• This record comes from PubMed

Eryptosis in Liver Diseases: Contribution to Anemia and Hypercoagulation

. 2025 Aug 12 ; 13 (3) : . [epub] 20250812

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Eryptosis is a type of regulated cell death of mature erythrocytes characterized by excessive Ca2+ accumulation followed by phosphatidylserine externalization. Eryptosis facilitates erythrophagocytosis resulting in eradication of damaged erythrocytes, which maintains the population of healthy erythrocytes in blood. Over recent years, a wide array of diseases has been reported to be linked to accelerated eryptosis, which leads to anemia. A growing number of studies furnish evidence that eryptosis is implicated in the pathogenesis of liver diseases. Herein, we summarize the current knowledge of eryptosis signaling, its physiological role, and the impact of eryptosis on anemia and hypercoagulation. In this article, upon systemically analyzing the PubMed-indexed publications, we also provide a comprehensive overview of the role of eryptosis in the spectrum of hepatic diseases, its contribution to the development of complications in liver pathology, metabolites (bilirubin, bile acids, etc.) that might trigger eryptosis in liver diseases, and eryptosis-inducing liver disease medications. Eryptosis in liver diseases contributes to anemia, hypercoagulation, and endothelial damage (via ferroptosis of endothelial cells). Treatment-associated anemia in liver diseases might be at least partly attributed to drug-induced eryptosis. Ultimately, we analyze the concept of inhibiting eryptosis pharmaceutically to prevent eryptosis-associated anemia and thrombosis in liver diseases.

See more in PubMed

Stanke F., Janciauskiene S., Olejnicka B. Editorial: Acute phase proteins as biomarkers and therapeutics in acute and chronic inflammatory conditions. Front. Pharmacol. 2023;14:1145990. doi: 10.3389/fphar.2023.1145990. PubMed DOI PMC

Trefts E., Gannon M., Wasserman D.H. The liver. Curr. Biol. 2017;27:R1147–R1151. doi: 10.1016/j.cub.2017.09.019. PubMed DOI PMC

Kalra A., Yetiskul E., Wehrle C.J., Tuma F. StatPearls. StatPearls Publishing LLC.; Treasure Island, FL, USA: 2025. Physiology, Liver. PubMed

Anderson G.J., Frazer D.M. Current understanding of iron homeostasis. Am. J. Clin. Nutr. 2017;106:1559s–1566s. doi: 10.3945/ajcn.117.155804. PubMed DOI PMC

Kubes P., Jenne C. Immune Responses in the Liver. Annu. Rev. Immunol. 2018;36:247–277. doi: 10.1146/annurev-immunol-051116-052415. PubMed DOI

Roizen J.D., Levine M.A. Chapter 67—The role of genetic variation in CYP2R1, the principal vitamin D 25-hydroxylase, and CYP3A4 in vitamin D homeostasis. In: Hewison M., Bouillon R., Giovannucci E., Goltzman D., Meyer M., Welsh J., editors. Feldman and Pike’s Vitamin D (Fifth Edition) Academic Press; Cambridge, MA, USA: 2024. pp. 341–357.

Adamek A., Kasprzak A. Insulin-Like Growth Factor (IGF) System in Liver Diseases. Int. J. Mol. Sci. 2018;19:1308. doi: 10.3390/ijms19051308. PubMed DOI PMC

Bruinstroop E., van der Spek A.H., Boelen A. Role of hepatic deiodinases in thyroid hormone homeostasis and liver metabolism, inflammation, and fibrosis. Eur. Thyroid. J. 2023;12:e220211. doi: 10.1530/ETJ-22-0211. PubMed DOI PMC

Watt M.J., Miotto P.M., De Nardo W., Montgomery M.K. The Liver as an Endocrine Organ-Linking NAFLD and Insulin Resistance. Endocr. Rev. 2019;40:1367–1393. doi: 10.1210/er.2019-00034. PubMed DOI

Stefan N., Schick F., Birkenfeld A.L., Häring H.U., White M.F. The role of hepatokines in NAFLD. Cell Metab. 2023;35:236–252. doi: 10.1016/j.cmet.2023.01.006. PubMed DOI PMC

Rowe M.M., Kaestner K.H. The Role of Non-Coding RNAs in Liver Disease, Injury, and Regeneration. Cells. 2023;12:359. doi: 10.3390/cells12030359. PubMed DOI PMC

Devarbhavi H., Asrani S.K., Arab J.P., Nartey Y.A., Pose E., Kamath P.S. Global burden of liver disease: 2023 update. J. Hepatol. 2023;79:516–537. doi: 10.1016/j.jhep.2023.03.017. PubMed DOI

Borrello M.T., Mann D. Chronic liver diseases: From development to novel pharmacological therapies: IUPHAR Review 37. Br. J. Pharmacol. 2023;180:2880–2897. doi: 10.1111/bph.15853. PubMed DOI

Rinella M.E., Sookoian S. From NAFLD to MASLD: Updated naming and diagnosis criteria for fatty liver disease. J. Lipid Res. 2024;65:100485. doi: 10.1016/j.jlr.2023.100485. PubMed DOI PMC

Sharma A., Nagalli S. StatPearls. StatPearls Publishing LLC.; Treasure Island, FL, USA: 2025. Chronic Liver Disease. PubMed

Gan C., Yuan Y., Shen H., Gao J., Kong X., Che Z., Guo Y., Wang H., Dong E., Xiao J. Liver diseases: Epidemiology, causes, trends and predictions. Signal Transduct. Target. Ther. 2025;10:33. doi: 10.1038/s41392-024-02072-z. PubMed DOI PMC

Moon A.M., Singal A.G., Tapper E.B. Contemporary Epidemiology of Chronic Liver Disease and Cirrhosis. Clin. Gastroenterol. Hepatol. 2020;18:2650–2666. doi: 10.1016/j.cgh.2019.07.060. PubMed DOI PMC

Ebel N.H., Horslen S.P. Diseases of the Liver and Biliary System in Children. Wiley Online Library; Hoboken, NJ, USA: 2017. Complications and Management of Chronic Liver Disease; pp. 341–365.

