thrombosis Prior to Hemolysis. Int. J. Mol. Sci. 2022;23:7008. doi: 10.3390/ijms23137008. PubMed DOI PMC
Walker B., Towhid S.T., Schmid E., Hoffmann S.M., Abed M., Münzer P., Vogel S., Neis F., Brucker S., Gawaz M., et al. Dynamic adhesion of eryptotic erythrocytes to immobilized platelets via platelet phosphatidylserine receptors. Am. J. Physiol. Cell Physiol. 2014;306:C291–C297. doi: 10.1152/ajpcell.00318.2013. PubMed DOI
Whelihan M.F., Zachary V., Orfeo T., Mann K.G. Prothrombin activation in blood coagulation: The erythrocyte contribution to thrombin generation. Blood. 2012;120:3837–3845. doi: 10.1182/blood-2012-05-427856. PubMed DOI PMC
Setty B.N.Y., Betal S.G. Microvascular endothelial cells express a phosphatidylserine receptor: A functionally active receptor for phosphatidylserine-positive erythrocytes. Blood. 2008;111:905–914. doi: 10.1182/blood-2007-07-099465. PubMed DOI PMC
Azer S.A., Hasanato R. Use of bile acids as potential markers of liver dysfunction in humans: A systematic review. Medicine. 2021;100:e27464. doi: 10.1097/MD.0000000000027464. PubMed DOI PMC
Thakur S., Kumar V., Das R., Sharma V., Mehta D.K. Biomarkers of Hepatic Toxicity: An Overview. Curr. Ther. Res. Clin. Exp. 2024;100:100737. doi: 10.1016/j.curtheres.2024.100737. PubMed DOI PMC
Tamber S.S., Bansal P., Sharma S., Singh R.B., Sharma R. Biomarkers of liver diseases. Mol. Biol. Rep. 2023;50:7815–7823. doi: 10.1007/s11033-023-08666-0. PubMed DOI
Oelberg D.G., Dubinsky W.P., Sackman J.W., Wang L.B., Adcock E.W., Lester R. Bile salts induce calcium uptake in vitro by human erythrocytes. Hepatology. 1987;7:245–252. doi: 10.1002/hep.1840070207. PubMed DOI
Lang E., Gatidis S., Freise N.F., Bock H., Kubitz R., Lauermann C., Orth H.M., Klindt C., Schuier M., Keitel V., et al. Conjugated bilirubin triggers anemia by inducing erythrocyte death. Hepatology. 2015;61:275–284. doi: 10.1002/hep.27338. PubMed DOI PMC
Abed M., Thiel C., Towhid S.T., Alzoubi K., Honisch S., Lang F., Königsrainer A. Stimulation of Erythrocyte Cell Membrane Scrambling by C-Reactive Protein. Cell Physiol. Biochem. 2017;41:806–818. doi: 10.1159/000458745. PubMed DOI
Lang E., Pozdeev V.I., Gatidis S., Qadri S.M., Häussinger D., Kubitz R., Herebian D., Mayatepek E., Lang F., Lang K.S., et al. Bile Acid-Induced Suicidal Erythrocyte Death. Cell Physiol. Biochem. 2016;38:1500–1509. doi: 10.1159/000443091. PubMed DOI
Alfhili M.A., Aljuraiban G.S. Lauric Acid, a Dietary Saturated Medium-Chain Fatty Acid, Elicits Calcium-Dependent Eryptosis. Cells. 2021;10:3388. doi: 10.3390/cells10123388. PubMed DOI PMC
Brito M.A., Silva R.F.M., Brites D. Bilirubin induces loss of membrane lipids and exposure of phosphatidylserine in human erythrocytes. Cell Biol. Toxicol. 2002;18:181–192. doi: 10.1023/A:1015563704551. PubMed DOI