Lingas E.C. Hematological Abnormalities in Cirrhosis: A Narrative Review. Cureus. 2023;15:e39239. doi: 10.7759/cureus.39239. PubMed DOI PMC

McMurry H.S., Jou J., Shatzel J. The hemostatic and thrombotic complications of liver disease. Eur. J. Haematol. 2021;107:383–392. doi: 10.1111/ejh.13688. PubMed DOI PMC

Gonzalez-Casas R., Jones E.A., Moreno-Otero R. Spectrum of anemia associated with chronic liver disease. World J. Gastroenterol. 2009;15:4653–4658. doi: 10.3748/wjg.15.4653. PubMed DOI PMC

Marginean C.M., Pirscoveanu D., Popescu M., Docea A.O., Radu A., Popescu A.I.S., Vasile C.M., Mitrut R., Marginean I.C., Iacob G.A., et al. Diagnostic Approach and Pathophysiological Mechanisms of Anemia in Chronic Liver Disease—An Overview. Gastroenterol. Insights. 2023;14:327–341. doi: 10.3390/gastroent14030024. DOI

Gkamprela E., Deutsch M., Pectasides D. Iron deficiency anemia in chronic liver disease: Etiopathogenesis, diagnosis and treatment. Ann. Gastroenterol. 2017;30:405–413. doi: 10.20524/aog.2017.0152. PubMed DOI PMC

Buttler L., Tiede A., Griemsmann M., Rieland H., Mauz J., Kahlhöfer J., Wedemeyer H., Cornberg M., Tergast T.L., Maasoumy B., et al. Folic acid supplementation is associated with a decreased mortality and reduced hospital readmission in patients with decompensated alcohol-related liver cirrhosis. Clin. Nutr. 2024;43:1719–1727. doi: 10.1016/j.clnu.2024.05.044. PubMed DOI

Sawada K., Takai A., Yamada T., Araki O., Yamauchi Y., Eso Y., Takahashi K., Shindo T., Sakurai T., Ueda Y., et al. Hepatitis-associated Aplastic Anemia with Rapid Progression of Liver Fibrosis Due to Repeated Hepatitis. Intern. Med. 2020;59:1035–1040. doi: 10.2169/internalmedicine.4072-19. PubMed DOI PMC

Li L., Duan M., Chen W., Jiang A., Li X., Yang J., Li Z. The spleen in liver cirrhosis: Revisiting an old enemy with novel targets. J. Transl. Med. 2017;15:111. doi: 10.1186/s12967-017-1214-8. PubMed DOI PMC

Gaur K., Puri V., Agarwal K., Suman S., Dhamija R.K. Chronic Liver Disease Presenting as Immune Hemolytic Anemia: The Challenges of Diagnosis in the Critically Ill in a Resource-Limited Health Care Setting. Cureus. 2021;13:e14880. doi: 10.7759/cureus.14880. PubMed DOI PMC

DebRoy S., Kribs-Zaleta C., Mubayi A., Cardona-Meléndez G.M., Medina-Rios L., Kang M., Diaz E. Evaluating treatment of hepatitis C for hemolytic anemia management. Math. Biosci. 2010;225:141–155. doi: 10.1016/j.mbs.2010.02.005. PubMed DOI

Tkachenko A. Hemocompatibility studies in nanotoxicology: Hemolysis or eryptosis? (A review) Toxicol. In Vitro. 2024;98:105814. doi: 10.1016/j.tiv.2024.105814. PubMed DOI

Lang K.S., Lang P.A., Bauer C., Duranton C., Wieder T., Huber S.M., Lang F. Mechanisms of suicidal erythrocyte death. Cell Physiol. Biochem. 2005;15:195–202. doi: 10.1159/000086406. PubMed DOI

Lang F., Qadri S.M. Mechanisms and significance of eryptosis, the suicidal death of erythrocytes. Blood Purif. 2012;33:125–130. doi: 10.1159/000334163. PubMed DOI

Tkachenko A., Onishchenko A. Casein kinase 1α mediates eryptosis: A review. Apoptosis. 2023;28:1–19. doi: 10.1007/s10495-022-01776-3. PubMed DOI

Tkachenko A., Havranek O. Cell death signaling in human erythron: Erythrocytes lose the complexity of cell death machinery upon maturation. Apoptosis. 2025;30:652–673. doi: 10.1007/s10495-025-02081-5. PubMed DOI PMC

Tkachenko A., Alfhili M.A., Alsughayyir J., Attanzio A., Al Mamun Bhuyan A., Bukowska B., Cilla A., Quintanar-Escorza M.A., Föller M., Havranek O., et al. Current understanding of eryptosis: Mechanisms, physiological functions, role in disease, pharmacological applications, and nomenclature recommendations. Cell Death Dis. 2025;16:467. doi: 10.1038/s41419-025-07784-w. PubMed DOI PMC

Tkachenko A. Apoptosis and eryptosis: Similarities and differences. Apoptosis. 2024;29:482–502. doi: 10.1007/s10495-023-01915-4. PubMed DOI

Dreischer P., Duszenko M., Stein J., Wieder T. Eryptosis: Programmed Death of Nucleus-Free, Iron-Filled Blood Cells. Cells. 2022;11:503. doi: 10.3390/cells11030503. PubMed DOI PMC

Bissinger R., Qadri S.M., Artunc F. Eryptosis: A driver of anemia in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2024;33:220–225. doi: 10.1097/MNH.0000000000000957. PubMed DOI

Alghareeb S.A., Alfhili M.A., Fatima S. Molecular Mechanisms and Pathophysiological Significance of Eryptosis. Int. J. Mol. Sci. 2023;24:5079. doi: 10.3390/ijms24065079. PubMed DOI PMC

Moreno-Amaral A.N., Dias E.S., Monte-Alegre J.B., Van Spitzenbergen B.A.K., Andrade G.B., Brugnolo-Santos V.A., Ozogovski Y.D., Ferreira Dias G., Grobe N., Kotanko P., et al. Exploring the Interplay of Inflammation, Eryptosis, and Anemia in ESKD: TH-PO878. J. Am. Soc. Nephrol. 2024;35 doi: 10.1681/ASN.2024xjezmrp3. DOI

Virzì G.M., Mattiotti M., Clementi A., Milan Manani S., Battaglia G.G., Ronco C., Zanella M. In Vitro Induction of Eryptosis by Uremic Toxins and Inflammation Mediators in Healthy Red Blood Cells. J. Clin. Med. 2022;11:5329. doi: 10.3390/jcm11185329. PubMed DOI PMC

Repsold L., Joubert A.M. Eryptosis: An Erythrocyte’s Suicidal Type of Cell Death. Biomed. Res. Int. 2018;2018:9405617. doi: 10.1155/2018/9405617. PubMed DOI PMC

Tkachenko A., Kot Y., Prokopyuk V., Onishchenko A., Bondareva A., Kapustnik V., Chumachenko T., Perskiy Y., Butov D., Nakonechna O. Food additive E407a stimulates eryptosis in a dose-dependent manner. Wien. Med. Wochenschr. 2021;172:135–143. doi: 10.1007/s10354-021-00874-2. PubMed DOI

Hankins H.M., Baldridge R.D., Xu P., Graham T.R. Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution. Traffic. 2015;16:35–47. doi: 10.1111/tra.12233. PubMed DOI PMC

Fraser M., Matuschewski K., Maier A.G. Of membranes and malaria: Phospholipid asymmetry in Plasmodium falciparum-infected red blood cells. Cell Mol. Life Sci. 2021;78:4545–4561. doi: 10.1007/s00018-021-03799-6. PubMed DOI PMC

Sakuragi T., Nagata S. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases. Nat. Rev. Mol. Cell Biol. 2023;24:576–596. doi: 10.1038/s41580-023-00604-z. PubMed DOI PMC

Kim O.-H., Kang G.-H., Hur J., Lee J., Jung Y., Hong I.-S., Lee H., Seo S.-Y., Lee D.H., Lee C.S., et al. Externalized phosphatidylinositides on apoptotic cells are eat-me signals recognized by CD14. Cell Death Differ. 2022;29:1423–1432. doi: 10.1038/s41418-022-00931-2. PubMed DOI PMC

Boulet C., Doerig C.D., Carvalho T.G. Manipulating Eryptosis of Human Red Blood Cells: A Novel Antimalarial Strategy? Front. Cell Infect. Microbiol. 2018;8:419. doi: 10.3389/fcimb.2018.00419. PubMed DOI PMC

Jemaà M., Fezai M., Bissinger R., Lang F. Methods Employed in Cytofluorometric Assessment of Eryptosis, the Suicidal Erythrocyte Death. Cell Physiol. Biochem. 2017;43:431–444. doi: 10.1159/000480469. PubMed DOI

Lang F., Gulbins E., Lang P.A., Zappulla D., Föller M. Ceramide in suicidal death of erythrocytes. Cell Physiol. Biochem. 2010;26:21–28. doi: 10.1159/000315102. PubMed DOI

Lang P.A., Kempe D.S., Myssina S., Tanneur V., Birka C., Laufer S., Lang F., Wieder T., Huber S.M. PGE2 in the regulation of programmed erythrocyte death. Cell Death Differ. 2005;12:415–428. doi: 10.1038/sj.cdd.4401561. PubMed DOI

Tkachenko A., Havránek O. Redox Status of Erythrocytes as an Important Factor in Eryptosis and Erythronecroptosis. Folia Biol. 2023;69:116–126. doi: 10.14712/fb2023069040116. PubMed DOI

Föller M., Huber S.M., Lang F. Erythrocyte programmed cell death. IUBMB Life. 2008;60:661–668. doi: 10.1002/iub.106. PubMed DOI

Dinkla S., Wessels K., Verdurmen W.P.R., Tomelleri C., Cluitmans J.C.A., Fransen J., Fuchs B., Schiller J., Joosten I., Brock R., et al. Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure. Cell Death Dis. 2012;3:e410. doi: 10.1038/cddis.2012.143. PubMed DOI PMC

Restivo I., Attanzio A., Giardina I.C., Di Gaudio F., Tesoriere L., Allegra M. Cigarette Smoke Extract Induces p38 MAPK-Initiated, Fas-Mediated Eryptosis. Int. J. Mol. Sci. 2022;23:14730. doi: 10.3390/ijms232314730. PubMed DOI PMC

Lang E., Lang F. Triggers, inhibitors, mechanisms, and significance of eryptosis: The suicidal erythrocyte death. Biomed. Res. Int. 2015;2015:513518. doi: 10.1155/2015/513518. PubMed DOI PMC

Föller M., Lang F. Ion Transport in Eryptosis, the Suicidal Death of Erythrocytes. Front. Cell Dev. Biol. 2020;8:597. doi: 10.3389/fcell.2020.00597. PubMed DOI PMC

Nader E., Romana M., Guillot N., Fort R., Stauffer E., Lemonne N., Garnier Y., Skinner S.C., Etienne-Julan M., Robert M., et al. Association Between Nitric Oxide, Oxidative Stress, Eryptosis, Red Blood Cell Microparticles, and Vascular Function in Sickle Cell Anemia. Front. Immunol. 2020;11:551441. doi: 10.3389/fimmu.2020.551441. PubMed DOI PMC

Bogdanova A., Makhro A., Wang J., Lipp P., Kaestner L. Calcium in Red Blood Cells—A Perilous Balance. Int. J. Mol. Sci. 2013;14:9848–9872. doi: 10.3390/ijms14059848. PubMed DOI PMC

Ghashghaeinia M., Cluitmans J.C., Akel A., Dreischer P., Toulany M., Köberle M., Skabytska Y., Saki M., Biedermann T., Duszenko M., et al. The impact of erythrocyte age on eryptosis. Br. J. Haematol. 2012;157:606–614. doi: 10.1111/j.1365-2141.2012.09100.x. PubMed DOI

Mendonça R., Silveira A.A., Conran N. Red cell DAMPs and inflammation. Inflamm. Res. 2016;65:665–678. doi: 10.1007/s00011-016-0955-9. PubMed DOI

NaveenKumar S.K., Hemshekhar M., Sharathbabu B.N., Kemparaju K., Mugesh G., Girish K.S. Platelet activation and ferroptosis mediated NETosis drives heme induced pulmonary thrombosis. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2023;1869:166688. doi: 10.1016/j.bbadis.2023.166688. PubMed DOI

Dang D., Meng Z., Zhang C., Li Z., Wei J., Wu H. Heme induces intestinal epithelial cell ferroptosis via mitochondrial dysfunction in transfusion-associated necrotizing enterocolitis. FASEB J. 2022;36:e22649. doi: 10.1096/fj.202200853RRR. PubMed DOI