Brito M.A., Brites D. Effect of acidosis on bilirubin-induced toxicity to human erythrocytes. Mol. Cell. Biochem. 2003;247:155–162. doi: 10.1023/A:1024111613327. PubMed DOI
Ramírez-Mejía M.M., Castillo-Castañeda S.M., Pal S.C., Qi X., Méndez-Sánchez N. The Multifaceted Role of Bilirubin in Liver Disease: A Literature Review. J. Clin. Transl. Hepatol. 2024;12:939–948. doi: 10.14218/JCTH.2024.00156. PubMed DOI PMC
Alexandra Brito M., Silva R.F., Brites D. Bilirubin toxicity to human erythrocytes: A review. Clin. Chim. Acta. 2006;374:46–56. doi: 10.1016/j.cca.2006.06.012. PubMed DOI
Evangelakos I., Heeren J., Verkade E., Kuipers F. Role of bile acids in inflammatory liver diseases. Semin. Immunopathol. 2021;43:577–590. doi: 10.1007/s00281-021-00869-6. PubMed DOI PMC
Farooqui N., Elhence A., Shalimar A Current Understanding of Bile Acids in Chronic Liver Disease. J. Clin. Exp. Hepatol. 2022;12:155–173. doi: 10.1016/j.jceh.2021.08.017. PubMed DOI PMC
Zhou T., Ismail A., Francis H. Bile Acids in Autoimmune Liver Disease: Unveiling the Nexus of Inflammation, Inflammatory Cells, and Treatment Strategies. Cells. 2023;12:2725. doi: 10.3390/cells12232725. PubMed DOI PMC
Salvioli G., Gaetti E., Panini R., Lugli R., Pradelli J.M. Different resistance of mammalian red blood cells to hemolysis by bile salts. Lipids. 1993;28:999–1003. doi: 10.1007/BF02537121. PubMed DOI
Gentile C.L., Pagliassotti M.J. The role of fatty acids in the development and progression of nonalcoholic fatty liver disease. J. Nutr. Biochem. 2008;19:567–576. doi: 10.1016/j.jnutbio.2007.10.001. PubMed DOI PMC
Keles U., Ow J.R., Kuentzel K.B., Zhao L.N., Kaldis P. Liver-derived metabolites as signaling molecules in fatty liver disease. Cell Mol. Life Sci. 2022;80:4. doi: 10.1007/s00018-022-04658-8. PubMed DOI PMC
Zhou H.H., Tang Y.L., Xu T.H., Cheng B. C-reactive protein: Structure, function, regulation, and role in clinical diseases. Front. Immunol. 2024;15:1425168. doi: 10.3389/fimmu.2024.1425168. PubMed DOI PMC
Ross Y., Ballou S. Reliability of C-reactive protein as an inflammatory marker in patients with immune-mediated inflammatory diseases and liver dysfunction. Rheumatol. Adv. Pract. 2023;7:rkad045. doi: 10.1093/rap/rkad045. PubMed DOI PMC
Wang H., Ye J., Chen Y., Sun Y., Gong X., Deng H., Dong Z., Xu L., Li X., Zhong B. High sensitivity C-reactive protein implicates heterogeneous metabolic phenotypes and severity in metabolic dysfunction associated-steatotic liver disease. BMC Gastroenterol. 2025;25:231. doi: 10.1186/s12876-025-03778-2. PubMed DOI PMC
Ding Z., Wei Y., Peng J., Wang S., Chen G., Sun J. The Potential Role of C-Reactive Protein in Metabolic-Dysfunction-Associated Fatty Liver Disease and Aging. Biomedicines. 2023;11:2711. doi: 10.3390/biomedicines11102711. PubMed DOI PMC
Attanzio A., Frazzitta A., Vasto S., Tesoriere L., Pintaudi A.M., Livrea M.A., Cilla A., Allegra M. Increased eryptosis in smokers is associated with the antioxidant status and C-reactive protein levels. Toxicology. 2019;411:43–48. doi: 10.1016/j.tox.2018.10.019. PubMed DOI