Chen Y., Fang Z.-M., Yi X., Wei X., Jiang D.-S. The interaction between ferroptosis and inflammatory signaling pathways. Cell Death Dis. 2023;14:205. doi: 10.1038/s41419-023-05716-0. PubMed DOI PMC

Fortes G.B., Alves L.S., de Oliveira R., Dutra F.F., Rodrigues D., Fernandez P.L., Souto-Padron T., De Rosa M.J., Kelliher M., Golenbock D., et al. Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood. 2012;119:2368–2375. doi: 10.1182/blood-2011-08-375303. PubMed DOI PMC

Dhuriya Y.K., Sharma D. Necroptosis: A regulated inflammatory mode of cell death. J. Neuroinflamm. 2018;15:199. doi: 10.1186/s12974-018-1235-0. PubMed DOI PMC

Scovino A.M., Totino P.R.R., Morrot A. Eryptosis as a New Insight in Malaria Pathogenesis. Front. Immunol. 2022;13:855795. doi: 10.3389/fimmu.2022.855795. PubMed DOI PMC

Jin Q., Yao C., Bian Y., Pi J. Pb-Induced Eryptosis May Provoke Thrombosis Prior to Hemolysis. Int. J. Mol. Sci. 2022;23:7008. doi: 10.3390/ijms23137008. PubMed DOI PMC

Walker B., Towhid S.T., Schmid E., Hoffmann S.M., Abed M., Münzer P., Vogel S., Neis F., Brucker S., Gawaz M., et al. Dynamic adhesion of eryptotic erythrocytes to immobilized platelets via platelet phosphatidylserine receptors. Am. J. Physiol. Cell Physiol. 2014;306:C291–C297. doi: 10.1152/ajpcell.00318.2013. PubMed DOI

Whelihan M.F., Zachary V., Orfeo T., Mann K.G. Prothrombin activation in blood coagulation: The erythrocyte contribution to thrombin generation. Blood. 2012;120:3837–3845. doi: 10.1182/blood-2012-05-427856. PubMed DOI PMC

Setty B.N.Y., Betal S.G. Microvascular endothelial cells express a phosphatidylserine receptor: A functionally active receptor for phosphatidylserine-positive erythrocytes. Blood. 2008;111:905–914. doi: 10.1182/blood-2007-07-099465. PubMed DOI PMC

Azer S.A., Hasanato R. Use of bile acids as potential markers of liver dysfunction in humans: A systematic review. Medicine. 2021;100:e27464. doi: 10.1097/MD.0000000000027464. PubMed DOI PMC

Thakur S., Kumar V., Das R., Sharma V., Mehta D.K. Biomarkers of Hepatic Toxicity: An Overview. Curr. Ther. Res. Clin. Exp. 2024;100:100737. doi: 10.1016/j.curtheres.2024.100737. PubMed DOI PMC

Tamber S.S., Bansal P., Sharma S., Singh R.B., Sharma R. Biomarkers of liver diseases. Mol. Biol. Rep. 2023;50:7815–7823. doi: 10.1007/s11033-023-08666-0. PubMed DOI

Oelberg D.G., Dubinsky W.P., Sackman J.W., Wang L.B., Adcock E.W., Lester R. Bile salts induce calcium uptake in vitro by human erythrocytes. Hepatology. 1987;7:245–252. doi: 10.1002/hep.1840070207. PubMed DOI

Lang E., Gatidis S., Freise N.F., Bock H., Kubitz R., Lauermann C., Orth H.M., Klindt C., Schuier M., Keitel V., et al. Conjugated bilirubin triggers anemia by inducing erythrocyte death. Hepatology. 2015;61:275–284. doi: 10.1002/hep.27338. PubMed DOI PMC

Abed M., Thiel C., Towhid S.T., Alzoubi K., Honisch S., Lang F., Königsrainer A. Stimulation of Erythrocyte Cell Membrane Scrambling by C-Reactive Protein. Cell Physiol. Biochem. 2017;41:806–818. doi: 10.1159/000458745. PubMed DOI

Lang E., Pozdeev V.I., Gatidis S., Qadri S.M., Häussinger D., Kubitz R., Herebian D., Mayatepek E., Lang F., Lang K.S., et al. Bile Acid-Induced Suicidal Erythrocyte Death. Cell Physiol. Biochem. 2016;38:1500–1509. doi: 10.1159/000443091. PubMed DOI

Alfhili M.A., Aljuraiban G.S. Lauric Acid, a Dietary Saturated Medium-Chain Fatty Acid, Elicits Calcium-Dependent Eryptosis. Cells. 2021;10:3388. doi: 10.3390/cells10123388. PubMed DOI PMC

Brito M.A., Silva R.F.M., Brites D. Bilirubin induces loss of membrane lipids and exposure of phosphatidylserine in human erythrocytes. Cell Biol. Toxicol. 2002;18:181–192. doi: 10.1023/A:1015563704551. PubMed DOI

Brito M.A., Brites D. Effect of acidosis on bilirubin-induced toxicity to human erythrocytes. Mol. Cell. Biochem. 2003;247:155–162. doi: 10.1023/A:1024111613327. PubMed DOI

Ramírez-Mejía M.M., Castillo-Castañeda S.M., Pal S.C., Qi X., Méndez-Sánchez N. The Multifaceted Role of Bilirubin in Liver Disease: A Literature Review. J. Clin. Transl. Hepatol. 2024;12:939–948. doi: 10.14218/JCTH.2024.00156. PubMed DOI PMC

Alexandra Brito M., Silva R.F., Brites D. Bilirubin toxicity to human erythrocytes: A review. Clin. Chim. Acta. 2006;374:46–56. doi: 10.1016/j.cca.2006.06.012. PubMed DOI

Evangelakos I., Heeren J., Verkade E., Kuipers F. Role of bile acids in inflammatory liver diseases. Semin. Immunopathol. 2021;43:577–590. doi: 10.1007/s00281-021-00869-6. PubMed DOI PMC

Farooqui N., Elhence A., Shalimar A Current Understanding of Bile Acids in Chronic Liver Disease. J. Clin. Exp. Hepatol. 2022;12:155–173. doi: 10.1016/j.jceh.2021.08.017. PubMed DOI PMC

Zhou T., Ismail A., Francis H. Bile Acids in Autoimmune Liver Disease: Unveiling the Nexus of Inflammation, Inflammatory Cells, and Treatment Strategies. Cells. 2023;12:2725. doi: 10.3390/cells12232725. PubMed DOI PMC

Salvioli G., Gaetti E., Panini R., Lugli R., Pradelli J.M. Different resistance of mammalian red blood cells to hemolysis by bile salts. Lipids. 1993;28:999–1003. doi: 10.1007/BF02537121. PubMed DOI

Gentile C.L., Pagliassotti M.J. The role of fatty acids in the development and progression of nonalcoholic fatty liver disease. J. Nutr. Biochem. 2008;19:567–576. doi: 10.1016/j.jnutbio.2007.10.001. PubMed DOI PMC

Keles U., Ow J.R., Kuentzel K.B., Zhao L.N., Kaldis P. Liver-derived metabolites as signaling molecules in fatty liver disease. Cell Mol. Life Sci. 2022;80:4. doi: 10.1007/s00018-022-04658-8. PubMed DOI PMC

Zhou H.H., Tang Y.L., Xu T.H., Cheng B. C-reactive protein: Structure, function, regulation, and role in clinical diseases. Front. Immunol. 2024;15:1425168. doi: 10.3389/fimmu.2024.1425168. PubMed DOI PMC

Ross Y., Ballou S. Reliability of C-reactive protein as an inflammatory marker in patients with immune-mediated inflammatory diseases and liver dysfunction. Rheumatol. Adv. Pract. 2023;7:rkad045. doi: 10.1093/rap/rkad045. PubMed DOI PMC

Wang H., Ye J., Chen Y., Sun Y., Gong X., Deng H., Dong Z., Xu L., Li X., Zhong B. High sensitivity C-reactive protein implicates heterogeneous metabolic phenotypes and severity in metabolic dysfunction associated-steatotic liver disease. BMC Gastroenterol. 2025;25:231. doi: 10.1186/s12876-025-03778-2. PubMed DOI PMC

Ding Z., Wei Y., Peng J., Wang S., Chen G., Sun J. The Potential Role of C-Reactive Protein in Metabolic-Dysfunction-Associated Fatty Liver Disease and Aging. Biomedicines. 2023;11:2711. doi: 10.3390/biomedicines11102711. PubMed DOI PMC

Attanzio A., Frazzitta A., Vasto S., Tesoriere L., Pintaudi A.M., Livrea M.A., Cilla A., Allegra M. Increased eryptosis in smokers is associated with the antioxidant status and C-reactive protein levels. Toxicology. 2019;411:43–48. doi: 10.1016/j.tox.2018.10.019. PubMed DOI

Xu W., Peng F., Deng Y., Fan X., Li N. The emerging roles of eryptosis in liver diseases. Transfus. Clin. Biol. 2019;26:336–340. doi: 10.1016/j.tracli.2019.05.004. PubMed DOI

Otogawa K., Kinoshita K., Fujii H., Sakabe M., Shiga R., Nakatani K., Ikeda K., Nakajima Y., Ikura Y., Ueda M., et al. Erythrophagocytosis by liver macrophages (Kupffer cells) promotes oxidative stress, inflammation, and fibrosis in a rabbit model of steatohepatitis: Implications for the pathogenesis of human nonalcoholic steatohepatitis. Am. J. Pathol. 2007;170:967–980. doi: 10.2353/ajpath.2007.060441. PubMed DOI PMC

Lee S.J., Park S.Y., Jung M.Y., Bae S.M., Kim I.S. Mechanism for phosphatidylserine-dependent erythrophagocytosis in mouse liver. Blood. 2011;117:5215–5223. doi: 10.1182/blood-2010-10-313239. PubMed DOI

Park J.B., Ko K., Baek Y.H., Kwon W.Y., Suh S., Han S.H., Kim Y.H., Kim H.Y., Yoo Y.H. Pharmacological Prevention of Ectopic Erythrophagocytosis by Cilostazol Mitigates Ferroptosis in NASH. Int. J. Mol. Sci. 2023;24:12862. doi: 10.3390/ijms241612862. PubMed DOI PMC

Mei C., Peng F., Yin W., Xu W., Yao R., Li B., Zhou R., Fan X., Li N. Increased suicidal erythrocyte death in patients with hepatitis B-related acute-on-chronic liver failure. Am. J. Physiol. Gastrointest. Liver Physiol. 2022;323:G9–G20. doi: 10.1152/ajpgi.00050.2020. PubMed DOI

Wu X., Yao Z., Zhao L., Zhang Y., Cao M., Li T., Ding W., Liu Y., Deng R., Dong Z., et al. Phosphatidylserine on blood cells and endothelial cells contributes to the hypercoagulable state in cirrhosis. Liver Int. 2016;36:1800–1810. doi: 10.1111/liv.13167. PubMed DOI

Zheng C., Li S., Mueller J., Chen C., Lyu H., Yuan G., Zamalloa A., Adofina L., Srinivasan P., Menon K., et al. Evidence for alcohol-mediated hemolysis and erythrophagocytosis. Redox Biol. 2025;85:103742. doi: 10.1016/j.redox.2025.103742. PubMed DOI PMC

Lian C.Y., Zhai Z.Z., Li Z.F., Wang L. High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms. Chem. Biol. Interact. 2020;330:109199. doi: 10.1016/j.cbi.2020.109199. PubMed DOI

Unruh D., Srinivasan R., Benson T., Haigh S., Coyle D., Batra N., Keil R., Sturm R., Blanco V., Palascak M., et al. Red Blood Cell Dysfunction Induced by High-Fat Diet: Potential Implications for Obesity-Related Atherosclerosis. Circulation. 2015;132:1898–1908. doi: 10.1161/CIRCULATIONAHA.115.017313. PubMed DOI PMC

Papadopoulos C., Tentes I., Anagnostopoulos K. Red Blood Cell Dysfunction in Non-Alcoholic Fatty Liver Disease: Marker and Mediator of Molecular Mechanisms. Maedica. 2020;15:513–516. doi: 10.26574/maedica.2020.15.4.513. PubMed DOI PMC

Allameh A., Niayesh-Mehr R., Aliarab A., Sebastiani G., Pantopoulos K. Oxidative Stress in Liver Pathophysiology and Disease. Antioxidants. 2023;12:1653. doi: 10.3390/antiox12091653. PubMed DOI PMC

Pratim Das P., Medhi S. Role of inflammasomes and cytokines in immune dysfunction of liver cirrhosis. Cytokine. 2023;170:156347. doi: 10.1016/j.cyto.2023.156347. PubMed DOI