Xu W., Peng F., Deng Y., Fan X., Li N. The emerging roles of eryptosis in liver diseases. Transfus. Clin. Biol. 2019;26:336–340. doi: 10.1016/j.tracli.2019.05.004. PubMed DOI
Otogawa K., Kinoshita K., Fujii H., Sakabe M., Shiga R., Nakatani K., Ikeda K., Nakajima Y., Ikura Y., Ueda M., et al. Erythrophagocytosis by liver macrophages (Kupffer cells) promotes oxidative stress, inflammation, and fibrosis in a rabbit model of steatohepatitis: Implications for the pathogenesis of human nonalcoholic steatohepatitis. Am. J. Pathol. 2007;170:967–980. doi: 10.2353/ajpath.2007.060441. PubMed DOI PMC
Lee S.J., Park S.Y., Jung M.Y., Bae S.M., Kim I.S. Mechanism for phosphatidylserine-dependent erythrophagocytosis in mouse liver. Blood. 2011;117:5215–5223. doi: 10.1182/blood-2010-10-313239. PubMed DOI
Park J.B., Ko K., Baek Y.H., Kwon W.Y., Suh S., Han S.H., Kim Y.H., Kim H.Y., Yoo Y.H. Pharmacological Prevention of Ectopic Erythrophagocytosis by Cilostazol Mitigates Ferroptosis in NASH. Int. J. Mol. Sci. 2023;24:12862. doi: 10.3390/ijms241612862. PubMed DOI PMC
Mei C., Peng F., Yin W., Xu W., Yao R., Li B., Zhou R., Fan X., Li N. Increased suicidal erythrocyte death in patients with hepatitis B-related acute-on-chronic liver failure. Am. J. Physiol. Gastrointest. Liver Physiol. 2022;323:G9–G20. doi: 10.1152/ajpgi.00050.2020. PubMed DOI
Wu X., Yao Z., Zhao L., Zhang Y., Cao M., Li T., Ding W., Liu Y., Deng R., Dong Z., et al. Phosphatidylserine on blood cells and endothelial cells contributes to the hypercoagulable state in cirrhosis. Liver Int. 2016;36:1800–1810. doi: 10.1111/liv.13167. PubMed DOI
Zheng C., Li S., Mueller J., Chen C., Lyu H., Yuan G., Zamalloa A., Adofina L., Srinivasan P., Menon K., et al. Evidence for alcohol-mediated hemolysis and erythrophagocytosis. Redox Biol. 2025;85:103742. doi: 10.1016/j.redox.2025.103742. PubMed DOI PMC
Lian C.Y., Zhai Z.Z., Li Z.F., Wang L. High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms. Chem. Biol. Interact. 2020;330:109199. doi: 10.1016/j.cbi.2020.109199. PubMed DOI
Unruh D., Srinivasan R., Benson T., Haigh S., Coyle D., Batra N., Keil R., Sturm R., Blanco V., Palascak M., et al. Red Blood Cell Dysfunction Induced by High-Fat Diet: Potential Implications for Obesity-Related Atherosclerosis. Circulation. 2015;132:1898–1908. doi: 10.1161/CIRCULATIONAHA.115.017313. PubMed DOI PMC
Papadopoulos C., Tentes I., Anagnostopoulos K. Red Blood Cell Dysfunction in Non-Alcoholic Fatty Liver Disease: Marker and Mediator of Molecular Mechanisms. Maedica. 2020;15:513–516. doi: 10.26574/maedica.2020.15.4.513. PubMed DOI PMC
Allameh A., Niayesh-Mehr R., Aliarab A., Sebastiani G., Pantopoulos K. Oxidative Stress in Liver Pathophysiology and Disease. Antioxidants. 2023;12:1653. doi: 10.3390/antiox12091653. PubMed DOI PMC