Niederreiter L., Tilg H. Cytokines and fatty liver diseases. Liver Res. 2018;2:14–20. doi: 10.1016/j.livres.2018.03.003. DOI

Scarlata G.G.M., Colaci C., Scarcella M., Dallio M., Federico A., Boccuto L., Abenavoli L. The Role of Cytokines in the Pathogenesis and Treatment of Alcoholic Liver Disease. Diseases. 2024;12:69. doi: 10.3390/diseases12040069. PubMed DOI PMC

Pocino K., Stefanile A., Basile V., Napodano C., D'Ambrosio F., Di Santo R., Callà C.A.M., Gulli F., Saporito R., Ciasca G., et al. Cytokines and Hepatocellular Carcinoma: Biomarkers of a Deadly Embrace. J. Pers. Med. 2022;13:5. doi: 10.3390/jpm13010005. PubMed DOI PMC

Wang Y., Shen H., Ma S., Nan Y., Liu H. IL-1 and IL-6 induced phosphatidylserine exposure on erythrocyte membrane and related characteristics of eryptosis in mice. J. Clin. Emerg. 2019;20:889–894. doi: 10.13201/j.issn.1009-5918.2019.11.014. DOI

Bester J., Pretorius E. Effects of IL-1β, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity. Sci. Rep. 2016;6:32188. doi: 10.1038/srep32188. PubMed DOI PMC

Alfhili M.A., Basudan A.M., Aljaser F.S., Dera A., Alsughayyir J. Bioymifi, a novel mimetic of TNF-related apoptosis-induced ligand (TRAIL), stimulates eryptosis. Med. Oncol. 2021;38:138. doi: 10.1007/s12032-021-01589-5. PubMed DOI

Bonan N.B., Steiner T.M., Kuntsevich V., Virzì G.M., Azevedo M., Nakao L.S., Barreto F.C., Ronco C., Thijssen S., Kotanko P., et al. Uremic Toxicity-Induced Eryptosis and Monocyte Modulation: The Erythrophagocytosis as a Novel Pathway to Renal Anemia. Blood Purif. 2016;41:317–323. doi: 10.1159/000443784. PubMed DOI

Yu M., Zheng C., Wang X., Peng R., Lu G., Zhang J. Phosphatidylserine induce thrombotic tendency and liver damage in obstructive jaundice. BMC Gastroenterol. 2025;25:146. doi: 10.1186/s12876-025-03739-9. PubMed DOI PMC

Youssef L.A., Rebbaa A., Pampou S., Weisberg S.P., Stockwell B.R., Hod E.A., Spitalnik S.L. Increased erythrophagocytosis induces ferroptosis in red pulp macrophages in a mouse model of transfusion. Blood. 2018;131:2581–2593. doi: 10.1182/blood-2017-12-822619. PubMed DOI PMC

Papadopoulos C. Molecular and Immunometabolic Landscape of Erythrophagocytosis-induced Ferroptosis. Cardiovasc. Hematol. Disord. Targets. 2025;25:1–8. doi: 10.2174/011871529X370553250322095430. PubMed DOI

Charalampos P. The Molecular Determinants of Erythrocyte Removal Impact the Development of Metabolic Dysfunction-Associated Steatohepatitis. Endocrine, Metab. Immune Disord. Drug Targets. 2024;25:1031–1034. doi: 10.2174/0118715303362972241121062515. PubMed DOI

An Y., Xu M., Yan M., Zhang H., Li C., Wang L., Liu C., Dong H., Chen L., Zhang L., et al. Erythrophagocytosis-induced ferroptosis contributes to pulmonary microvascular thrombosis and thrombotic vascular remodeling in pulmonary arterial hypertension. J. Thromb. Haemost. 2025;23:158–170. doi: 10.1016/j.jtha.2024.09.011. PubMed DOI

Li Z., Yan M., Wang Z., An Y., Wei X., Li T., Xu M., Xia Y., Wang L., Gao C. Ferroptosis of Endothelial Cells Triggered by Erythrophagocytosis Contributes to Thrombogenesis in Uremia. Thromb. Haemost. 2023;123:1116–1128. doi: 10.1055/a-2117-7890. PubMed DOI PMC

Puylaert P., Roth L., Van Praet M., Pintelon I., Dumitrascu C., van Nuijs A., Klejborowska G., Guns P.J., Berghe T.V., Augustyns K., et al. Effect of erythrophagocytosis-induced ferroptosis during angiogenesis in atherosclerotic plaques. Angiogenesis. 2023;26:505–522. doi: 10.1007/s10456-023-09877-6. PubMed DOI PMC

Kyriakou Z., Mimidis K., Politis N., Veniamis P., Vlachos D., Anagnostopoulos K., Papadopoulos C. Reduced Erythrocyte Opsonization by Calreticulin, Lactadherin, Mannose-binding Lectin, and Thrombospondin-1 in MAFLD Patients. Cardiovasc. Hematol. Disord. Targets. 2025;25:1–5. doi: 10.2174/011871529X381576250613041457. PubMed DOI

Lutz H.U., Bogdanova A. Mechanisms tagging senescent red blood cells for clearance in healthy humans. Front. Physiol. 2013;4:387. doi: 10.3389/fphys.2013.00387. PubMed DOI PMC

van Bruggen R. CD47 functions as a removal marker on aged erythrocytes. ISBT Sci. Ser. 2013;8:153–156. doi: 10.1111/voxs.12038. DOI

Bratosin D., Mazurier J., Debray H., Lecocq M., Boilly B., Alonso C., Moisei M., Motas C., Montreuil J. Flow cytofluorimetric analysis of young and senescent human erythrocytes probed with lectins. Evidence that sialic acids control their life span. Glycoconj. J. 1995;12:258–267. doi: 10.1007/BF00731328. PubMed DOI

Dupuis L., Chauvet M., Bourdelier E., Dussiot M., Belmatoug N., Le Van Kim C., Chêne A., Franco M. Phagocytosis of Erythrocytes from Gaucher Patients Induces Phenotypic Modifications in Macrophages, Driving Them toward Gaucher Cells. Int. J. Mol. Sci. 2022;23:7640. doi: 10.3390/ijms23147640. PubMed DOI PMC