Pratim Das P., Medhi S. Role of inflammasomes and cytokines in immune dysfunction of liver cirrhosis. Cytokine. 2023;170:156347. doi: 10.1016/j.cyto.2023.156347. PubMed DOI
Niederreiter L., Tilg H. Cytokines and fatty liver diseases. Liver Res. 2018;2:14–20. doi: 10.1016/j.livres.2018.03.003. DOI
Scarlata G.G.M., Colaci C., Scarcella M., Dallio M., Federico A., Boccuto L., Abenavoli L. The Role of Cytokines in the Pathogenesis and Treatment of Alcoholic Liver Disease. Diseases. 2024;12:69. doi: 10.3390/diseases12040069. PubMed DOI PMC
Pocino K., Stefanile A., Basile V., Napodano C., D'Ambrosio F., Di Santo R., Callà C.A.M., Gulli F., Saporito R., Ciasca G., et al. Cytokines and Hepatocellular Carcinoma: Biomarkers of a Deadly Embrace. J. Pers. Med. 2022;13:5. doi: 10.3390/jpm13010005. PubMed DOI PMC
Wang Y., Shen H., Ma S., Nan Y., Liu H. IL-1 and IL-6 induced phosphatidylserine exposure on erythrocyte membrane and related characteristics of eryptosis in mice. J. Clin. Emerg. 2019;20:889–894. doi: 10.13201/j.issn.1009-5918.2019.11.014. DOI
Bester J., Pretorius E. Effects of IL-1β, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity. Sci. Rep. 2016;6:32188. doi: 10.1038/srep32188. PubMed DOI PMC
Alfhili M.A., Basudan A.M., Aljaser F.S., Dera A., Alsughayyir J. Bioymifi, a novel mimetic of TNF-related apoptosis-induced ligand (TRAIL), stimulates eryptosis. Med. Oncol. 2021;38:138. doi: 10.1007/s12032-021-01589-5. PubMed DOI
Bonan N.B., Steiner T.M., Kuntsevich V., Virzì G.M., Azevedo M., Nakao L.S., Barreto F.C., Ronco C., Thijssen S., Kotanko P., et al. Uremic Toxicity-Induced Eryptosis and Monocyte Modulation: The Erythrophagocytosis as a Novel Pathway to Renal Anemia. Blood Purif. 2016;41:317–323. doi: 10.1159/000443784. PubMed DOI
Yu M., Zheng C., Wang X., Peng R., Lu G., Zhang J. Phosphatidylserine induce thrombotic tendency and liver damage in obstructive jaundice. BMC Gastroenterol. 2025;25:146. doi: 10.1186/s12876-025-03739-9. PubMed DOI PMC
Youssef L.A., Rebbaa A., Pampou S., Weisberg S.P., Stockwell B.R., Hod E.A., Spitalnik S.L. Increased erythrophagocytosis induces ferroptosis in red pulp macrophages in a mouse model of transfusion. Blood. 2018;131:2581–2593. doi: 10.1182/blood-2017-12-822619. PubMed DOI PMC
Papadopoulos C. Molecular and Immunometabolic Landscape of Erythrophagocytosis-induced Ferroptosis. Cardiovasc. Hematol. Disord. Targets. 2025;25:1–8. doi: 10.2174/011871529X370553250322095430. PubMed DOI
Charalampos P. The Molecular Determinants of Erythrocyte Removal Impact the Development of Metabolic Dysfunction-Associated Steatohepatitis. Endocrine, Metab. Immune Disord. Drug Targets. 2024;25:1031–1034. doi: 10.2174/0118715303362972241121062515. PubMed DOI
An Y., Xu M., Yan M., Zhang H., Li C., Wang L., Liu C., Dong H., Chen L., Zhang L., et al. Erythrophagocytosis-induced ferroptosis contributes to pulmonary microvascular thrombosis and thrombotic vascular remodeling in pulmonary arterial hypertension. J. Thromb. Haemost. 2025;23:158–170. doi: 10.1016/j.jtha.2024.09.011. PubMed DOI
Li Z., Yan M., Wang Z., An Y., Wei X., Li T., Xu M., Xia Y., Wang L., Gao C. Ferroptosis of Endothelial Cells Triggered by Erythrophagocytosis Contributes to Thrombogenesis in Uremia. Thromb. Haemost. 2023;123:1116–1128. doi: 10.1055/a-2117-7890. PubMed DOI PMC
Puylaert P., Roth L., Van Praet M., Pintelon I., Dumitrascu C., van Nuijs A., Klejborowska G., Guns P.J., Berghe T.V., Augustyns K., et al. Effect of erythrophagocytosis-induced ferroptosis during angiogenesis in atherosclerotic plaques. Angiogenesis. 2023;26:505–522. doi: 10.1007/s10456-023-09877-6. PubMed DOI PMC
Kyriakou Z., Mimidis K., Politis N., Veniamis P., Vlachos D., Anagnostopoulos K., Papadopoulos C. Reduced Erythrocyte Opsonization by Calreticulin, Lactadherin, Mannose-binding Lectin, and Thrombospondin-1 in MAFLD Patients. Cardiovasc. Hematol. Disord. Targets. 2025;25:1–5. doi: 10.2174/011871529X381576250613041457. PubMed DOI
Lutz H.U., Bogdanova A. Mechanisms tagging senescent red blood cells for clearance in healthy humans. Front. Physiol. 2013;4:387. doi: 10.3389/fphys.2013.00387. PubMed DOI PMC
van Bruggen R. CD47 functions as a removal marker on aged erythrocytes. ISBT Sci. Ser. 2013;8:153–156. doi: 10.1111/voxs.12038. DOI
Bratosin D., Mazurier J., Debray H., Lecocq M., Boilly B., Alonso C., Moisei M., Motas C., Montreuil J. Flow cytofluorimetric analysis of young and senescent human erythrocytes probed with lectins. Evidence that sialic acids control their life span. Glycoconj. J. 1995;12:258–267. doi: 10.1007/BF00731328. PubMed DOI
Dupuis L., Chauvet M., Bourdelier E., Dussiot M., Belmatoug N., Le Van Kim C., Chêne A., Franco M. Phagocytosis of Erythrocytes from Gaucher Patients Induces Phenotypic Modifications in Macrophages, Driving Them toward Gaucher Cells. Int. J. Mol. Sci. 2022;23:7640. doi: 10.3390/ijms23147640. PubMed DOI PMC
Papadopoulos C., Spourita E., Mimidis K., Kolios G., Tentes L., Anagnostopoulos K. Nonalcoholic Fatty Liver Disease Patients Exhibit Reduced CD47 and Increased Sphingosine, Cholesterol, and Monocyte Chemoattractant Protein-1 Levels in the Erythrocyte Membranes. Metab. Syndr. Relat. Disord. 2022;20:377–383. doi: 10.1089/met.2022.0006. PubMed DOI
Papadopoulos C., Mimidis K., Papazoglou D., Kolios G., Tentes I., Anagnostopoulos K. Red Blood Cell-Conditioned Media from Non-Alcoholic Fatty Liver Disease Patients Contain Increased MCP1 and Induce TNF-α Release. Rep. Biochem. Mol. Biol. 2022;11:54–62. doi: 10.52547/rbmb.11.1.54. PubMed DOI PMC
Pfefferlé M., Ingoglia G., Schaer C.A., Yalamanoglu A., Buzzi R., Dubach I.L., Tan G., López-Cano E.Y., Schulthess N., Hansen K., et al. Hemolysis transforms liver macrophages into antiinflammatory erythrophagocytes. J. Clin. Investig. 2020;130:5576–5590. doi: 10.1172/JCI137282. PubMed DOI PMC