Papadopoulos C., Spourita E., Mimidis K., Kolios G., Tentes L., Anagnostopoulos K. Nonalcoholic Fatty Liver Disease Patients Exhibit Reduced CD47 and Increased Sphingosine, Cholesterol, and Monocyte Chemoattractant Protein-1 Levels in the Erythrocyte Membranes. Metab. Syndr. Relat. Disord. 2022;20:377–383. doi: 10.1089/met.2022.0006. PubMed DOI

Papadopoulos C., Mimidis K., Papazoglou D., Kolios G., Tentes I., Anagnostopoulos K. Red Blood Cell-Conditioned Media from Non-Alcoholic Fatty Liver Disease Patients Contain Increased MCP1 and Induce TNF-α Release. Rep. Biochem. Mol. Biol. 2022;11:54–62. doi: 10.52547/rbmb.11.1.54. PubMed DOI PMC

Pfefferlé M., Ingoglia G., Schaer C.A., Yalamanoglu A., Buzzi R., Dubach I.L., Tan G., López-Cano E.Y., Schulthess N., Hansen K., et al. Hemolysis transforms liver macrophages into antiinflammatory erythrophagocytes. J. Clin. Investig. 2020;130:5576–5590. doi: 10.1172/JCI137282. PubMed DOI PMC

Sharma R., Holman C.J., Brown K.E. A thorny matter: Spur cell anemia. Ann. Hepatol. 2023;28:100771. doi: 10.1016/j.aohep.2022.100771. PubMed DOI

Allen D.W., Manning N. Cholesterol-Loading of Membranes of Normal Erythrocytes Inhibits Phospholipid Repair and Arachidonoyl-CoA:l-Palmitoyl-sn-Glycero-3 Phosphocholine Acyl Transferase. A Model of Spur Cell Anemia. Blood. 1996;87:3489–3493. doi: 10.1182/blood.V87.8.3489.bloodjournal8783489. PubMed DOI

van Zwieten R., Bochem A.E., Hilarius P.M., van Bruggen R., Bergkamp F., Hovingh G.K., Verhoeven A.J. The cholesterol content of the erythrocyte membrane is an important determinant of phosphatidylserine exposure. Biochim. Biophys. Acta. 2012;1821:1493–1500. doi: 10.1016/j.bbalip.2012.08.008. PubMed DOI

Roy A., Rodge G., Goenka M.K. Spur Cell Anaemia in Cirrhosis: A Narrative Review. J. Clin. Exp. Hepatol. 2023;13:500–508. doi: 10.1016/j.jceh.2022.10.005. PubMed DOI PMC

Kot Y., Prokopiuk V., Klochkov V., Tryfonyuk L., Maksimchuk P., Aslanov A., Kot K., Avrunin O., Demchenko L., Kurmangaliyeva S., et al. Mn3O4 Nanocrystal-Induced Eryptosis Features Ca2+ Overload, ROS and RNS Accumulation, Calpain Activation, Recruitment of Caspases, and Changes in the Lipid Order of Cell Membranes. Int. J. Mol. Sci. 2025;26:3284. doi: 10.3390/ijms26073284. PubMed DOI PMC

Prokopiuk V., Onishchenko A., Tryfonyuk L., Posokhov Y., Gorbach T., Kot Y., Kot K., Maksimchuk P., Nakonechna O., Tkachenko A. Marine Polysaccharides Carrageenans Enhance Eryptosis and Alter Lipid Order of Cell Membranes in Erythrocytes. Cell Biochem. Biophys. 2024;82:747–766. doi: 10.1007/s12013-024-01225-9. PubMed DOI

Owen J.S., Bruckdorfer K.R., Day R.C., McIntyre N. Decreased erythrocyte membrane fluidity and altered lipid composition in human liver disease. J. Lipid Res. 1982;23:124–132. doi: 10.1016/S0022-2275(20)38181-5. PubMed DOI

Shiraishi K., Matsuzaki S., Ishida H., Nakazawa H. Impaired erythrocyte deformability and membrane fluidity in alcoholic liver disease: Participation in disturbed hepatic microcirculation. Alcohol Alcohol. 1993;28:59–64. doi: 10.1093/alcalc/28.Supplement_1A.59. PubMed DOI

Gwoździński L., Krawczyk P., Dworniak D., Kowalczyk E., Błaszczyk J. Alterations in the erythrocyte plasma membranes in patients with alcohol-induced liver cirrhosis—Preliminary results. Arch. Med. Sci. 2011;7:87–91. doi: 10.5114/aoms.2011.20609. PubMed DOI PMC

Gottlieb Y., Topaz O., Cohen L.A., Yakov L.D., Haber T., Morgenstern A., Weiss A., Chait Berman K., Fibach E., Meyron-Holtz E.G. Physiologically aged red blood cells undergo erythrophagocytosis in vivo but not in vitro. Haematologica. 2012;97:994–1002. doi: 10.3324/haematol.2011.057620. PubMed DOI PMC

Virzì G.M., Clementi A., Ronco C., Zanella M. Red Cell Death in Renal Disease: The Role of Eryptosis in CKD and Dialysis Patients. Cells. 2025;14:967. doi: 10.3390/cells14130967. PubMed DOI PMC

Lupescu A., Shaik N., Jilani K., Zelenak C., Lang E., Pasham V., Zbidah M., Plate A., Bitzer M., Föller M., et al. Enhanced erythrocyte membrane exposure of phosphatidylserine following sorafenib treatment: An in vivo and in vitro study. Cell Physiol. Biochem. 2012;30:876–888. doi: 10.1159/000341465. PubMed DOI

Oswald G., Alzoubi K., Abed M., Lang F. Stimulation of suicidal erythrocyte death by ribavirin. Basic. Clin. Pharmacol. Toxicol. 2014;114:311–317. doi: 10.1111/bcpt.12165. PubMed DOI

Niemoeller O.M., Akel A., Lang P.A., Attanasio P., Kempe D.S., Hermle T., Sobiesiak M., Wieder T., Lang F. Induction of eryptosis by cyclosporine. Naunyn Schmiedebergs Arch. Pharmacol. 2006;374:41–49. doi: 10.1007/s00210-006-0099-5. PubMed DOI

Alharthy F.H., Alsughayyir J., Alfhili M.A. Docosahexaenoic Acid Promotes Eryptosis and Haemolysis through Oxidative Stress/Calcium/Rac1 GTPase Signalling. Folia Biol. 2024;70:179–188. doi: 10.14712/fb2024070030179. PubMed DOI