Sharma R., Holman C.J., Brown K.E. A thorny matter: Spur cell anemia. Ann. Hepatol. 2023;28:100771. doi: 10.1016/j.aohep.2022.100771. PubMed DOI
Allen D.W., Manning N. Cholesterol-Loading of Membranes of Normal Erythrocytes Inhibits Phospholipid Repair and Arachidonoyl-CoA:l-Palmitoyl-sn-Glycero-3 Phosphocholine Acyl Transferase. A Model of Spur Cell Anemia. Blood. 1996;87:3489–3493. doi: 10.1182/blood.V87.8.3489.bloodjournal8783489. PubMed DOI
van Zwieten R., Bochem A.E., Hilarius P.M., van Bruggen R., Bergkamp F., Hovingh G.K., Verhoeven A.J. The cholesterol content of the erythrocyte membrane is an important determinant of phosphatidylserine exposure. Biochim. Biophys. Acta. 2012;1821:1493–1500. doi: 10.1016/j.bbalip.2012.08.008. PubMed DOI
Roy A., Rodge G., Goenka M.K. Spur Cell Anaemia in Cirrhosis: A Narrative Review. J. Clin. Exp. Hepatol. 2023;13:500–508. doi: 10.1016/j.jceh.2022.10.005. PubMed DOI PMC
Kot Y., Prokopiuk V., Klochkov V., Tryfonyuk L., Maksimchuk P., Aslanov A., Kot K., Avrunin O., Demchenko L., Kurmangaliyeva S., et al. Mn3O4 Nanocrystal-Induced Eryptosis Features Ca2+ Overload, ROS and RNS Accumulation, Calpain Activation, Recruitment of Caspases, and Changes in the Lipid Order of Cell Membranes. Int. J. Mol. Sci. 2025;26:3284. doi: 10.3390/ijms26073284. PubMed DOI PMC
Prokopiuk V., Onishchenko A., Tryfonyuk L., Posokhov Y., Gorbach T., Kot Y., Kot K., Maksimchuk P., Nakonechna O., Tkachenko A. Marine Polysaccharides Carrageenans Enhance Eryptosis and Alter Lipid Order of Cell Membranes in Erythrocytes. Cell Biochem. Biophys. 2024;82:747–766. doi: 10.1007/s12013-024-01225-9. PubMed DOI
Owen J.S., Bruckdorfer K.R., Day R.C., McIntyre N. Decreased erythrocyte membrane fluidity and altered lipid composition in human liver disease. J. Lipid Res. 1982;23:124–132. doi: 10.1016/S0022-2275(20)38181-5. PubMed DOI
Shiraishi K., Matsuzaki S., Ishida H., Nakazawa H. Impaired erythrocyte deformability and membrane fluidity in alcoholic liver disease: Participation in disturbed hepatic microcirculation. Alcohol Alcohol. 1993;28:59–64. doi: 10.1093/alcalc/28.Supplement_1A.59. PubMed DOI
Gwoździński L., Krawczyk P., Dworniak D., Kowalczyk E., Błaszczyk J. Alterations in the erythrocyte plasma membranes in patients with alcohol-induced liver cirrhosis—Preliminary results. Arch. Med. Sci. 2011;7:87–91. doi: 10.5114/aoms.2011.20609. PubMed DOI PMC
Gottlieb Y., Topaz O., Cohen L.A., Yakov L.D., Haber T., Morgenstern A., Weiss A., Chait Berman K., Fibach E., Meyron-Holtz E.G. Physiologically aged red blood cells undergo erythrophagocytosis in vivo but not in vitro. Haematologica. 2012;97:994–1002. doi: 10.3324/haematol.2011.057620. PubMed DOI PMC
Virzì G.M., Clementi A., Ronco C., Zanella M. Red Cell Death in Renal Disease: The Role of Eryptosis in CKD and Dialysis Patients. Cells. 2025;14:967. doi: 10.3390/cells14130967. PubMed DOI PMC
Lupescu A., Shaik N., Jilani K., Zelenak C., Lang E., Pasham V., Zbidah M., Plate A., Bitzer M., Föller M., et al. Enhanced erythrocyte membrane exposure of phosphatidylserine following sorafenib treatment: An in vivo and in vitro study. Cell Physiol. Biochem. 2012;30:876–888. doi: 10.1159/000341465. PubMed DOI
Oswald G., Alzoubi K., Abed M., Lang F. Stimulation of suicidal erythrocyte death by ribavirin. Basic. Clin. Pharmacol. Toxicol. 2014;114:311–317. doi: 10.1111/bcpt.12165. PubMed DOI
Niemoeller O.M., Akel A., Lang P.A., Attanasio P., Kempe D.S., Hermle T., Sobiesiak M., Wieder T., Lang F. Induction of eryptosis by cyclosporine. Naunyn Schmiedebergs Arch. Pharmacol. 2006;374:41–49. doi: 10.1007/s00210-006-0099-5. PubMed DOI
Alharthy F.H., Alsughayyir J., Alfhili M.A. Docosahexaenoic Acid Promotes Eryptosis and Haemolysis through Oxidative Stress/Calcium/Rac1 GTPase Signalling. Folia Biol. 2024;70:179–188. doi: 10.14712/fb2024070030179. PubMed DOI
Alharthy F.H., Alsughayyir J., Alfhili M.A. Eicosapentaenoic Acid Triggers Phosphatidylserine Externalization in the Erythrocyte Membrane through Calcium Signaling and Anticholinesterase Activity. Physiol. Res. 2024;73:1075–1084. doi: 10.33549/physiolres.935368. PubMed DOI PMC
Mischitelli M., Jemaà M., Almasry M., Faggio C., Lang F. Triggering of Erythrocyte Cell Membrane Scrambling by Emodin. Cell Physiol. Biochem. 2016;40:91–103. doi: 10.1159/000452527. PubMed DOI
Alharthy F.H., Jawaher A., and Alfhili M.A. Linolenic acid stimulates eryptosis and hemolysis through oxidative stress and CK1α/MLKL: Protective role of melatonin, urea, and polyethylene glycol. Drug Chem. Toxicol. 2024:1–11. doi: 10.1080/01480545.2024.2420680. PubMed DOI
Juárez-Hernández E., Chávez-Tapia N.C., Uribe M., Barbero-Becerra V.J. Role of bioactive fatty acids in nonalcoholic fatty liver disease. Nutr. J. 2016;15:72. doi: 10.1186/s12937-016-0191-8. PubMed DOI PMC
Tkachenko A., Havranek O. Erythronecroptosis: An overview of necroptosis or programmed necrosis in red blood cells. Mol. Cell. Biochem. 2024;479:3273–3291. doi: 10.1007/s11010-024-04948-8. PubMed DOI
Tanaka N., Zhang X., Sugiyama E., Kono H., Horiuchi A., Nakajima T., Kanbe H., Tanaka E., Gonzalez F.J., Aoyama T. Eicosapentaenoic acid improves hepatic steatosis independent of PPARα activation through inhibition of SREBP-1 maturation in mice. Biochem. Pharmacol. 2010;80:1601–1612. doi: 10.1016/j.bcp.2010.07.031. PubMed DOI PMC
Albracht-Schulte K., Gonzalez S., Jackson A., Wilson S., Ramalingam L., Kalupahana N.S., Moustaid-Moussa N. Eicosapentaenoic Acid Improves Hepatic Metabolism and Reduces Inflammation Independent of Obesity in High-Fat-Fed Mice and in HepG2 Cells. Nutrients. 2019;11:599. doi: 10.3390/nu11030599. PubMed DOI PMC