Alharthy F.H., Alsughayyir J., Alfhili M.A. Eicosapentaenoic Acid Triggers Phosphatidylserine Externalization in the Erythrocyte Membrane through Calcium Signaling and Anticholinesterase Activity. Physiol. Res. 2024;73:1075–1084. doi: 10.33549/physiolres.935368. PubMed DOI PMC

Mischitelli M., Jemaà M., Almasry M., Faggio C., Lang F. Triggering of Erythrocyte Cell Membrane Scrambling by Emodin. Cell Physiol. Biochem. 2016;40:91–103. doi: 10.1159/000452527. PubMed DOI

Alharthy F.H., Jawaher A., and Alfhili M.A. Linolenic acid stimulates eryptosis and hemolysis through oxidative stress and CK1α/MLKL: Protective role of melatonin, urea, and polyethylene glycol. Drug Chem. Toxicol. 2024:1–11. doi: 10.1080/01480545.2024.2420680. PubMed DOI

Juárez-Hernández E., Chávez-Tapia N.C., Uribe M., Barbero-Becerra V.J. Role of bioactive fatty acids in nonalcoholic fatty liver disease. Nutr. J. 2016;15:72. doi: 10.1186/s12937-016-0191-8. PubMed DOI PMC

Tkachenko A., Havranek O. Erythronecroptosis: An overview of necroptosis or programmed necrosis in red blood cells. Mol. Cell. Biochem. 2024;479:3273–3291. doi: 10.1007/s11010-024-04948-8. PubMed DOI

Tanaka N., Zhang X., Sugiyama E., Kono H., Horiuchi A., Nakajima T., Kanbe H., Tanaka E., Gonzalez F.J., Aoyama T. Eicosapentaenoic acid improves hepatic steatosis independent of PPARα activation through inhibition of SREBP-1 maturation in mice. Biochem. Pharmacol. 2010;80:1601–1612. doi: 10.1016/j.bcp.2010.07.031. PubMed DOI PMC

Albracht-Schulte K., Gonzalez S., Jackson A., Wilson S., Ramalingam L., Kalupahana N.S., Moustaid-Moussa N. Eicosapentaenoic Acid Improves Hepatic Metabolism and Reduces Inflammation Independent of Obesity in High-Fat-Fed Mice and in HepG2 Cells. Nutrients. 2019;11:599. doi: 10.3390/nu11030599. PubMed DOI PMC

Nobili V., Alisi A., Della Corte C., Risé P., Galli C., Agostoni C., Bedogni G. Docosahexaenoic acid for the treatment of fatty liver: Randomised controlled trial in children. Nutr. Metab. Cardiovasc. Dis. 2013;23:1066–1070. doi: 10.1016/j.numecd.2012.10.010. PubMed DOI

He J., Hong B., Bian M., Jin H., Chen J., Shao J., Zhang F., Zheng S. Docosahexaenoic acid inhibits hepatic stellate cell activation to attenuate liver fibrosis in a PPARγ-dependent manner. Int. Immunopharmacol. 2019;75:105816. doi: 10.1016/j.intimp.2019.105816. PubMed DOI

Ruan L., Jiang L., Zhao W., Meng H., Zheng Q., Wang J. Hepatotoxicity or hepatoprotection of emodin? Two sides of the same coin by (1)H-NMR metabolomics profiling. Toxicol. Appl. Pharmacol. 2021;431:115734. doi: 10.1016/j.taap.2021.115734. PubMed DOI

Almohaimeed H.M., Aggad W.S., Assiri R. Hepatoprotective role of emodin in chemical-induced liver injury histopathological study in mice model. Rend. Lincei. Sci. Fis. Nat. 2023;34:1231–1239. doi: 10.1007/s12210-023-01200-1. DOI

Åberg F., Sallinen V., Tuominen S., Adam R., Karam V., Mirza D., Heneghan M.A., Line P.-D., Bennet W., Ericzon B.-G., et al. Cyclosporine vs. tacrolimus after liver transplantation for primary sclerosing cholangitis—A propensity score-matched intention-to-treat analysis. J. Hepatol. 2024;80:99–108. doi: 10.1016/j.jhep.2023.08.031. PubMed DOI

Du X.-S., Li H.-D., Yang X.-J., Li J.-J., Xu J.-J., Chen Y., Xu Q.-Q., Yang L., He C.-S., Huang C., et al. Wogonin attenuates liver fibrosis via regulating hepatic stellate cell activation and apoptosis. Int. Immunopharmacol. 2019;75:105671. doi: 10.1016/j.intimp.2019.05.056. PubMed DOI

Dai J.M., Guo W.N., Tan Y.Z., Niu K.W., Zhang J.J., Liu C.L., Yang X.M., Tao K.S., Chen Z.N., Dai J.Y. Wogonin alleviates liver injury in sepsis through Nrf2-mediated NF-κB signalling suppression. J. Cell Mol. Med. 2021;25:5782–5798. doi: 10.1111/jcmm.16604. PubMed DOI PMC

Zhao W., Luo H., Lin Z., Huang L., Pan Z., Chen L., Fan L., Yang S., Tan H., Zhong C., et al. Wogonin mitigates acetaminophen-induced liver injury in mice through inhibition of the PI3K/AKT signaling pathway. J. Ethnopharmacol. 2024;332:118364. doi: 10.1016/j.jep.2024.118364. PubMed DOI

Alfhili M.A., Basudan A.M., Alsughayyir J. Antiproliferative Wnt inhibitor wogonin prevents eryptosis following ionophoric challenge, hyperosmotic shock, oxidative stress, and metabolic deprivation. J. Food Biochem. 2021;45:e13977. doi: 10.1111/jfbc.13977. PubMed DOI

Lang E., Qadri S.M., Lang F. Killing me softly—Suicidal erythrocyte death. Int. J. Biochem. Cell Biol. 2012;44:1236–1243. doi: 10.1016/j.biocel.2012.04.019. PubMed DOI

LaRocca T.J., Stivison E.A., Hod E.A., Spitalnik S.L., Cowan P.J., Randis T.M., Ratner A.J. Human-specific bacterial pore-forming toxins induce programmed necrosis in erythrocytes. mBio. 2014;5:e01251-14. doi: 10.1128/mBio.01251-14. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...