Nobili V., Alisi A., Della Corte C., Risé P., Galli C., Agostoni C., Bedogni G. Docosahexaenoic acid for the treatment of fatty liver: Randomised controlled trial in children. Nutr. Metab. Cardiovasc. Dis. 2013;23:1066–1070. doi: 10.1016/j.numecd.2012.10.010. PubMed DOI
He J., Hong B., Bian M., Jin H., Chen J., Shao J., Zhang F., Zheng S. Docosahexaenoic acid inhibits hepatic stellate cell activation to attenuate liver fibrosis in a PPARγ-dependent manner. Int. Immunopharmacol. 2019;75:105816. doi: 10.1016/j.intimp.2019.105816. PubMed DOI
Ruan L., Jiang L., Zhao W., Meng H., Zheng Q., Wang J. Hepatotoxicity or hepatoprotection of emodin? Two sides of the same coin by (1)H-NMR metabolomics profiling. Toxicol. Appl. Pharmacol. 2021;431:115734. doi: 10.1016/j.taap.2021.115734. PubMed DOI
Almohaimeed H.M., Aggad W.S., Assiri R. Hepatoprotective role of emodin in chemical-induced liver injury histopathological study in mice model. Rend. Lincei. Sci. Fis. Nat. 2023;34:1231–1239. doi: 10.1007/s12210-023-01200-1. DOI
Åberg F., Sallinen V., Tuominen S., Adam R., Karam V., Mirza D., Heneghan M.A., Line P.-D., Bennet W., Ericzon B.-G., et al. Cyclosporine vs. tacrolimus after liver transplantation for primary sclerosing cholangitis—A propensity score-matched intention-to-treat analysis. J. Hepatol. 2024;80:99–108. doi: 10.1016/j.jhep.2023.08.031. PubMed DOI
Du X.-S., Li H.-D., Yang X.-J., Li J.-J., Xu J.-J., Chen Y., Xu Q.-Q., Yang L., He C.-S., Huang C., et al. Wogonin attenuates liver fibrosis via regulating hepatic stellate cell activation and apoptosis. Int. Immunopharmacol. 2019;75:105671. doi: 10.1016/j.intimp.2019.05.056. PubMed DOI
Dai J.M., Guo W.N., Tan Y.Z., Niu K.W., Zhang J.J., Liu C.L., Yang X.M., Tao K.S., Chen Z.N., Dai J.Y. Wogonin alleviates liver injury in sepsis through Nrf2-mediated NF-κB signalling suppression. J. Cell Mol. Med. 2021;25:5782–5798. doi: 10.1111/jcmm.16604. PubMed DOI PMC
Zhao W., Luo H., Lin Z., Huang L., Pan Z., Chen L., Fan L., Yang S., Tan H., Zhong C., et al. Wogonin mitigates acetaminophen-induced liver injury in mice through inhibition of the PI3K/AKT signaling pathway. J. Ethnopharmacol. 2024;332:118364. doi: 10.1016/j.jep.2024.118364. PubMed DOI
Alfhili M.A., Basudan A.M., Alsughayyir J. Antiproliferative Wnt inhibitor wogonin prevents eryptosis following ionophoric challenge, hyperosmotic shock, oxidative stress, and metabolic deprivation. J. Food Biochem. 2021;45:e13977. doi: 10.1111/jfbc.13977. PubMed DOI
Lang E., Qadri S.M., Lang F. Killing me softly—Suicidal erythrocyte death. Int. J. Biochem. Cell Biol. 2012;44:1236–1243. doi: 10.1016/j.biocel.2012.04.019. PubMed DOI
LaRocca T.J., Stivison E.A., Hod E.A., Spitalnik S.L., Cowan P.J., Randis T.M., Ratner A.J. Human-specific bacterial pore-forming toxins induce programmed necrosis in erythrocytes. mBio. 2014;5:e01251-14. doi: 10.1128/mBio.01251-14. PubMed DOI PMC